Properties

Label 76.3.g.c.11.3
Level $76$
Weight $3$
Character 76.11
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.3
Character \(\chi\) \(=\) 76.11
Dual form 76.3.g.c.7.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.82726 - 0.813087i) q^{2} +(-0.851777 - 0.491774i) q^{3} +(2.67778 + 2.97145i) q^{4} +(1.71651 - 2.97309i) q^{5} +(1.15657 + 1.59117i) q^{6} -2.43870i q^{7} +(-2.47697 - 7.60688i) q^{8} +(-4.01632 - 6.95647i) q^{9} +O(q^{10})\) \(q+(-1.82726 - 0.813087i) q^{2} +(-0.851777 - 0.491774i) q^{3} +(2.67778 + 2.97145i) q^{4} +(1.71651 - 2.97309i) q^{5} +(1.15657 + 1.59117i) q^{6} -2.43870i q^{7} +(-2.47697 - 7.60688i) q^{8} +(-4.01632 - 6.95647i) q^{9} +(-5.55390 + 4.03694i) q^{10} -7.76499i q^{11} +(-0.819592 - 3.84787i) q^{12} +(-4.63516 - 8.02833i) q^{13} +(-1.98287 + 4.45614i) q^{14} +(-2.92417 + 1.68827i) q^{15} +(-1.65899 + 15.9138i) q^{16} +(8.87198 - 15.3667i) q^{17} +(1.68266 + 15.9769i) q^{18} +(6.84864 + 17.7228i) q^{19} +(13.4308 - 2.86075i) q^{20} +(-1.19929 + 2.07722i) q^{21} +(-6.31361 + 14.1887i) q^{22} +(10.0507 - 5.80275i) q^{23} +(-1.63104 + 7.69747i) q^{24} +(6.60717 + 11.4440i) q^{25} +(1.94192 + 18.4387i) q^{26} +16.7524i q^{27} +(7.24645 - 6.53029i) q^{28} +(2.64340 + 4.57851i) q^{29} +(6.71594 - 0.707310i) q^{30} +10.2531i q^{31} +(15.9707 - 27.7297i) q^{32} +(-3.81862 + 6.61404i) q^{33} +(-28.7059 + 20.8653i) q^{34} +(-7.25045 - 4.18605i) q^{35} +(9.91595 - 30.5622i) q^{36} -7.71952 q^{37} +(1.89587 - 37.9527i) q^{38} +9.11779i q^{39} +(-26.8677 - 5.69307i) q^{40} +(-25.2287 + 43.6973i) q^{41} +(3.88038 - 2.82051i) q^{42} +(-43.2661 - 24.9797i) q^{43} +(23.0733 - 20.7929i) q^{44} -27.5762 q^{45} +(-23.0833 + 2.43109i) q^{46} +(74.9827 - 43.2913i) q^{47} +(9.23906 - 12.7391i) q^{48} +43.0528 q^{49} +(-2.76811 - 26.2833i) q^{50} +(-15.1139 + 8.72601i) q^{51} +(11.4438 - 35.2712i) q^{52} +(17.3665 + 30.0797i) q^{53} +(13.6212 - 30.6110i) q^{54} +(-23.0860 - 13.3287i) q^{55} +(-18.5509 + 6.04056i) q^{56} +(2.88207 - 18.4638i) q^{57} +(-1.10747 - 10.5155i) q^{58} +(-63.9961 - 36.9482i) q^{59} +(-12.8469 - 4.16820i) q^{60} +(40.4426 + 70.0487i) q^{61} +(8.33664 - 18.7351i) q^{62} +(-16.9647 + 9.79458i) q^{63} +(-51.7293 + 37.6840i) q^{64} -31.8252 q^{65} +(12.3554 - 8.98072i) q^{66} +(-14.8972 + 8.60089i) q^{67} +(69.4186 - 14.7861i) q^{68} -11.4146 q^{69} +(9.84486 + 13.5443i) q^{70} +(47.9333 + 27.6743i) q^{71} +(-42.9687 + 47.7826i) q^{72} +(27.9468 - 48.4053i) q^{73} +(14.1056 + 6.27664i) q^{74} -12.9969i q^{75} +(-34.3231 + 67.8080i) q^{76} -18.9364 q^{77} +(7.41356 - 16.6606i) q^{78} +(95.2318 + 54.9821i) q^{79} +(44.4653 + 32.2485i) q^{80} +(-27.9085 + 48.3389i) q^{81} +(81.6291 - 59.3334i) q^{82} +31.3464i q^{83} +(-9.38379 + 1.99874i) q^{84} +(-30.4577 - 52.7543i) q^{85} +(58.7479 + 80.8236i) q^{86} -5.19983i q^{87} +(-59.0674 + 19.2336i) q^{88} +(-5.29483 - 9.17091i) q^{89} +(50.3890 + 22.4219i) q^{90} +(-19.5786 + 11.3037i) q^{91} +(44.1560 + 14.3265i) q^{92} +(5.04219 - 8.73334i) q^{93} +(-172.213 + 18.1371i) q^{94} +(64.4471 + 10.0597i) q^{95} +(-27.2402 + 15.7656i) q^{96} +(65.4893 - 113.431i) q^{97} +(-78.6687 - 35.0056i) q^{98} +(-54.0169 + 31.1867i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.82726 0.813087i −0.913632 0.406543i
\(3\) −0.851777 0.491774i −0.283926 0.163925i 0.351274 0.936273i \(-0.385749\pi\)
−0.635199 + 0.772348i \(0.719082\pi\)
\(4\) 2.67778 + 2.97145i 0.669445 + 0.742862i
\(5\) 1.71651 2.97309i 0.343302 0.594617i −0.641741 0.766921i \(-0.721788\pi\)
0.985044 + 0.172304i \(0.0551211\pi\)
\(6\) 1.15657 + 1.59117i 0.192761 + 0.265195i
\(7\) 2.43870i 0.348385i −0.984712 0.174193i \(-0.944268\pi\)
0.984712 0.174193i \(-0.0557315\pi\)
\(8\) −2.47697 7.60688i −0.309621 0.950860i
\(9\) −4.01632 6.95647i −0.446257 0.772941i
\(10\) −5.55390 + 4.03694i −0.555390 + 0.403694i
\(11\) 7.76499i 0.705908i −0.935641 0.352954i \(-0.885177\pi\)
0.935641 0.352954i \(-0.114823\pi\)
\(12\) −0.819592 3.84787i −0.0682994 0.320656i
\(13\) −4.63516 8.02833i −0.356551 0.617564i 0.630832 0.775920i \(-0.282714\pi\)
−0.987382 + 0.158356i \(0.949381\pi\)
\(14\) −1.98287 + 4.45614i −0.141634 + 0.318296i
\(15\) −2.92417 + 1.68827i −0.194945 + 0.112551i
\(16\) −1.65899 + 15.9138i −0.103687 + 0.994610i
\(17\) 8.87198 15.3667i 0.521881 0.903924i −0.477795 0.878471i \(-0.658564\pi\)
0.999676 0.0254531i \(-0.00810285\pi\)
\(18\) 1.68266 + 15.9769i 0.0934810 + 0.887606i
\(19\) 6.84864 + 17.7228i 0.360455 + 0.932777i
\(20\) 13.4308 2.86075i 0.671540 0.143037i
\(21\) −1.19929 + 2.07722i −0.0571089 + 0.0989155i
\(22\) −6.31361 + 14.1887i −0.286982 + 0.644940i
\(23\) 10.0507 5.80275i 0.436985 0.252293i −0.265333 0.964157i \(-0.585482\pi\)
0.702318 + 0.711863i \(0.252148\pi\)
\(24\) −1.63104 + 7.69747i −0.0679601 + 0.320728i
\(25\) 6.60717 + 11.4440i 0.264287 + 0.457758i
\(26\) 1.94192 + 18.4387i 0.0746894 + 0.709179i
\(27\) 16.7524i 0.620459i
\(28\) 7.24645 6.53029i 0.258802 0.233225i
\(29\) 2.64340 + 4.57851i 0.0911519 + 0.157880i 0.907996 0.418979i \(-0.137612\pi\)
−0.816844 + 0.576858i \(0.804278\pi\)
\(30\) 6.71594 0.707310i 0.223865 0.0235770i
\(31\) 10.2531i 0.330744i 0.986231 + 0.165372i \(0.0528825\pi\)
−0.986231 + 0.165372i \(0.947117\pi\)
\(32\) 15.9707 27.7297i 0.499083 0.866554i
\(33\) −3.81862 + 6.61404i −0.115716 + 0.200425i
\(34\) −28.7059 + 20.8653i −0.844291 + 0.613687i
\(35\) −7.25045 4.18605i −0.207156 0.119601i
\(36\) 9.91595 30.5622i 0.275443 0.848949i
\(37\) −7.71952 −0.208636 −0.104318 0.994544i \(-0.533266\pi\)
−0.104318 + 0.994544i \(0.533266\pi\)
\(38\) 1.89587 37.9527i 0.0498912 0.998755i
\(39\) 9.11779i 0.233790i
\(40\) −26.8677 5.69307i −0.671691 0.142327i
\(41\) −25.2287 + 43.6973i −0.615333 + 1.06579i 0.374992 + 0.927028i \(0.377645\pi\)
−0.990326 + 0.138761i \(0.955688\pi\)
\(42\) 3.88038 2.82051i 0.0923899 0.0671551i
\(43\) −43.2661 24.9797i −1.00619 0.580923i −0.0961149 0.995370i \(-0.530642\pi\)
−0.910073 + 0.414447i \(0.863975\pi\)
\(44\) 23.0733 20.7929i 0.524392 0.472567i
\(45\) −27.5762 −0.612805
\(46\) −23.0833 + 2.43109i −0.501812 + 0.0528499i
\(47\) 74.9827 43.2913i 1.59538 0.921091i 0.603015 0.797730i \(-0.293966\pi\)
0.992362 0.123361i \(-0.0393674\pi\)
\(48\) 9.23906 12.7391i 0.192480 0.265399i
\(49\) 43.0528 0.878628
\(50\) −2.76811 26.2833i −0.0553622 0.525667i
\(51\) −15.1139 + 8.72601i −0.296351 + 0.171098i
\(52\) 11.4438 35.2712i 0.220073 0.678293i
\(53\) 17.3665 + 30.0797i 0.327671 + 0.567542i 0.982049 0.188625i \(-0.0604030\pi\)
−0.654379 + 0.756167i \(0.727070\pi\)
\(54\) 13.6212 30.6110i 0.252244 0.566871i
\(55\) −23.0860 13.3287i −0.419745 0.242340i
\(56\) −18.5509 + 6.04056i −0.331265 + 0.107867i
\(57\) 2.88207 18.4638i 0.0505626 0.323927i
\(58\) −1.10747 10.5155i −0.0190943 0.181301i
\(59\) −63.9961 36.9482i −1.08468 0.626240i −0.152525 0.988300i \(-0.548741\pi\)
−0.932155 + 0.362059i \(0.882074\pi\)
\(60\) −12.8469 4.16820i −0.214115 0.0694700i
\(61\) 40.4426 + 70.0487i 0.662994 + 1.14834i 0.979825 + 0.199857i \(0.0640477\pi\)
−0.316831 + 0.948482i \(0.602619\pi\)
\(62\) 8.33664 18.7351i 0.134462 0.302179i
\(63\) −16.9647 + 9.79458i −0.269281 + 0.155469i
\(64\) −51.7293 + 37.6840i −0.808270 + 0.588812i
\(65\) −31.8252 −0.489619
\(66\) 12.3554 8.98072i 0.187203 0.136072i
\(67\) −14.8972 + 8.60089i −0.222346 + 0.128371i −0.607036 0.794674i \(-0.707642\pi\)
0.384690 + 0.923046i \(0.374308\pi\)
\(68\) 69.4186 14.7861i 1.02086 0.217442i
\(69\) −11.4146 −0.165428
\(70\) 9.84486 + 13.5443i 0.140641 + 0.193489i
\(71\) 47.9333 + 27.6743i 0.675117 + 0.389779i 0.798013 0.602640i \(-0.205885\pi\)
−0.122896 + 0.992420i \(0.539218\pi\)
\(72\) −42.9687 + 47.7826i −0.596788 + 0.663647i
\(73\) 27.9468 48.4053i 0.382833 0.663087i −0.608633 0.793452i \(-0.708282\pi\)
0.991466 + 0.130365i \(0.0416150\pi\)
\(74\) 14.1056 + 6.27664i 0.190616 + 0.0848195i
\(75\) 12.9969i 0.173292i
\(76\) −34.3231 + 67.8080i −0.451619 + 0.892211i
\(77\) −18.9364 −0.245928
\(78\) 7.41356 16.6606i 0.0950456 0.213598i
\(79\) 95.2318 + 54.9821i 1.20547 + 0.695976i 0.961765 0.273874i \(-0.0883052\pi\)
0.243701 + 0.969850i \(0.421639\pi\)
\(80\) 44.4653 + 32.2485i 0.555816 + 0.403106i
\(81\) −27.9085 + 48.3389i −0.344549 + 0.596776i
\(82\) 81.6291 59.3334i 0.995477 0.723578i
\(83\) 31.3464i 0.377667i 0.982009 + 0.188834i \(0.0604707\pi\)
−0.982009 + 0.188834i \(0.939529\pi\)
\(84\) −9.38379 + 1.99874i −0.111712 + 0.0237945i
\(85\) −30.4577 52.7543i −0.358326 0.620639i
\(86\) 58.7479 + 80.8236i 0.683115 + 0.939809i
\(87\) 5.19983i 0.0597681i
\(88\) −59.0674 + 19.2336i −0.671220 + 0.218564i
\(89\) −5.29483 9.17091i −0.0594925 0.103044i 0.834745 0.550636i \(-0.185615\pi\)
−0.894238 + 0.447592i \(0.852282\pi\)
\(90\) 50.3890 + 22.4219i 0.559878 + 0.249132i
\(91\) −19.5786 + 11.3037i −0.215150 + 0.124217i
\(92\) 44.1560 + 14.3265i 0.479957 + 0.155723i
\(93\) 5.04219 8.73334i 0.0542171 0.0939068i
\(94\) −172.213 + 18.1371i −1.83205 + 0.192948i
\(95\) 64.4471 + 10.0597i 0.678390 + 0.105892i
\(96\) −27.2402 + 15.7656i −0.283752 + 0.164225i
\(97\) 65.4893 113.431i 0.675148 1.16939i −0.301278 0.953536i \(-0.597413\pi\)
0.976426 0.215854i \(-0.0692535\pi\)
\(98\) −78.6687 35.0056i −0.802742 0.357200i
\(99\) −54.0169 + 31.1867i −0.545625 + 0.315017i
\(100\) −16.3126 + 50.2773i −0.163126 + 0.502773i
\(101\) −43.6489 75.6021i −0.432167 0.748536i 0.564892 0.825165i \(-0.308918\pi\)
−0.997060 + 0.0766289i \(0.975584\pi\)
\(102\) 34.7121 3.65581i 0.340314 0.0358413i
\(103\) 95.9601i 0.931651i 0.884877 + 0.465826i \(0.154243\pi\)
−0.884877 + 0.465826i \(0.845757\pi\)
\(104\) −49.5894 + 55.1450i −0.476821 + 0.530240i
\(105\) 4.11718 + 7.13116i 0.0392112 + 0.0679158i
\(106\) −7.27581 69.0841i −0.0686397 0.651737i
\(107\) 87.4042i 0.816861i −0.912789 0.408431i \(-0.866076\pi\)
0.912789 0.408431i \(-0.133924\pi\)
\(108\) −49.7789 + 44.8593i −0.460915 + 0.415363i
\(109\) 93.5748 162.076i 0.858485 1.48694i −0.0148892 0.999889i \(-0.504740\pi\)
0.873374 0.487050i \(-0.161927\pi\)
\(110\) 31.3468 + 43.1259i 0.284971 + 0.392054i
\(111\) 6.57531 + 3.79626i 0.0592370 + 0.0342005i
\(112\) 38.8088 + 4.04576i 0.346507 + 0.0361229i
\(113\) −181.373 −1.60507 −0.802534 0.596606i \(-0.796516\pi\)
−0.802534 + 0.596606i \(0.796516\pi\)
\(114\) −20.2790 + 31.3949i −0.177886 + 0.275394i
\(115\) 39.8420i 0.346452i
\(116\) −6.52634 + 20.1150i −0.0562616 + 0.173405i
\(117\) −37.2325 + 64.4886i −0.318227 + 0.551185i
\(118\) 86.8957 + 119.548i 0.736404 + 1.01312i
\(119\) −37.4747 21.6361i −0.314914 0.181816i
\(120\) 20.0855 + 18.0620i 0.167380 + 0.150517i
\(121\) 60.7049 0.501694
\(122\) −16.9437 160.881i −0.138882 1.31869i
\(123\) 42.9784 24.8136i 0.349418 0.201737i
\(124\) −30.4665 + 27.4555i −0.245697 + 0.221415i
\(125\) 131.191 1.04953
\(126\) 38.9628 4.10349i 0.309229 0.0325674i
\(127\) 141.699 81.8097i 1.11574 0.644171i 0.175428 0.984492i \(-0.443869\pi\)
0.940309 + 0.340321i \(0.110536\pi\)
\(128\) 125.163 26.7981i 0.977839 0.209360i
\(129\) 24.5687 + 42.5543i 0.190455 + 0.329878i
\(130\) 58.1530 + 25.8767i 0.447331 + 0.199051i
\(131\) −179.080 103.392i −1.36702 0.789250i −0.376475 0.926427i \(-0.622864\pi\)
−0.990547 + 0.137177i \(0.956197\pi\)
\(132\) −29.8787 + 6.36413i −0.226354 + 0.0482131i
\(133\) 43.2204 16.7018i 0.324965 0.125577i
\(134\) 34.2143 3.60339i 0.255331 0.0268910i
\(135\) 49.8063 + 28.7557i 0.368936 + 0.213005i
\(136\) −138.868 29.4253i −1.02109 0.216362i
\(137\) 70.8332 + 122.687i 0.517031 + 0.895524i 0.999804 + 0.0197784i \(0.00629607\pi\)
−0.482774 + 0.875745i \(0.660371\pi\)
\(138\) 20.8574 + 9.28103i 0.151141 + 0.0672538i
\(139\) −140.060 + 80.8637i −1.00763 + 0.581753i −0.910496 0.413519i \(-0.864300\pi\)
−0.0971300 + 0.995272i \(0.530966\pi\)
\(140\) −6.97649 32.7536i −0.0498321 0.233955i
\(141\) −85.1581 −0.603958
\(142\) −65.0852 89.5422i −0.458346 0.630579i
\(143\) −62.3399 + 35.9920i −0.435943 + 0.251692i
\(144\) 117.367 52.3740i 0.815045 0.363709i
\(145\) 18.1497 0.125171
\(146\) −90.4239 + 65.7261i −0.619342 + 0.450179i
\(147\) −36.6714 21.1722i −0.249465 0.144029i
\(148\) −20.6712 22.9381i −0.139670 0.154987i
\(149\) −3.94728 + 6.83690i −0.0264918 + 0.0458852i −0.878967 0.476882i \(-0.841767\pi\)
0.852476 + 0.522767i \(0.175100\pi\)
\(150\) −10.5676 + 23.7488i −0.0704509 + 0.158325i
\(151\) 214.335i 1.41944i −0.704484 0.709719i \(-0.748822\pi\)
0.704484 0.709719i \(-0.251178\pi\)
\(152\) 117.851 95.9955i 0.775336 0.631549i
\(153\) −142.531 −0.931573
\(154\) 34.6019 + 15.3970i 0.224687 + 0.0999803i
\(155\) 30.4833 + 17.5995i 0.196666 + 0.113545i
\(156\) −27.0930 + 24.4154i −0.173673 + 0.156509i
\(157\) −5.93576 + 10.2810i −0.0378074 + 0.0654844i −0.884310 0.466900i \(-0.845371\pi\)
0.846503 + 0.532385i \(0.178704\pi\)
\(158\) −129.308 177.899i −0.818407 1.12594i
\(159\) 34.1616i 0.214853i
\(160\) −55.0290 95.0806i −0.343931 0.594254i
\(161\) −14.1511 24.5105i −0.0878953 0.152239i
\(162\) 90.2998 65.6358i 0.557406 0.405160i
\(163\) 309.533i 1.89897i 0.313807 + 0.949487i \(0.398396\pi\)
−0.313807 + 0.949487i \(0.601604\pi\)
\(164\) −197.401 + 42.0462i −1.20367 + 0.256379i
\(165\) 13.1094 + 22.7062i 0.0794509 + 0.137613i
\(166\) 25.4873 57.2781i 0.153538 0.345049i
\(167\) 133.887 77.2997i 0.801719 0.462872i −0.0423532 0.999103i \(-0.513485\pi\)
0.844072 + 0.536230i \(0.180152\pi\)
\(168\) 18.7718 + 3.97761i 0.111737 + 0.0236763i
\(169\) 41.5306 71.9332i 0.245743 0.425640i
\(170\) 12.7604 + 121.161i 0.0750613 + 0.712710i
\(171\) 95.7814 118.823i 0.560125 0.694869i
\(172\) −41.6313 195.453i −0.242042 1.13635i
\(173\) −120.328 + 208.413i −0.695535 + 1.20470i 0.274465 + 0.961597i \(0.411499\pi\)
−0.970000 + 0.243105i \(0.921834\pi\)
\(174\) −4.22791 + 9.50145i −0.0242983 + 0.0546060i
\(175\) 27.9083 16.1129i 0.159476 0.0920736i
\(176\) 123.570 + 12.8820i 0.702103 + 0.0731933i
\(177\) 36.3403 + 62.9432i 0.205312 + 0.355611i
\(178\) 2.21830 + 21.0628i 0.0124623 + 0.118330i
\(179\) 261.566i 1.46126i 0.682772 + 0.730632i \(0.260774\pi\)
−0.682772 + 0.730632i \(0.739226\pi\)
\(180\) −73.8431 81.9413i −0.410239 0.455229i
\(181\) 57.7654 + 100.053i 0.319146 + 0.552777i 0.980310 0.197464i \(-0.0632706\pi\)
−0.661164 + 0.750241i \(0.729937\pi\)
\(182\) 44.9663 4.73576i 0.247067 0.0260207i
\(183\) 79.5545i 0.434724i
\(184\) −69.0360 62.0810i −0.375195 0.337396i
\(185\) −13.2507 + 22.9508i −0.0716252 + 0.124058i
\(186\) −16.3144 + 11.8584i −0.0877117 + 0.0637546i
\(187\) −119.322 68.8908i −0.638088 0.368400i
\(188\) 329.425 + 106.883i 1.75226 + 0.568524i
\(189\) 40.8540 0.216159
\(190\) −109.582 70.7828i −0.576749 0.372541i
\(191\) 359.726i 1.88338i 0.336482 + 0.941690i \(0.390763\pi\)
−0.336482 + 0.941690i \(0.609237\pi\)
\(192\) 62.5938 6.65923i 0.326009 0.0346835i
\(193\) −123.197 + 213.383i −0.638325 + 1.10561i 0.347475 + 0.937689i \(0.387039\pi\)
−0.985800 + 0.167922i \(0.946294\pi\)
\(194\) −211.895 + 154.020i −1.09224 + 0.793915i
\(195\) 27.1080 + 15.6508i 0.139015 + 0.0802605i
\(196\) 115.286 + 127.929i 0.588193 + 0.652699i
\(197\) −69.4731 −0.352655 −0.176328 0.984332i \(-0.556422\pi\)
−0.176328 + 0.984332i \(0.556422\pi\)
\(198\) 124.061 13.0658i 0.626568 0.0659890i
\(199\) 119.714 69.1172i 0.601580 0.347322i −0.168083 0.985773i \(-0.553758\pi\)
0.769663 + 0.638450i \(0.220424\pi\)
\(200\) 70.6871 78.6063i 0.353436 0.393031i
\(201\) 16.9188 0.0841730
\(202\) 18.2869 + 173.635i 0.0905294 + 0.859580i
\(203\) 11.1656 6.44646i 0.0550029 0.0317560i
\(204\) −66.4006 21.5438i −0.325493 0.105607i
\(205\) 86.6106 + 150.014i 0.422491 + 0.731776i
\(206\) 78.0239 175.344i 0.378757 0.851186i
\(207\) −80.7333 46.6114i −0.390016 0.225176i
\(208\) 135.451 60.4439i 0.651205 0.290596i
\(209\) 137.617 53.1796i 0.658455 0.254448i
\(210\) −1.72491 16.3781i −0.00821388 0.0779911i
\(211\) 83.2015 + 48.0364i 0.394320 + 0.227661i 0.684030 0.729454i \(-0.260226\pi\)
−0.289710 + 0.957114i \(0.593559\pi\)
\(212\) −42.8765 + 132.151i −0.202248 + 0.623352i
\(213\) −27.2190 47.1447i −0.127789 0.221337i
\(214\) −71.0672 + 159.710i −0.332090 + 0.746310i
\(215\) −148.534 + 85.7559i −0.690854 + 0.398865i
\(216\) 127.434 41.4951i 0.589970 0.192107i
\(217\) 25.0041 0.115226
\(218\) −302.768 + 220.072i −1.38884 + 1.00950i
\(219\) −47.6089 + 27.4870i −0.217392 + 0.125512i
\(220\) −22.2137 104.290i −0.100971 0.474046i
\(221\) −164.492 −0.744308
\(222\) −8.92814 12.2831i −0.0402168 0.0553291i
\(223\) −118.020 68.1387i −0.529236 0.305555i 0.211469 0.977385i \(-0.432175\pi\)
−0.740705 + 0.671830i \(0.765509\pi\)
\(224\) −67.6244 38.9476i −0.301894 0.173873i
\(225\) 53.0730 91.9252i 0.235880 0.408556i
\(226\) 331.416 + 147.472i 1.46644 + 0.652530i
\(227\) 237.981i 1.04838i −0.851602 0.524188i \(-0.824369\pi\)
0.851602 0.524188i \(-0.175631\pi\)
\(228\) 62.5818 40.8781i 0.274482 0.179290i
\(229\) 162.743 0.710668 0.355334 0.934739i \(-0.384367\pi\)
0.355334 + 0.934739i \(0.384367\pi\)
\(230\) −32.3950 + 72.8017i −0.140848 + 0.316529i
\(231\) 16.1296 + 9.31245i 0.0698252 + 0.0403136i
\(232\) 28.2806 31.4489i 0.121899 0.135556i
\(233\) −2.50814 + 4.34423i −0.0107646 + 0.0186448i −0.871358 0.490649i \(-0.836760\pi\)
0.860593 + 0.509293i \(0.170093\pi\)
\(234\) 120.468 87.5644i 0.514822 0.374207i
\(235\) 297.240i 1.26485i
\(236\) −61.5780 289.100i −0.260924 1.22500i
\(237\) −54.0775 93.6650i −0.228175 0.395211i
\(238\) 50.8842 + 70.0050i 0.213799 + 0.294139i
\(239\) 324.149i 1.35627i 0.734936 + 0.678137i \(0.237212\pi\)
−0.734936 + 0.678137i \(0.762788\pi\)
\(240\) −22.0156 49.3354i −0.0917316 0.205564i
\(241\) −115.832 200.626i −0.480629 0.832474i 0.519124 0.854699i \(-0.326258\pi\)
−0.999753 + 0.0222253i \(0.992925\pi\)
\(242\) −110.924 49.3584i −0.458363 0.203960i
\(243\) 178.116 102.835i 0.732986 0.423190i
\(244\) −99.8494 + 307.748i −0.409219 + 1.26126i
\(245\) 73.9006 128.000i 0.301635 0.522447i
\(246\) −98.7084 + 10.3958i −0.401254 + 0.0422593i
\(247\) 110.540 137.131i 0.447529 0.555186i
\(248\) 77.9939 25.3965i 0.314492 0.102405i
\(249\) 15.4153 26.7001i 0.0619089 0.107229i
\(250\) −239.720 106.669i −0.958880 0.426678i
\(251\) 29.0811 16.7900i 0.115861 0.0668923i −0.440950 0.897532i \(-0.645358\pi\)
0.556810 + 0.830640i \(0.312025\pi\)
\(252\) −74.5318 24.1820i −0.295761 0.0959602i
\(253\) −45.0583 78.0433i −0.178096 0.308471i
\(254\) −325.439 + 34.2746i −1.28126 + 0.134940i
\(255\) 59.9132i 0.234954i
\(256\) −250.496 52.8014i −0.978498 0.206256i
\(257\) −68.8685 119.284i −0.267971 0.464139i 0.700367 0.713783i \(-0.253020\pi\)
−0.968338 + 0.249644i \(0.919686\pi\)
\(258\) −10.2932 97.7343i −0.0398961 0.378815i
\(259\) 18.8256i 0.0726856i
\(260\) −85.2209 94.5669i −0.327773 0.363719i
\(261\) 21.2335 36.7775i 0.0813544 0.140910i
\(262\) 243.159 + 334.531i 0.928089 + 1.27684i
\(263\) −312.128 180.207i −1.18680 0.685198i −0.229220 0.973375i \(-0.573618\pi\)
−0.957577 + 0.288177i \(0.906951\pi\)
\(264\) 59.7708 + 12.6650i 0.226405 + 0.0479736i
\(265\) 119.240 0.449960
\(266\) −92.5550 4.62344i −0.347951 0.0173814i
\(267\) 10.4154i 0.0390091i
\(268\) −65.4485 21.2349i −0.244211 0.0792346i
\(269\) 183.963 318.633i 0.683876 1.18451i −0.289913 0.957053i \(-0.593626\pi\)
0.973789 0.227455i \(-0.0730404\pi\)
\(270\) −67.6284 93.0411i −0.250476 0.344597i
\(271\) 18.4102 + 10.6292i 0.0679345 + 0.0392220i 0.533583 0.845748i \(-0.320845\pi\)
−0.465648 + 0.884970i \(0.654179\pi\)
\(272\) 229.824 + 166.680i 0.844940 + 0.612793i
\(273\) 22.2355 0.0814488
\(274\) −29.6760 281.774i −0.108306 1.02837i
\(275\) 88.8622 51.3046i 0.323135 0.186562i
\(276\) −30.5657 33.9178i −0.110745 0.122890i
\(277\) −221.207 −0.798581 −0.399290 0.916825i \(-0.630743\pi\)
−0.399290 + 0.916825i \(0.630743\pi\)
\(278\) 321.676 33.8783i 1.15711 0.121864i
\(279\) 71.3252 41.1796i 0.255646 0.147597i
\(280\) −13.8837 + 65.5220i −0.0495845 + 0.234007i
\(281\) −56.6252 98.0777i −0.201513 0.349031i 0.747503 0.664258i \(-0.231253\pi\)
−0.949016 + 0.315227i \(0.897919\pi\)
\(282\) 155.606 + 69.2409i 0.551795 + 0.245535i
\(283\) −136.312 78.7000i −0.481669 0.278092i 0.239443 0.970911i \(-0.423035\pi\)
−0.721112 + 0.692819i \(0.756369\pi\)
\(284\) 46.1222 + 216.537i 0.162402 + 0.762454i
\(285\) −49.9474 40.2620i −0.175254 0.141270i
\(286\) 143.176 15.0790i 0.500615 0.0527239i
\(287\) 106.565 + 61.5250i 0.371305 + 0.214373i
\(288\) −257.044 + 0.271948i −0.892514 + 0.000944264i
\(289\) −12.9240 22.3850i −0.0447196 0.0774567i
\(290\) −33.1644 14.7573i −0.114360 0.0508873i
\(291\) −111.565 + 64.4119i −0.383384 + 0.221347i
\(292\) 218.669 46.5763i 0.748868 0.159508i
\(293\) −206.366 −0.704322 −0.352161 0.935939i \(-0.614553\pi\)
−0.352161 + 0.935939i \(0.614553\pi\)
\(294\) 49.7934 + 68.5042i 0.169365 + 0.233007i
\(295\) −219.700 + 126.844i −0.744747 + 0.429980i
\(296\) 19.1210 + 58.7215i 0.0645979 + 0.198383i
\(297\) 130.082 0.437987
\(298\) 12.7717 9.28333i 0.0428581 0.0311521i
\(299\) −93.1728 53.7933i −0.311615 0.179911i
\(300\) 38.6197 34.8029i 0.128732 0.116010i
\(301\) −60.9179 + 105.513i −0.202385 + 0.350541i
\(302\) −174.273 + 391.647i −0.577063 + 1.29684i
\(303\) 85.8615i 0.283371i
\(304\) −293.398 + 79.5858i −0.965123 + 0.261796i
\(305\) 277.681 0.910429
\(306\) 260.441 + 115.890i 0.851115 + 0.378725i
\(307\) 475.527 + 274.546i 1.54895 + 0.894285i 0.998222 + 0.0595984i \(0.0189820\pi\)
0.550725 + 0.834687i \(0.314351\pi\)
\(308\) −50.7076 56.2686i −0.164635 0.182690i
\(309\) 47.1906 81.7366i 0.152721 0.264520i
\(310\) −41.3910 56.9445i −0.133519 0.183692i
\(311\) 189.205i 0.608375i −0.952612 0.304188i \(-0.901615\pi\)
0.952612 0.304188i \(-0.0983850\pi\)
\(312\) 69.3580 22.5845i 0.222301 0.0723861i
\(313\) 44.4599 + 77.0067i 0.142044 + 0.246028i 0.928266 0.371916i \(-0.121299\pi\)
−0.786222 + 0.617944i \(0.787966\pi\)
\(314\) 19.2056 13.9599i 0.0611643 0.0444582i
\(315\) 67.2500i 0.213492i
\(316\) 91.6335 + 430.206i 0.289979 + 1.36141i
\(317\) 175.632 + 304.204i 0.554045 + 0.959634i 0.997977 + 0.0635735i \(0.0202497\pi\)
−0.443932 + 0.896060i \(0.646417\pi\)
\(318\) −27.7764 + 62.4223i −0.0873471 + 0.196297i
\(319\) 35.5521 20.5260i 0.111449 0.0643449i
\(320\) 23.2437 + 218.481i 0.0726366 + 0.682752i
\(321\) −42.9831 + 74.4489i −0.133904 + 0.231928i
\(322\) 5.92870 + 56.2932i 0.0184121 + 0.174824i
\(323\) 333.102 + 51.9948i 1.03127 + 0.160974i
\(324\) −218.369 + 46.5124i −0.673979 + 0.143557i
\(325\) 61.2506 106.089i 0.188463 0.326428i
\(326\) 251.677 565.598i 0.772015 1.73496i
\(327\) −159.410 + 92.0353i −0.487492 + 0.281453i
\(328\) 394.891 + 83.6747i 1.20394 + 0.255106i
\(329\) −105.574 182.860i −0.320894 0.555805i
\(330\) −5.49226 52.1492i −0.0166432 0.158028i
\(331\) 428.498i 1.29456i 0.762254 + 0.647278i \(0.224093\pi\)
−0.762254 + 0.647278i \(0.775907\pi\)
\(332\) −93.1441 + 83.9387i −0.280555 + 0.252828i
\(333\) 31.0041 + 53.7006i 0.0931053 + 0.161263i
\(334\) −307.498 + 32.3851i −0.920653 + 0.0969615i
\(335\) 59.0541i 0.176281i
\(336\) −31.0669 22.5312i −0.0924609 0.0670573i
\(337\) −145.765 + 252.472i −0.432537 + 0.749176i −0.997091 0.0762204i \(-0.975715\pi\)
0.564554 + 0.825396i \(0.309048\pi\)
\(338\) −134.375 + 97.6728i −0.397560 + 0.288973i
\(339\) 154.489 + 89.1943i 0.455720 + 0.263110i
\(340\) 75.1975 231.768i 0.221169 0.681670i
\(341\) 79.6150 0.233475
\(342\) −271.631 + 139.241i −0.794242 + 0.407139i
\(343\) 224.489i 0.654486i
\(344\) −82.8489 + 390.994i −0.240840 + 1.13661i
\(345\) −19.5932 + 33.9365i −0.0567920 + 0.0983666i
\(346\) 389.328 282.989i 1.12523 0.817889i
\(347\) −243.463 140.563i −0.701622 0.405082i 0.106329 0.994331i \(-0.466090\pi\)
−0.807951 + 0.589249i \(0.799424\pi\)
\(348\) 15.4510 13.9240i 0.0443994 0.0400115i
\(349\) −18.0923 −0.0518403 −0.0259202 0.999664i \(-0.508252\pi\)
−0.0259202 + 0.999664i \(0.508252\pi\)
\(350\) −64.0970 + 6.75058i −0.183134 + 0.0192874i
\(351\) 134.494 77.6500i 0.383173 0.221225i
\(352\) −215.321 124.012i −0.611708 0.352307i
\(353\) −258.038 −0.730985 −0.365492 0.930814i \(-0.619099\pi\)
−0.365492 + 0.930814i \(0.619099\pi\)
\(354\) −15.2250 144.562i −0.0430084 0.408366i
\(355\) 164.556 95.0066i 0.463539 0.267624i
\(356\) 13.0725 40.2910i 0.0367205 0.113177i
\(357\) 21.2801 + 36.8582i 0.0596081 + 0.103244i
\(358\) 212.676 477.950i 0.594067 1.33506i
\(359\) −237.555 137.153i −0.661714 0.382041i 0.131216 0.991354i \(-0.458112\pi\)
−0.792930 + 0.609313i \(0.791445\pi\)
\(360\) 68.3054 + 209.769i 0.189737 + 0.582692i
\(361\) −267.192 + 242.754i −0.740145 + 0.672448i
\(362\) −24.2012 229.791i −0.0668540 0.634781i
\(363\) −51.7071 29.8531i −0.142444 0.0822399i
\(364\) −86.0158 27.9080i −0.236307 0.0766703i
\(365\) −95.9421 166.177i −0.262855 0.455279i
\(366\) −64.6847 + 145.367i −0.176734 + 0.397177i
\(367\) −523.494 + 302.240i −1.42642 + 0.823541i −0.996836 0.0794877i \(-0.974672\pi\)
−0.429580 + 0.903029i \(0.641338\pi\)
\(368\) 75.6697 + 169.570i 0.205624 + 0.460789i
\(369\) 405.305 1.09839
\(370\) 42.8734 31.1632i 0.115874 0.0842249i
\(371\) 73.3553 42.3517i 0.197723 0.114156i
\(372\) 39.4525 8.40334i 0.106055 0.0225896i
\(373\) −277.069 −0.742813 −0.371406 0.928470i \(-0.621124\pi\)
−0.371406 + 0.928470i \(0.621124\pi\)
\(374\) 162.019 + 222.901i 0.433206 + 0.595992i
\(375\) −111.745 64.5162i −0.297987 0.172043i
\(376\) −515.041 463.154i −1.36979 1.23179i
\(377\) 24.5052 42.4442i 0.0650005 0.112584i
\(378\) −74.6510 33.2179i −0.197489 0.0878779i
\(379\) 335.762i 0.885915i −0.896543 0.442958i \(-0.853929\pi\)
0.896543 0.442958i \(-0.146071\pi\)
\(380\) 142.683 + 218.439i 0.375482 + 0.574839i
\(381\) −160.927 −0.422382
\(382\) 292.488 657.313i 0.765675 1.72071i
\(383\) 256.524 + 148.104i 0.669775 + 0.386695i 0.795991 0.605308i \(-0.206950\pi\)
−0.126216 + 0.992003i \(0.540283\pi\)
\(384\) −119.790 38.7260i −0.311953 0.100849i
\(385\) −32.5046 + 56.2997i −0.0844276 + 0.146233i
\(386\) 398.612 289.737i 1.03267 0.750615i
\(387\) 401.305i 1.03697i
\(388\) 512.420 109.145i 1.32067 0.281301i
\(389\) 352.122 + 609.894i 0.905199 + 1.56785i 0.820650 + 0.571432i \(0.193612\pi\)
0.0845496 + 0.996419i \(0.473055\pi\)
\(390\) −36.8080 50.6393i −0.0943794 0.129844i
\(391\) 205.927i 0.526669i
\(392\) −106.640 327.497i −0.272041 0.835452i
\(393\) 101.691 + 176.133i 0.258755 + 0.448177i
\(394\) 126.946 + 56.4876i 0.322197 + 0.143370i
\(395\) 326.933 188.755i 0.827679 0.477861i
\(396\) −237.315 76.9973i −0.599280 0.194438i
\(397\) −159.646 + 276.514i −0.402130 + 0.696510i −0.993983 0.109536i \(-0.965063\pi\)
0.591853 + 0.806046i \(0.298397\pi\)
\(398\) −274.948 + 28.9570i −0.690824 + 0.0727563i
\(399\) −45.0276 7.02849i −0.112851 0.0176153i
\(400\) −193.078 + 86.1596i −0.482694 + 0.215399i
\(401\) −142.641 + 247.061i −0.355712 + 0.616111i −0.987240 0.159242i \(-0.949095\pi\)
0.631528 + 0.775353i \(0.282428\pi\)
\(402\) −30.9150 13.7564i −0.0769031 0.0342200i
\(403\) 82.3151 47.5246i 0.204256 0.117927i
\(404\) 107.765 332.146i 0.266746 0.822144i
\(405\) 95.8104 + 165.949i 0.236569 + 0.409749i
\(406\) −25.6440 + 2.70078i −0.0631626 + 0.00665217i
\(407\) 59.9420i 0.147278i
\(408\) 103.814 + 93.3556i 0.254447 + 0.228813i
\(409\) 9.38811 + 16.2607i 0.0229538 + 0.0397572i 0.877274 0.479990i \(-0.159360\pi\)
−0.854320 + 0.519747i \(0.826026\pi\)
\(410\) −36.2860 344.537i −0.0885025 0.840334i
\(411\) 139.336i 0.339016i
\(412\) −285.140 + 256.960i −0.692088 + 0.623689i
\(413\) −90.1054 + 156.067i −0.218173 + 0.377886i
\(414\) 109.622 + 150.814i 0.264787 + 0.364286i
\(415\) 93.1955 + 53.8064i 0.224567 + 0.129654i
\(416\) −296.650 + 0.313850i −0.713101 + 0.000754447i
\(417\) 159.066 0.381454
\(418\) −294.702 14.7214i −0.705029 0.0352186i
\(419\) 147.770i 0.352674i 0.984330 + 0.176337i \(0.0564248\pi\)
−0.984330 + 0.176337i \(0.943575\pi\)
\(420\) −10.1650 + 31.3297i −0.0242023 + 0.0745944i
\(421\) 172.053 298.005i 0.408678 0.707851i −0.586064 0.810265i \(-0.699323\pi\)
0.994742 + 0.102414i \(0.0326567\pi\)
\(422\) −112.973 155.425i −0.267709 0.368306i
\(423\) −602.309 347.743i −1.42390 0.822088i
\(424\) 185.797 206.612i 0.438200 0.487292i
\(425\) 234.475 0.551705
\(426\) 11.4036 + 108.277i 0.0267689 + 0.254172i
\(427\) 170.827 98.6272i 0.400064 0.230977i
\(428\) 259.717 234.049i 0.606815 0.546844i
\(429\) 70.7996 0.165034
\(430\) 341.137 35.9279i 0.793341 0.0835533i
\(431\) −283.031 + 163.408i −0.656686 + 0.379138i −0.791013 0.611799i \(-0.790446\pi\)
0.134327 + 0.990937i \(0.457113\pi\)
\(432\) −266.594 27.7920i −0.617115 0.0643334i
\(433\) −258.077 447.003i −0.596022 1.03234i −0.993402 0.114686i \(-0.963414\pi\)
0.397380 0.917654i \(-0.369920\pi\)
\(434\) −45.6891 20.3305i −0.105274 0.0468445i
\(435\) −15.4595 8.92557i −0.0355392 0.0205185i
\(436\) 732.174 155.952i 1.67930 0.357689i
\(437\) 171.674 + 138.384i 0.392847 + 0.316669i
\(438\) 109.343 11.5158i 0.249642 0.0262919i
\(439\) −741.197 427.930i −1.68838 0.974784i −0.955763 0.294137i \(-0.904968\pi\)
−0.732612 0.680646i \(-0.761699\pi\)
\(440\) −44.2067 + 208.627i −0.100470 + 0.474152i
\(441\) −172.914 299.495i −0.392094 0.679127i
\(442\) 300.570 + 133.746i 0.680023 + 0.302593i
\(443\) 276.161 159.442i 0.623389 0.359914i −0.154798 0.987946i \(-0.549473\pi\)
0.778187 + 0.628032i \(0.216139\pi\)
\(444\) 6.32686 + 29.7037i 0.0142497 + 0.0669003i
\(445\) −36.3545 −0.0816956
\(446\) 160.250 + 220.468i 0.359306 + 0.494322i
\(447\) 6.72441 3.88234i 0.0150434 0.00868533i
\(448\) 91.8997 + 126.152i 0.205133 + 0.281589i
\(449\) 671.176 1.49482 0.747412 0.664361i \(-0.231296\pi\)
0.747412 + 0.664361i \(0.231296\pi\)
\(450\) −171.721 + 124.818i −0.381603 + 0.277374i
\(451\) 339.309 + 195.900i 0.752349 + 0.434369i
\(452\) −485.676 538.939i −1.07451 1.19234i
\(453\) −105.404 + 182.566i −0.232681 + 0.403015i
\(454\) −193.500 + 434.855i −0.426210 + 0.957830i
\(455\) 77.6120i 0.170576i
\(456\) −147.591 + 23.8107i −0.323664 + 0.0522164i
\(457\) −557.508 −1.21993 −0.609965 0.792429i \(-0.708816\pi\)
−0.609965 + 0.792429i \(0.708816\pi\)
\(458\) −297.374 132.324i −0.649288 0.288917i
\(459\) 257.429 + 148.627i 0.560848 + 0.323806i
\(460\) 118.388 106.688i 0.257366 0.231930i
\(461\) 289.697 501.770i 0.628410 1.08844i −0.359460 0.933160i \(-0.617039\pi\)
0.987871 0.155278i \(-0.0496274\pi\)
\(462\) −21.9013 30.1311i −0.0474053 0.0652188i
\(463\) 338.056i 0.730142i 0.930980 + 0.365071i \(0.118955\pi\)
−0.930980 + 0.365071i \(0.881045\pi\)
\(464\) −77.2467 + 34.4708i −0.166480 + 0.0742906i
\(465\) −17.3100 29.9817i −0.0372257 0.0644769i
\(466\) 8.11528 5.89872i 0.0174148 0.0126582i
\(467\) 297.175i 0.636349i −0.948032 0.318175i \(-0.896930\pi\)
0.948032 0.318175i \(-0.103070\pi\)
\(468\) −291.325 + 62.0519i −0.622489 + 0.132590i
\(469\) 20.9750 + 36.3297i 0.0447227 + 0.0774620i
\(470\) −241.682 + 543.136i −0.514217 + 1.15561i
\(471\) 10.1119 5.83810i 0.0214690 0.0123951i
\(472\) −122.544 + 578.330i −0.259628 + 1.22528i
\(473\) −193.967 + 335.961i −0.410078 + 0.710277i
\(474\) 22.6561 + 215.120i 0.0477976 + 0.453840i
\(475\) −157.568 + 195.473i −0.331723 + 0.411522i
\(476\) −36.0588 169.291i −0.0757537 0.355653i
\(477\) 139.499 241.620i 0.292451 0.506540i
\(478\) 263.562 592.306i 0.551384 1.23913i
\(479\) 271.879 156.970i 0.567597 0.327703i −0.188592 0.982056i \(-0.560392\pi\)
0.756189 + 0.654353i \(0.227059\pi\)
\(480\) 0.114314 + 108.049i 0.000238154 + 0.225103i
\(481\) 35.7812 + 61.9749i 0.0743892 + 0.128846i
\(482\) 48.5283 + 460.778i 0.100681 + 0.955971i
\(483\) 27.8366i 0.0576328i
\(484\) 162.554 + 180.381i 0.335856 + 0.372689i
\(485\) −224.826 389.411i −0.463560 0.802909i
\(486\) −409.078 + 43.0833i −0.841724 + 0.0886489i
\(487\) 94.5905i 0.194231i 0.995273 + 0.0971155i \(0.0309616\pi\)
−0.995273 + 0.0971155i \(0.969038\pi\)
\(488\) 432.677 481.150i 0.886633 0.985964i
\(489\) 152.220 263.653i 0.311288 0.539167i
\(490\) −239.111 + 173.801i −0.487981 + 0.354697i
\(491\) −292.034 168.606i −0.594774 0.343393i 0.172209 0.985060i \(-0.444910\pi\)
−0.766983 + 0.641668i \(0.778243\pi\)
\(492\) 188.819 + 61.2627i 0.383778 + 0.124518i
\(493\) 93.8089 0.190282
\(494\) −313.484 + 160.696i −0.634583 + 0.325296i
\(495\) 214.129i 0.432584i
\(496\) −163.165 17.0097i −0.328962 0.0342938i
\(497\) 67.4892 116.895i 0.135793 0.235201i
\(498\) −49.8774 + 36.2542i −0.100155 + 0.0727995i
\(499\) 617.010 + 356.231i 1.23649 + 0.713890i 0.968376 0.249496i \(-0.0802650\pi\)
0.268118 + 0.963386i \(0.413598\pi\)
\(500\) 351.300 + 389.826i 0.702600 + 0.779653i
\(501\) −152.056 −0.303505
\(502\) −66.7904 + 7.03425i −0.133049 + 0.0140124i
\(503\) 165.562 95.5870i 0.329148 0.190034i −0.326315 0.945261i \(-0.605807\pi\)
0.655463 + 0.755227i \(0.272474\pi\)
\(504\) 116.527 + 104.788i 0.231205 + 0.207912i
\(505\) −299.695 −0.593456
\(506\) 18.8774 + 179.242i 0.0373072 + 0.354233i
\(507\) −70.7497 + 40.8473i −0.139546 + 0.0805668i
\(508\) 622.531 + 201.981i 1.22545 + 0.397601i
\(509\) −300.486 520.456i −0.590345 1.02251i −0.994186 0.107678i \(-0.965658\pi\)
0.403841 0.914829i \(-0.367675\pi\)
\(510\) 48.7146 109.477i 0.0955189 0.214661i
\(511\) −118.046 68.1538i −0.231010 0.133373i
\(512\) 414.789 + 300.157i 0.810135 + 0.586244i
\(513\) −296.899 + 114.731i −0.578750 + 0.223648i
\(514\) 28.8529 + 273.959i 0.0561340 + 0.532994i
\(515\) 285.298 + 164.717i 0.553976 + 0.319838i
\(516\) −60.6581 + 186.956i −0.117554 + 0.362317i
\(517\) −336.156 582.240i −0.650206 1.12619i
\(518\) 15.3068 34.3993i 0.0295498 0.0664078i
\(519\) 204.984 118.348i 0.394960 0.228031i
\(520\) 78.8299 + 242.091i 0.151596 + 0.465559i
\(521\) 65.8959 0.126480 0.0632398 0.997998i \(-0.479857\pi\)
0.0632398 + 0.997998i \(0.479857\pi\)
\(522\) −68.7025 + 49.9375i −0.131614 + 0.0956657i
\(523\) 210.412 121.482i 0.402318 0.232278i −0.285166 0.958478i \(-0.592049\pi\)
0.687484 + 0.726200i \(0.258715\pi\)
\(524\) −172.313 808.986i −0.328842 1.54387i
\(525\) −31.6956 −0.0603725
\(526\) 423.815 + 583.072i 0.805733 + 1.10850i
\(527\) 157.556 + 90.9651i 0.298968 + 0.172609i
\(528\) −98.9192 71.7412i −0.187347 0.135873i
\(529\) −197.156 + 341.485i −0.372696 + 0.645528i
\(530\) −217.882 96.9521i −0.411098 0.182928i
\(531\) 593.583i 1.11786i
\(532\) 165.363 + 83.7035i 0.310833 + 0.157337i
\(533\) 467.755 0.877590
\(534\) 8.46865 19.0317i 0.0158589 0.0356399i
\(535\) −259.860 150.030i −0.485720 0.280430i
\(536\) 102.326 + 92.0170i 0.190906 + 0.171673i
\(537\) 128.631 222.796i 0.239537 0.414890i
\(538\) −595.224 + 432.648i −1.10636 + 0.804178i
\(539\) 334.304i 0.620231i
\(540\) 47.9244 + 224.998i 0.0887489 + 0.416663i
\(541\) 176.484 + 305.680i 0.326219 + 0.565028i 0.981758 0.190133i \(-0.0608920\pi\)
−0.655539 + 0.755161i \(0.727559\pi\)
\(542\) −24.9979 34.3914i −0.0461217 0.0634528i
\(543\) 113.630i 0.209264i
\(544\) −284.423 491.434i −0.522837 0.903372i
\(545\) −321.245 556.412i −0.589440 1.02094i
\(546\) −40.6301 18.0794i −0.0744142 0.0331125i
\(547\) −795.788 + 459.449i −1.45482 + 0.839943i −0.998749 0.0499992i \(-0.984078\pi\)
−0.456074 + 0.889942i \(0.650745\pi\)
\(548\) −174.881 + 539.005i −0.319126 + 0.983586i
\(549\) 324.861 562.675i 0.591732 1.02491i
\(550\) −204.090 + 21.4944i −0.371072 + 0.0390807i
\(551\) −63.0401 + 78.2050i −0.114410 + 0.141933i
\(552\) 28.2735 + 86.8292i 0.0512200 + 0.157299i
\(553\) 134.085 232.241i 0.242468 0.419966i
\(554\) 404.203 + 179.860i 0.729608 + 0.324658i
\(555\) 22.5732 13.0326i 0.0406724 0.0234822i
\(556\) −615.332 199.646i −1.10671 0.359075i
\(557\) 271.529 + 470.301i 0.487484 + 0.844347i 0.999896 0.0143926i \(-0.00458146\pi\)
−0.512413 + 0.858739i \(0.671248\pi\)
\(558\) −163.812 + 17.2524i −0.293571 + 0.0309183i
\(559\) 463.139i 0.828514i
\(560\) 78.6442 108.437i 0.140436 0.193638i
\(561\) 67.7574 + 117.359i 0.120780 + 0.209196i
\(562\) 23.7234 + 225.255i 0.0422125 + 0.400809i
\(563\) 60.6683i 0.107759i 0.998547 + 0.0538795i \(0.0171587\pi\)
−0.998547 + 0.0538795i \(0.982841\pi\)
\(564\) −228.035 253.043i −0.404317 0.448657i
\(565\) −311.328 + 539.237i −0.551024 + 0.954401i
\(566\) 185.089 + 254.639i 0.327012 + 0.449893i
\(567\) 117.884 + 68.0602i 0.207908 + 0.120036i
\(568\) 91.7861 433.171i 0.161595 0.762626i
\(569\) 527.240 0.926609 0.463304 0.886199i \(-0.346664\pi\)
0.463304 + 0.886199i \(0.346664\pi\)
\(570\) 58.5306 + 114.181i 0.102685 + 0.200317i
\(571\) 470.688i 0.824322i −0.911111 0.412161i \(-0.864774\pi\)
0.911111 0.412161i \(-0.135226\pi\)
\(572\) −273.881 88.8611i −0.478812 0.155352i
\(573\) 176.904 306.406i 0.308732 0.534740i
\(574\) −144.696 199.069i −0.252084 0.346809i
\(575\) 132.813 + 76.6796i 0.230979 + 0.133356i
\(576\) 469.908 + 208.502i 0.815813 + 0.361983i
\(577\) 302.670 0.524558 0.262279 0.964992i \(-0.415526\pi\)
0.262279 + 0.964992i \(0.415526\pi\)
\(578\) 5.41457 + 51.4116i 0.00936777 + 0.0889474i
\(579\) 209.872 121.170i 0.362474 0.209274i
\(580\) 48.6010 + 53.9310i 0.0837949 + 0.0929845i
\(581\) 76.4443 0.131574
\(582\) 256.230 26.9857i 0.440258 0.0463672i
\(583\) 233.569 134.851i 0.400633 0.231305i
\(584\) −437.437 92.6899i −0.749036 0.158716i
\(585\) 127.820 + 221.391i 0.218496 + 0.378446i
\(586\) 377.086 + 167.794i 0.643491 + 0.286338i
\(587\) −329.898 190.467i −0.562008 0.324475i 0.191943 0.981406i \(-0.438521\pi\)
−0.753951 + 0.656931i \(0.771854\pi\)
\(588\) −35.2857 165.662i −0.0600097 0.281737i
\(589\) −181.713 + 70.2197i −0.308511 + 0.119218i
\(590\) 504.585 53.1420i 0.855229 0.0900712i
\(591\) 59.1756 + 34.1650i 0.100128 + 0.0578088i
\(592\) 12.8066 122.847i 0.0216327 0.207511i
\(593\) 182.978 + 316.927i 0.308563 + 0.534446i 0.978048 0.208379i \(-0.0668187\pi\)
−0.669486 + 0.742825i \(0.733485\pi\)
\(594\) −237.694 105.768i −0.400159 0.178061i
\(595\) −128.652 + 74.2771i −0.216221 + 0.124835i
\(596\) −30.8854 + 6.57856i −0.0518212 + 0.0110379i
\(597\) −135.960 −0.227739
\(598\) 126.513 + 174.052i 0.211559 + 0.291057i
\(599\) 114.625 66.1790i 0.191361 0.110483i −0.401258 0.915965i \(-0.631427\pi\)
0.592620 + 0.805482i \(0.298094\pi\)
\(600\) −98.8662 + 32.1930i −0.164777 + 0.0536549i
\(601\) 30.0876 0.0500626 0.0250313 0.999687i \(-0.492031\pi\)
0.0250313 + 0.999687i \(0.492031\pi\)
\(602\) 197.104 143.268i 0.327415 0.237987i
\(603\) 119.664 + 69.0878i 0.198447 + 0.114573i
\(604\) 636.886 573.943i 1.05445 0.950236i
\(605\) 104.201 180.481i 0.172233 0.298316i
\(606\) 69.8128 156.892i 0.115203 0.258897i
\(607\) 25.4139i 0.0418681i −0.999781 0.0209340i \(-0.993336\pi\)
0.999781 0.0209340i \(-0.00666400\pi\)
\(608\) 600.825 + 93.1333i 0.988198 + 0.153180i
\(609\) −12.6808 −0.0208223
\(610\) −507.396 225.779i −0.831797 0.370129i
\(611\) −695.113 401.324i −1.13766 0.656831i
\(612\) −381.666 423.522i −0.623637 0.692030i
\(613\) −536.454 + 929.165i −0.875128 + 1.51577i −0.0185025 + 0.999829i \(0.505890\pi\)
−0.856626 + 0.515938i \(0.827443\pi\)
\(614\) −645.683 888.311i −1.05160 1.44676i
\(615\) 170.371i 0.277027i
\(616\) 46.9049 + 144.047i 0.0761444 + 0.233843i
\(617\) −304.579 527.546i −0.493645 0.855018i 0.506328 0.862341i \(-0.331002\pi\)
−0.999973 + 0.00732287i \(0.997669\pi\)
\(618\) −152.689 + 110.984i −0.247069 + 0.179586i
\(619\) 546.890i 0.883505i −0.897137 0.441753i \(-0.854357\pi\)
0.897137 0.441753i \(-0.145643\pi\)
\(620\) 29.3315 + 137.707i 0.0473088 + 0.222108i
\(621\) 97.2100 + 168.373i 0.156538 + 0.271132i
\(622\) −153.840 + 345.727i −0.247331 + 0.555831i
\(623\) −22.3651 + 12.9125i −0.0358990 + 0.0207263i
\(624\) −145.098 15.1263i −0.232529 0.0242409i
\(625\) 60.0112 103.942i 0.0960179 0.166308i
\(626\) −18.6267 176.861i −0.0297551 0.282526i
\(627\) −143.371 22.3792i −0.228662 0.0356926i
\(628\) −46.4442 + 9.89257i −0.0739558 + 0.0157525i
\(629\) −68.4874 + 118.624i −0.108883 + 0.188591i
\(630\) 54.6801 122.883i 0.0867938 0.195053i
\(631\) 340.675 196.689i 0.539897 0.311710i −0.205140 0.978733i \(-0.565765\pi\)
0.745037 + 0.667023i \(0.232432\pi\)
\(632\) 182.357 860.606i 0.288539 1.36172i
\(633\) −47.2461 81.8326i −0.0746384 0.129277i
\(634\) −73.5821 698.665i −0.116060 1.10199i
\(635\) 561.710i 0.884582i
\(636\) 101.509 91.4773i 0.159606 0.143832i
\(637\) −199.556 345.642i −0.313275 0.542609i
\(638\) −81.6525 + 8.59949i −0.127982 + 0.0134788i
\(639\) 444.595i 0.695767i
\(640\) 135.171 418.121i 0.211205 0.653313i
\(641\) −348.127 + 602.973i −0.543100 + 0.940676i 0.455624 + 0.890172i \(0.349416\pi\)
−0.998724 + 0.0505039i \(0.983917\pi\)
\(642\) 139.075 101.089i 0.216627 0.157459i
\(643\) −187.039 107.987i −0.290886 0.167943i 0.347456 0.937696i \(-0.387046\pi\)
−0.638341 + 0.769754i \(0.720379\pi\)
\(644\) 34.9380 107.683i 0.0542515 0.167210i
\(645\) 168.690 0.261535
\(646\) −566.388 365.849i −0.876762 0.566329i
\(647\) 664.315i 1.02676i 0.858161 + 0.513381i \(0.171607\pi\)
−0.858161 + 0.513381i \(0.828393\pi\)
\(648\) 436.836 + 92.5627i 0.674130 + 0.142844i
\(649\) −286.902 + 496.929i −0.442068 + 0.765685i
\(650\) −198.181 + 144.051i −0.304893 + 0.221616i
\(651\) −21.2979 12.2964i −0.0327157 0.0188884i
\(652\) −919.760 + 828.861i −1.41067 + 1.27126i
\(653\) −709.962 −1.08723 −0.543616 0.839334i \(-0.682945\pi\)
−0.543616 + 0.839334i \(0.682945\pi\)
\(654\) 366.116 38.5587i 0.559811 0.0589583i
\(655\) −614.785 + 354.946i −0.938603 + 0.541903i
\(656\) −653.535 473.976i −0.996242 0.722525i
\(657\) −448.973 −0.683369
\(658\) 44.2309 + 419.974i 0.0672203 + 0.638259i
\(659\) −27.1231 + 15.6595i −0.0411580 + 0.0237626i −0.520438 0.853900i \(-0.674231\pi\)
0.479280 + 0.877662i \(0.340898\pi\)
\(660\) −32.3660 + 99.7560i −0.0490394 + 0.151145i
\(661\) 308.493 + 534.326i 0.466707 + 0.808360i 0.999277 0.0380258i \(-0.0121069\pi\)
−0.532570 + 0.846386i \(0.678774\pi\)
\(662\) 348.406 782.979i 0.526293 1.18275i
\(663\) 140.111 + 80.8929i 0.211328 + 0.122010i
\(664\) 238.448 77.6439i 0.359109 0.116934i
\(665\) 24.5326 157.167i 0.0368911 0.236341i
\(666\) −12.9893 123.334i −0.0195035 0.185186i
\(667\) 53.1359 + 30.6780i 0.0796640 + 0.0459941i
\(668\) 588.212 + 190.846i 0.880557 + 0.285698i
\(669\) 67.0176 + 116.078i 0.100176 + 0.173510i
\(670\) 48.0161 107.907i 0.0716658 0.161056i
\(671\) 543.927 314.037i 0.810622 0.468013i
\(672\) 38.4475 + 66.4306i 0.0572135 + 0.0988550i
\(673\) 545.130 0.810000 0.405000 0.914317i \(-0.367271\pi\)
0.405000 + 0.914317i \(0.367271\pi\)
\(674\) 471.632 342.814i 0.699751 0.508625i
\(675\) −191.714 + 110.686i −0.284021 + 0.163979i
\(676\) 324.955 69.2152i 0.480703 0.102389i
\(677\) 242.431 0.358096 0.179048 0.983840i \(-0.442698\pi\)
0.179048 + 0.983840i \(0.442698\pi\)
\(678\) −209.770 288.595i −0.309395 0.425656i
\(679\) −276.623 159.709i −0.407398 0.235211i
\(680\) −325.853 + 362.359i −0.479196 + 0.532881i
\(681\) −117.033 + 202.707i −0.171855 + 0.297661i
\(682\) −145.478 64.7339i −0.213310 0.0949178i
\(683\) 408.747i 0.598459i 0.954181 + 0.299229i \(0.0967296\pi\)
−0.954181 + 0.299229i \(0.903270\pi\)
\(684\) 609.556 33.5713i 0.891164 0.0490809i
\(685\) 486.344 0.709992
\(686\) −182.529 + 410.200i −0.266077 + 0.597959i
\(687\) −138.621 80.0327i −0.201777 0.116496i
\(688\) 469.299 647.085i 0.682120 0.940531i
\(689\) 160.993 278.849i 0.233662 0.404715i
\(690\) 63.3953 46.0799i 0.0918772 0.0667824i
\(691\) 236.274i 0.341931i 0.985277 + 0.170965i \(0.0546886\pi\)
−0.985277 + 0.170965i \(0.945311\pi\)
\(692\) −941.500 + 200.538i −1.36055 + 0.289796i
\(693\) 76.0548 + 131.731i 0.109747 + 0.190088i
\(694\) 330.581 + 454.803i 0.476341 + 0.655335i
\(695\) 555.214i 0.798869i
\(696\) −39.5545 + 12.8798i −0.0568311 + 0.0185054i
\(697\) 447.656 + 775.364i 0.642262 + 1.11243i
\(698\) 33.0593 + 14.7106i 0.0473629 + 0.0210753i
\(699\) 4.27276 2.46688i 0.00611267 0.00352915i
\(700\) 122.611 + 39.7814i 0.175159 + 0.0568305i
\(701\) −469.659 + 813.474i −0.669985 + 1.16045i 0.307923 + 0.951411i \(0.400366\pi\)
−0.977908 + 0.209037i \(0.932967\pi\)
\(702\) −308.892 + 32.5319i −0.440017 + 0.0463418i
\(703\) −52.8683 136.811i −0.0752038 0.194611i
\(704\) 292.616 + 401.677i 0.415647 + 0.570565i
\(705\) −146.175 + 253.182i −0.207340 + 0.359124i
\(706\) 471.503 + 209.807i 0.667851 + 0.297177i
\(707\) −184.371 + 106.446i −0.260779 + 0.150561i
\(708\) −89.7211 + 276.531i −0.126725 + 0.390581i
\(709\) −149.306 258.606i −0.210587 0.364747i 0.741312 0.671161i \(-0.234204\pi\)
−0.951898 + 0.306414i \(0.900871\pi\)
\(710\) −377.936 + 39.8035i −0.532304 + 0.0560613i
\(711\) 883.303i 1.24234i
\(712\) −56.6469 + 62.9932i −0.0795603 + 0.0884735i
\(713\) 59.4960 + 103.050i 0.0834447 + 0.144530i
\(714\) −8.91541 84.6521i −0.0124866 0.118560i
\(715\) 247.122i 0.345626i
\(716\) −777.230 + 700.417i −1.08552 + 0.978235i
\(717\) 159.408 276.103i 0.222327 0.385081i
\(718\) 322.559 + 443.767i 0.449246 + 0.618060i
\(719\) 1030.58 + 595.008i 1.43336 + 0.827549i 0.997375 0.0724069i \(-0.0230680\pi\)
0.435981 + 0.899956i \(0.356401\pi\)
\(720\) 45.7486 438.841i 0.0635397 0.609502i
\(721\) 234.017 0.324573
\(722\) 685.610 226.324i 0.949599 0.313469i
\(723\) 227.852i 0.315147i
\(724\) −142.618 + 439.566i −0.196986 + 0.607135i
\(725\) −34.9309 + 60.5020i −0.0481805 + 0.0834511i
\(726\) 70.2092 + 96.5918i 0.0967070 + 0.133046i
\(727\) 702.834 + 405.781i 0.966759 + 0.558159i 0.898247 0.439491i \(-0.144841\pi\)
0.0685127 + 0.997650i \(0.478175\pi\)
\(728\) 134.482 + 120.933i 0.184728 + 0.166117i
\(729\) 300.066 0.411613
\(730\) 40.1955 + 381.658i 0.0550623 + 0.522819i
\(731\) −767.712 + 443.239i −1.05022 + 0.606345i
\(732\) 236.392 213.029i 0.322940 0.291024i
\(733\) 452.401 0.617191 0.308596 0.951193i \(-0.400141\pi\)
0.308596 + 0.951193i \(0.400141\pi\)
\(734\) 1202.31 126.625i 1.63802 0.172514i
\(735\) −125.894 + 72.6847i −0.171284 + 0.0988908i
\(736\) −0.392909 371.376i −0.000533843 0.504587i
\(737\) 66.7858 + 115.676i 0.0906185 + 0.156956i
\(738\) −740.600 329.548i −1.00352 0.446543i
\(739\) 1168.02 + 674.356i 1.58054 + 0.912525i 0.994780 + 0.102041i \(0.0325372\pi\)
0.585760 + 0.810485i \(0.300796\pi\)
\(740\) −103.679 + 22.0836i −0.140107 + 0.0298427i
\(741\) −161.592 + 62.4445i −0.218073 + 0.0842706i
\(742\) −168.475 + 17.7435i −0.227055 + 0.0239131i
\(743\) 321.223 + 185.458i 0.432332 + 0.249607i 0.700340 0.713810i \(-0.253032\pi\)
−0.268008 + 0.963417i \(0.586365\pi\)
\(744\) −78.9228 16.7232i −0.106079 0.0224774i
\(745\) 13.5511 + 23.4712i 0.0181894 + 0.0315050i
\(746\) 506.278 + 225.281i 0.678657 + 0.301986i
\(747\) 218.060 125.897i 0.291914 0.168537i
\(748\) −114.814 539.035i −0.153494 0.720634i
\(749\) −213.152 −0.284582
\(750\) 151.731 + 208.747i 0.202308 + 0.278329i
\(751\) 257.836 148.862i 0.343324 0.198218i −0.318417 0.947951i \(-0.603151\pi\)
0.661741 + 0.749733i \(0.269818\pi\)
\(752\) 564.532 + 1265.08i 0.750707 + 1.68228i
\(753\) −33.0274 −0.0438611
\(754\) −79.2883 + 57.6319i −0.105157 + 0.0764349i
\(755\) −637.237 367.909i −0.844023 0.487297i
\(756\) 109.398 + 121.395i 0.144706 + 0.160576i
\(757\) 365.069 632.318i 0.482257 0.835294i −0.517535 0.855662i \(-0.673150\pi\)
0.999793 + 0.0203675i \(0.00648363\pi\)
\(758\) −273.003 + 613.525i −0.360163 + 0.809400i
\(759\) 88.6339i 0.116777i
\(760\) −83.1100 515.159i −0.109355 0.677840i
\(761\) −629.518 −0.827225 −0.413612 0.910453i \(-0.635733\pi\)
−0.413612 + 0.910453i \(0.635733\pi\)
\(762\) 294.057 + 130.848i 0.385901 + 0.171717i
\(763\) −395.255 228.201i −0.518027 0.299083i
\(764\) −1068.91 + 963.266i −1.39909 + 1.26082i
\(765\) −244.656 + 423.756i −0.319811 + 0.553929i
\(766\) −348.315 479.201i −0.454720 0.625589i
\(767\) 685.043i 0.893146i
\(768\) 187.400 + 168.162i 0.244010 + 0.218961i
\(769\) −431.124 746.729i −0.560630 0.971039i −0.997442 0.0714863i \(-0.977226\pi\)
0.436812 0.899553i \(-0.356108\pi\)
\(770\) 105.171 76.4452i 0.136586 0.0992795i
\(771\) 135.471i 0.175708i
\(772\) −963.950 + 205.320i −1.24864 + 0.265959i
\(773\) −596.731 1033.57i −0.771967 1.33709i −0.936483 0.350712i