Properties

Label 76.3.g.c.11.2
Level $76$
Weight $3$
Character 76.11
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.2
Character \(\chi\) \(=\) 76.11
Dual form 76.3.g.c.7.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.93914 + 0.489616i) q^{2} +(-3.88623 - 2.24371i) q^{3} +(3.52055 - 1.89887i) q^{4} +(-0.133773 + 0.231701i) q^{5} +(8.63451 + 2.44812i) q^{6} +7.24937i q^{7} +(-5.89713 + 5.40590i) q^{8} +(5.56851 + 9.64495i) q^{9} +O(q^{10})\) \(q+(-1.93914 + 0.489616i) q^{2} +(-3.88623 - 2.24371i) q^{3} +(3.52055 - 1.89887i) q^{4} +(-0.133773 + 0.231701i) q^{5} +(8.63451 + 2.44812i) q^{6} +7.24937i q^{7} +(-5.89713 + 5.40590i) q^{8} +(5.56851 + 9.64495i) q^{9} +(0.145960 - 0.514800i) q^{10} +11.7422i q^{11} +(-17.9422 - 0.519664i) q^{12} +(4.17006 + 7.22276i) q^{13} +(-3.54941 - 14.0576i) q^{14} +(1.03974 - 0.600297i) q^{15} +(8.78857 - 13.3702i) q^{16} +(-7.11880 + 12.3301i) q^{17} +(-15.5205 - 15.9765i) q^{18} +(11.9609 - 14.7627i) q^{19} +(-0.0309829 + 1.06973i) q^{20} +(16.2655 - 28.1727i) q^{21} +(-5.74919 - 22.7699i) q^{22} +(-21.4900 + 12.4073i) q^{23} +(35.0469 - 7.77709i) q^{24} +(12.4642 + 21.5886i) q^{25} +(-11.6227 - 11.9642i) q^{26} -9.58976i q^{27} +(13.7656 + 25.5218i) q^{28} +(-25.7911 - 44.6716i) q^{29} +(-1.72230 + 1.67314i) q^{30} +26.3372i q^{31} +(-10.4960 + 30.2297i) q^{32} +(26.3462 - 45.6330i) q^{33} +(7.76734 - 27.3954i) q^{34} +(-1.67969 - 0.969769i) q^{35} +(37.9188 + 23.3816i) q^{36} -20.1243 q^{37} +(-15.9659 + 34.4832i) q^{38} -37.4257i q^{39} +(-0.463679 - 2.08954i) q^{40} +(-38.5881 + 66.8366i) q^{41} +(-17.7473 + 62.5947i) q^{42} +(-30.0199 - 17.3320i) q^{43} +(22.2970 + 41.3391i) q^{44} -2.97967 q^{45} +(35.5975 - 34.5814i) q^{46} +(31.9968 - 18.4733i) q^{47} +(-64.1532 + 32.2404i) q^{48} -3.55331 q^{49} +(-34.7400 - 35.7608i) q^{50} +(55.3306 - 31.9451i) q^{51} +(28.3960 + 17.5097i) q^{52} +(-8.75934 - 15.1716i) q^{53} +(4.69530 + 18.5959i) q^{54} +(-2.72069 - 1.57079i) q^{55} +(-39.1894 - 42.7505i) q^{56} +(-79.6061 + 30.5343i) q^{57} +(71.8847 + 73.9968i) q^{58} +(82.8741 + 47.8474i) q^{59} +(2.52059 - 4.08772i) q^{60} +(26.2074 + 45.3926i) q^{61} +(-12.8951 - 51.0716i) q^{62} +(-69.9198 + 40.3682i) q^{63} +(5.55239 - 63.7587i) q^{64} -2.23136 q^{65} +(-28.7464 + 101.388i) q^{66} +(11.8862 - 6.86248i) q^{67} +(-1.64877 + 56.9265i) q^{68} +111.354 q^{69} +(3.73197 + 1.05812i) q^{70} +(39.7717 + 22.9622i) q^{71} +(-84.9779 - 26.7747i) q^{72} +(20.0638 - 34.7515i) q^{73} +(39.0240 - 9.85320i) q^{74} -111.865i q^{75} +(14.0766 - 74.6850i) q^{76} -85.1238 q^{77} +(18.3242 + 72.5738i) q^{78} +(-106.053 - 61.2298i) q^{79} +(1.92221 + 3.82489i) q^{80} +(28.5999 - 49.5365i) q^{81} +(42.1036 - 148.499i) q^{82} -108.436i q^{83} +(3.76723 - 130.070i) q^{84} +(-1.90461 - 3.29887i) q^{85} +(66.6990 + 18.9110i) q^{86} +231.472i q^{87} +(-63.4774 - 69.2455i) q^{88} +(-26.2347 - 45.4398i) q^{89} +(5.77800 - 1.45889i) q^{90} +(-52.3604 + 30.2303i) q^{91} +(-52.0970 + 84.4873i) q^{92} +(59.0932 - 102.352i) q^{93} +(-53.0015 + 51.4886i) q^{94} +(1.82049 + 4.74621i) q^{95} +(108.617 - 93.9293i) q^{96} +(29.9055 - 51.7979i) q^{97} +(6.89038 - 1.73976i) q^{98} +(-113.253 + 65.3868i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.93914 + 0.489616i −0.969572 + 0.244808i
\(3\) −3.88623 2.24371i −1.29541 0.747905i −0.315802 0.948825i \(-0.602273\pi\)
−0.979608 + 0.200920i \(0.935607\pi\)
\(4\) 3.52055 1.89887i 0.880138 0.474718i
\(5\) −0.133773 + 0.231701i −0.0267546 + 0.0463403i −0.879093 0.476651i \(-0.841851\pi\)
0.852338 + 0.522991i \(0.175184\pi\)
\(6\) 8.63451 + 2.44812i 1.43909 + 0.408021i
\(7\) 7.24937i 1.03562i 0.855495 + 0.517812i \(0.173253\pi\)
−0.855495 + 0.517812i \(0.826747\pi\)
\(8\) −5.89713 + 5.40590i −0.737142 + 0.675738i
\(9\) 5.56851 + 9.64495i 0.618724 + 1.07166i
\(10\) 0.145960 0.514800i 0.0145960 0.0514800i
\(11\) 11.7422i 1.06748i 0.845650 + 0.533738i \(0.179213\pi\)
−0.845650 + 0.533738i \(0.820787\pi\)
\(12\) −17.9422 0.519664i −1.49518 0.0433053i
\(13\) 4.17006 + 7.22276i 0.320774 + 0.555597i 0.980648 0.195780i \(-0.0627237\pi\)
−0.659874 + 0.751376i \(0.729390\pi\)
\(14\) −3.54941 14.0576i −0.253529 1.00411i
\(15\) 1.03974 0.600297i 0.0693163 0.0400198i
\(16\) 8.78857 13.3702i 0.549286 0.835635i
\(17\) −7.11880 + 12.3301i −0.418753 + 0.725301i −0.995814 0.0913994i \(-0.970866\pi\)
0.577061 + 0.816701i \(0.304199\pi\)
\(18\) −15.5205 15.9765i −0.862248 0.887583i
\(19\) 11.9609 14.7627i 0.629522 0.776983i
\(20\) −0.0309829 + 1.06973i −0.00154915 + 0.0534867i
\(21\) 16.2655 28.1727i 0.774548 1.34156i
\(22\) −5.74919 22.7699i −0.261327 1.03499i
\(23\) −21.4900 + 12.4073i −0.934349 + 0.539447i −0.888185 0.459487i \(-0.848033\pi\)
−0.0461649 + 0.998934i \(0.514700\pi\)
\(24\) 35.0469 7.77709i 1.46029 0.324045i
\(25\) 12.4642 + 21.5886i 0.498568 + 0.863546i
\(26\) −11.6227 11.9642i −0.447028 0.460163i
\(27\) 9.58976i 0.355176i
\(28\) 13.7656 + 25.5218i 0.491629 + 0.911492i
\(29\) −25.7911 44.6716i −0.889350 1.54040i −0.840645 0.541586i \(-0.817824\pi\)
−0.0487047 0.998813i \(-0.515509\pi\)
\(30\) −1.72230 + 1.67314i −0.0574099 + 0.0557712i
\(31\) 26.3372i 0.849587i 0.905290 + 0.424793i \(0.139653\pi\)
−0.905290 + 0.424793i \(0.860347\pi\)
\(32\) −10.4960 + 30.2297i −0.328001 + 0.944677i
\(33\) 26.3462 45.6330i 0.798371 1.38282i
\(34\) 7.76734 27.3954i 0.228451 0.805746i
\(35\) −1.67969 0.969769i −0.0479911 0.0277077i
\(36\) 37.9188 + 23.3816i 1.05330 + 0.649490i
\(37\) −20.1243 −0.543901 −0.271950 0.962311i \(-0.587669\pi\)
−0.271950 + 0.962311i \(0.587669\pi\)
\(38\) −15.9659 + 34.4832i −0.420154 + 0.907453i
\(39\) 37.4257i 0.959634i
\(40\) −0.463679 2.08954i −0.0115920 0.0522385i
\(41\) −38.5881 + 66.8366i −0.941174 + 1.63016i −0.177937 + 0.984042i \(0.556942\pi\)
−0.763237 + 0.646119i \(0.776391\pi\)
\(42\) −17.7473 + 62.5947i −0.422556 + 1.49035i
\(43\) −30.0199 17.3320i −0.698138 0.403070i 0.108515 0.994095i \(-0.465390\pi\)
−0.806654 + 0.591024i \(0.798724\pi\)
\(44\) 22.2970 + 41.3391i 0.506750 + 0.939526i
\(45\) −2.97967 −0.0662148
\(46\) 35.5975 34.5814i 0.773858 0.751769i
\(47\) 31.9968 18.4733i 0.680782 0.393050i −0.119367 0.992850i \(-0.538087\pi\)
0.800150 + 0.599800i \(0.204753\pi\)
\(48\) −64.1532 + 32.2404i −1.33653 + 0.671676i
\(49\) −3.55331 −0.0725166
\(50\) −34.7400 35.7608i −0.694801 0.715216i
\(51\) 55.3306 31.9451i 1.08491 0.626375i
\(52\) 28.3960 + 17.5097i 0.546077 + 0.336725i
\(53\) −8.75934 15.1716i −0.165271 0.286257i 0.771481 0.636253i \(-0.219516\pi\)
−0.936751 + 0.349996i \(0.886183\pi\)
\(54\) 4.69530 + 18.5959i 0.0869501 + 0.344369i
\(55\) −2.72069 1.57079i −0.0494672 0.0285599i
\(56\) −39.1894 42.7505i −0.699810 0.763402i
\(57\) −79.6061 + 30.5343i −1.39660 + 0.535689i
\(58\) 71.8847 + 73.9968i 1.23939 + 1.27581i
\(59\) 82.8741 + 47.8474i 1.40465 + 0.810973i 0.994865 0.101211i \(-0.0322717\pi\)
0.409781 + 0.912184i \(0.365605\pi\)
\(60\) 2.52059 4.08772i 0.0420098 0.0681286i
\(61\) 26.2074 + 45.3926i 0.429630 + 0.744141i 0.996840 0.0794323i \(-0.0253107\pi\)
−0.567210 + 0.823573i \(0.691977\pi\)
\(62\) −12.8951 51.0716i −0.207986 0.823735i
\(63\) −69.9198 + 40.3682i −1.10984 + 0.640765i
\(64\) 5.55239 63.7587i 0.0867561 0.996230i
\(65\) −2.23136 −0.0343287
\(66\) −28.7464 + 101.388i −0.435552 + 1.53619i
\(67\) 11.8862 6.86248i 0.177405 0.102425i −0.408668 0.912683i \(-0.634006\pi\)
0.586073 + 0.810258i \(0.300673\pi\)
\(68\) −1.64877 + 56.9265i −0.0242467 + 0.837155i
\(69\) 111.354 1.61382
\(70\) 3.73197 + 1.05812i 0.0533139 + 0.0151160i
\(71\) 39.7717 + 22.9622i 0.560164 + 0.323411i 0.753211 0.657778i \(-0.228504\pi\)
−0.193047 + 0.981189i \(0.561837\pi\)
\(72\) −84.9779 26.7747i −1.18025 0.371871i
\(73\) 20.0638 34.7515i 0.274846 0.476048i −0.695250 0.718768i \(-0.744706\pi\)
0.970096 + 0.242720i \(0.0780397\pi\)
\(74\) 39.0240 9.85320i 0.527351 0.133151i
\(75\) 111.865i 1.49153i
\(76\) 14.0766 74.6850i 0.185218 0.982697i
\(77\) −85.1238 −1.10550
\(78\) 18.3242 + 72.5738i 0.234926 + 0.930433i
\(79\) −106.053 61.2298i −1.34245 0.775061i −0.355279 0.934760i \(-0.615614\pi\)
−0.987166 + 0.159699i \(0.948948\pi\)
\(80\) 1.92221 + 3.82489i 0.0240277 + 0.0478111i
\(81\) 28.5999 49.5365i 0.353086 0.611562i
\(82\) 42.1036 148.499i 0.513459 1.81096i
\(83\) 108.436i 1.30645i −0.757163 0.653226i \(-0.773415\pi\)
0.757163 0.653226i \(-0.226585\pi\)
\(84\) 3.76723 130.070i 0.0448480 1.54845i
\(85\) −1.90461 3.29887i −0.0224071 0.0388103i
\(86\) 66.6990 + 18.9110i 0.775570 + 0.219896i
\(87\) 231.472i 2.66060i
\(88\) −63.4774 69.2455i −0.721334 0.786881i
\(89\) −26.2347 45.4398i −0.294772 0.510559i 0.680160 0.733064i \(-0.261910\pi\)
−0.974932 + 0.222504i \(0.928577\pi\)
\(90\) 5.77800 1.45889i 0.0642000 0.0162099i
\(91\) −52.3604 + 30.2303i −0.575389 + 0.332201i
\(92\) −52.0970 + 84.4873i −0.566271 + 0.918340i
\(93\) 59.0932 102.352i 0.635410 1.10056i
\(94\) −53.0015 + 51.4886i −0.563845 + 0.547751i
\(95\) 1.82049 + 4.74621i 0.0191630 + 0.0499601i
\(96\) 108.617 93.9293i 1.13142 0.978430i
\(97\) 29.9055 51.7979i 0.308304 0.533999i −0.669687 0.742643i \(-0.733572\pi\)
0.977992 + 0.208644i \(0.0669051\pi\)
\(98\) 6.89038 1.73976i 0.0703100 0.0177527i
\(99\) −113.253 + 65.3868i −1.14397 + 0.660473i
\(100\) 84.8750 + 52.3360i 0.848750 + 0.523360i
\(101\) 29.2672 + 50.6923i 0.289774 + 0.501904i 0.973756 0.227596i \(-0.0730864\pi\)
−0.683981 + 0.729499i \(0.739753\pi\)
\(102\) −91.6530 + 89.0369i −0.898559 + 0.872911i
\(103\) 102.670i 0.996798i 0.866948 + 0.498399i \(0.166078\pi\)
−0.866948 + 0.498399i \(0.833922\pi\)
\(104\) −63.6369 20.0506i −0.611894 0.192794i
\(105\) 4.35177 + 7.53749i 0.0414454 + 0.0717856i
\(106\) 24.4139 + 25.1312i 0.230320 + 0.237087i
\(107\) 17.8502i 0.166825i 0.996515 + 0.0834123i \(0.0265818\pi\)
−0.996515 + 0.0834123i \(0.973418\pi\)
\(108\) −18.2097 33.7613i −0.168609 0.312604i
\(109\) −96.3984 + 166.967i −0.884389 + 1.53181i −0.0379776 + 0.999279i \(0.512092\pi\)
−0.846412 + 0.532529i \(0.821242\pi\)
\(110\) 6.04490 + 1.71390i 0.0549536 + 0.0155809i
\(111\) 78.2077 + 45.1533i 0.704574 + 0.406786i
\(112\) 96.9252 + 63.7116i 0.865403 + 0.568853i
\(113\) 191.548 1.69512 0.847558 0.530702i \(-0.178072\pi\)
0.847558 + 0.530702i \(0.178072\pi\)
\(114\) 139.417 98.1867i 1.22296 0.861287i
\(115\) 6.63903i 0.0577307i
\(116\) −175.625 108.295i −1.51401 0.933573i
\(117\) −46.4421 + 80.4400i −0.396941 + 0.687522i
\(118\) −184.132 52.2064i −1.56044 0.442427i
\(119\) −89.3856 51.6068i −0.751139 0.433670i
\(120\) −2.88637 + 9.16079i −0.0240530 + 0.0763399i
\(121\) −16.8801 −0.139505
\(122\) −73.0449 75.1911i −0.598728 0.616321i
\(123\) 299.925 173.162i 2.43841 1.40782i
\(124\) 50.0110 + 92.7215i 0.403314 + 0.747754i
\(125\) −13.3581 −0.106865
\(126\) 115.820 112.514i 0.919202 0.892965i
\(127\) −51.3632 + 29.6546i −0.404435 + 0.233501i −0.688396 0.725335i \(-0.741685\pi\)
0.283961 + 0.958836i \(0.408351\pi\)
\(128\) 20.4504 + 126.356i 0.159769 + 0.987154i
\(129\) 77.7763 + 134.712i 0.602917 + 1.04428i
\(130\) 4.32694 1.09251i 0.0332841 0.00840394i
\(131\) −25.3061 14.6105i −0.193177 0.111531i 0.400292 0.916388i \(-0.368909\pi\)
−0.593469 + 0.804857i \(0.702242\pi\)
\(132\) 6.10201 210.681i 0.0462274 1.59607i
\(133\) 107.020 + 86.7090i 0.804662 + 0.651947i
\(134\) −19.6890 + 19.1270i −0.146933 + 0.142739i
\(135\) 2.22196 + 1.28285i 0.0164590 + 0.00950260i
\(136\) −24.6749 111.196i −0.181433 0.817617i
\(137\) 2.83485 + 4.91011i 0.0206924 + 0.0358402i 0.876186 0.481973i \(-0.160080\pi\)
−0.855494 + 0.517813i \(0.826746\pi\)
\(138\) −215.931 + 54.5205i −1.56471 + 0.395076i
\(139\) −43.5024 + 25.1161i −0.312967 + 0.180692i −0.648253 0.761425i \(-0.724500\pi\)
0.335286 + 0.942116i \(0.391167\pi\)
\(140\) −7.75490 0.224607i −0.0553921 0.00160433i
\(141\) −165.796 −1.17586
\(142\) −88.3656 25.0541i −0.622293 0.176437i
\(143\) −84.8113 + 48.9658i −0.593086 + 0.342418i
\(144\) 177.894 + 10.3134i 1.23537 + 0.0716208i
\(145\) 13.8006 0.0951768
\(146\) −21.8917 + 77.2117i −0.149943 + 0.528847i
\(147\) 13.8090 + 7.97262i 0.0939387 + 0.0542355i
\(148\) −70.8487 + 38.2135i −0.478708 + 0.258200i
\(149\) 81.0049 140.305i 0.543657 0.941642i −0.455033 0.890475i \(-0.650373\pi\)
0.998690 0.0511672i \(-0.0162941\pi\)
\(150\) 54.7707 + 216.921i 0.365138 + 1.44614i
\(151\) 123.556i 0.818250i −0.912478 0.409125i \(-0.865834\pi\)
0.912478 0.409125i \(-0.134166\pi\)
\(152\) 9.27054 + 151.717i 0.0609904 + 0.998138i
\(153\) −158.565 −1.03637
\(154\) 165.067 41.6780i 1.07186 0.270636i
\(155\) −6.10237 3.52320i −0.0393701 0.0227303i
\(156\) −71.0666 131.759i −0.455555 0.844610i
\(157\) −115.986 + 200.893i −0.738763 + 1.27958i 0.214289 + 0.976770i \(0.431257\pi\)
−0.953052 + 0.302806i \(0.902077\pi\)
\(158\) 235.631 + 66.8080i 1.49134 + 0.422836i
\(159\) 78.6138i 0.494427i
\(160\) −5.60017 6.47586i −0.0350011 0.0404741i
\(161\) −89.9449 155.789i −0.558664 0.967635i
\(162\) −31.2055 + 110.061i −0.192626 + 0.679392i
\(163\) 72.2434i 0.443211i −0.975136 0.221606i \(-0.928870\pi\)
0.975136 0.221606i \(-0.0711298\pi\)
\(164\) −8.93734 + 308.576i −0.0544960 + 1.88156i
\(165\) 7.04882 + 12.2089i 0.0427201 + 0.0739935i
\(166\) 53.0918 + 210.272i 0.319830 + 1.26670i
\(167\) 101.024 58.3264i 0.604936 0.349260i −0.166045 0.986118i \(-0.553100\pi\)
0.770981 + 0.636858i \(0.219766\pi\)
\(168\) 56.3790 + 254.068i 0.335589 + 1.51231i
\(169\) 49.7212 86.1196i 0.294208 0.509584i
\(170\) 5.30848 + 5.46446i 0.0312264 + 0.0321439i
\(171\) 208.990 + 33.1562i 1.22216 + 0.193896i
\(172\) −138.598 4.01425i −0.805803 0.0233386i
\(173\) 66.5048 115.190i 0.384421 0.665836i −0.607268 0.794497i \(-0.707735\pi\)
0.991689 + 0.128661i \(0.0410679\pi\)
\(174\) −113.332 448.857i −0.651336 2.57964i
\(175\) −156.504 + 90.3576i −0.894309 + 0.516329i
\(176\) 156.996 + 103.197i 0.892020 + 0.586349i
\(177\) −214.712 371.892i −1.21306 2.10108i
\(178\) 73.1208 + 75.2693i 0.410791 + 0.422861i
\(179\) 99.3625i 0.555098i 0.960711 + 0.277549i \(0.0895221\pi\)
−0.960711 + 0.277549i \(0.910478\pi\)
\(180\) −10.4901 + 5.65800i −0.0582781 + 0.0314334i
\(181\) −21.9433 38.0069i −0.121234 0.209983i 0.799021 0.601303i \(-0.205352\pi\)
−0.920254 + 0.391321i \(0.872018\pi\)
\(182\) 86.7331 84.2574i 0.476555 0.462953i
\(183\) 235.208i 1.28529i
\(184\) 59.6571 189.340i 0.324223 1.02902i
\(185\) 2.69209 4.66284i 0.0145518 0.0252045i
\(186\) −64.4767 + 227.409i −0.346649 + 1.22263i
\(187\) −144.783 83.5906i −0.774242 0.447009i
\(188\) 77.5678 125.794i 0.412594 0.669118i
\(189\) 69.5197 0.367829
\(190\) −5.85401 8.31223i −0.0308106 0.0437486i
\(191\) 63.2363i 0.331080i 0.986203 + 0.165540i \(0.0529367\pi\)
−0.986203 + 0.165540i \(0.947063\pi\)
\(192\) −164.634 + 235.323i −0.857470 + 1.22564i
\(193\) 23.1161 40.0383i 0.119773 0.207452i −0.799905 0.600127i \(-0.795117\pi\)
0.919678 + 0.392674i \(0.128450\pi\)
\(194\) −32.6300 + 115.086i −0.168196 + 0.593226i
\(195\) 8.67159 + 5.00655i 0.0444697 + 0.0256746i
\(196\) −12.5096 + 6.74729i −0.0638246 + 0.0344249i
\(197\) 76.2113 0.386859 0.193430 0.981114i \(-0.438039\pi\)
0.193430 + 0.981114i \(0.438039\pi\)
\(198\) 187.600 182.245i 0.947474 0.920429i
\(199\) 89.6573 51.7637i 0.450539 0.260119i −0.257519 0.966273i \(-0.582905\pi\)
0.708058 + 0.706154i \(0.249572\pi\)
\(200\) −190.209 59.9308i −0.951046 0.299654i
\(201\) −61.5898 −0.306417
\(202\) −81.5731 83.9699i −0.403827 0.415693i
\(203\) 323.841 186.969i 1.59527 0.921032i
\(204\) 134.134 217.530i 0.657522 1.06632i
\(205\) −10.3241 17.8819i −0.0503614 0.0872285i
\(206\) −50.2690 199.092i −0.244024 0.966467i
\(207\) −239.335 138.180i −1.15621 0.667537i
\(208\) 133.218 + 7.72333i 0.640472 + 0.0371314i
\(209\) 173.347 + 140.448i 0.829411 + 0.671999i
\(210\) −12.1292 12.4856i −0.0577580 0.0594551i
\(211\) −107.264 61.9287i −0.508359 0.293501i 0.223800 0.974635i \(-0.428154\pi\)
−0.732159 + 0.681134i \(0.761487\pi\)
\(212\) −59.6467 36.7796i −0.281352 0.173489i
\(213\) −103.041 178.473i −0.483761 0.837899i
\(214\) −8.73976 34.6141i −0.0408400 0.161748i
\(215\) 8.03171 4.63711i 0.0373568 0.0215680i
\(216\) 51.8413 + 56.5521i 0.240006 + 0.261815i
\(217\) −190.928 −0.879852
\(218\) 105.181 370.971i 0.482480 1.70170i
\(219\) −155.945 + 90.0348i −0.712077 + 0.411118i
\(220\) −12.5611 0.363809i −0.0570958 0.00165368i
\(221\) −118.743 −0.537300
\(222\) −173.764 49.2668i −0.782720 0.221923i
\(223\) 189.587 + 109.458i 0.850167 + 0.490844i 0.860707 0.509100i \(-0.170022\pi\)
−0.0105403 + 0.999944i \(0.503355\pi\)
\(224\) −219.146 76.0897i −0.978330 0.339686i
\(225\) −138.814 + 240.433i −0.616952 + 1.06859i
\(226\) −371.439 + 93.7851i −1.64354 + 0.414978i
\(227\) 116.805i 0.514558i −0.966337 0.257279i \(-0.917174\pi\)
0.966337 0.257279i \(-0.0828260\pi\)
\(228\) −222.277 + 258.659i −0.974897 + 1.13447i
\(229\) 162.657 0.710291 0.355145 0.934811i \(-0.384431\pi\)
0.355145 + 0.934811i \(0.384431\pi\)
\(230\) 3.25058 + 12.8740i 0.0141329 + 0.0559741i
\(231\) 330.810 + 190.993i 1.43208 + 0.826812i
\(232\) 393.584 + 124.010i 1.69648 + 0.534525i
\(233\) 144.534 250.340i 0.620316 1.07442i −0.369111 0.929385i \(-0.620338\pi\)
0.989427 0.145034i \(-0.0463290\pi\)
\(234\) 50.6731 178.724i 0.216552 0.763776i
\(235\) 9.88493i 0.0420635i
\(236\) 382.619 + 11.0819i 1.62127 + 0.0469571i
\(237\) 274.765 + 475.906i 1.15934 + 2.00804i
\(238\) 198.599 + 56.3083i 0.834449 + 0.236590i
\(239\) 283.451i 1.18599i 0.805208 + 0.592993i \(0.202054\pi\)
−0.805208 + 0.592993i \(0.797946\pi\)
\(240\) 1.11180 19.1773i 0.00463252 0.0799054i
\(241\) 224.651 + 389.108i 0.932164 + 1.61456i 0.779615 + 0.626259i \(0.215415\pi\)
0.152549 + 0.988296i \(0.451252\pi\)
\(242\) 32.7329 8.26477i 0.135260 0.0341519i
\(243\) −297.037 + 171.494i −1.22237 + 0.705737i
\(244\) 178.459 + 110.042i 0.731390 + 0.450993i
\(245\) 0.475337 0.823308i 0.00194015 0.00336044i
\(246\) −496.814 + 482.633i −2.01957 + 1.96192i
\(247\) 156.505 + 24.8295i 0.633623 + 0.100524i
\(248\) −142.376 155.314i −0.574098 0.626266i
\(249\) −243.299 + 421.405i −0.977103 + 1.69239i
\(250\) 25.9033 6.54036i 0.103613 0.0261615i
\(251\) 59.8145 34.5339i 0.238305 0.137585i −0.376093 0.926582i \(-0.622733\pi\)
0.614397 + 0.788997i \(0.289399\pi\)
\(252\) −169.502 + 274.887i −0.672627 + 1.09082i
\(253\) −145.689 252.341i −0.575847 0.997396i
\(254\) 85.0813 82.6527i 0.334966 0.325405i
\(255\) 17.0936i 0.0670336i
\(256\) −101.522 235.009i −0.396571 0.918004i
\(257\) 55.5635 + 96.2387i 0.216200 + 0.374470i 0.953643 0.300940i \(-0.0973003\pi\)
−0.737443 + 0.675409i \(0.763967\pi\)
\(258\) −216.777 223.146i −0.840220 0.864907i
\(259\) 145.889i 0.563277i
\(260\) −7.85564 + 4.23708i −0.0302140 + 0.0162964i
\(261\) 287.237 497.509i 1.10052 1.90616i
\(262\) 56.2258 + 15.9416i 0.214602 + 0.0608457i
\(263\) 168.328 + 97.1841i 0.640030 + 0.369521i 0.784626 0.619969i \(-0.212855\pi\)
−0.144596 + 0.989491i \(0.546188\pi\)
\(264\) 91.3204 + 411.529i 0.345911 + 1.55882i
\(265\) 4.68705 0.0176870
\(266\) −249.981 115.742i −0.939780 0.435122i
\(267\) 235.453i 0.881845i
\(268\) 28.8149 46.7300i 0.107518 0.174366i
\(269\) −122.994 + 213.032i −0.457226 + 0.791939i −0.998813 0.0487054i \(-0.984490\pi\)
0.541587 + 0.840645i \(0.317824\pi\)
\(270\) −4.93681 1.39972i −0.0182845 0.00518415i
\(271\) −361.577 208.757i −1.33423 0.770320i −0.348287 0.937388i \(-0.613237\pi\)
−0.985945 + 0.167068i \(0.946570\pi\)
\(272\) 102.292 + 203.544i 0.376072 + 0.748322i
\(273\) 271.313 0.993819
\(274\) −7.90126 8.13342i −0.0288367 0.0296840i
\(275\) −253.499 + 146.358i −0.921814 + 0.532210i
\(276\) 392.026 211.446i 1.42038 0.766110i
\(277\) −408.968 −1.47642 −0.738209 0.674572i \(-0.764328\pi\)
−0.738209 + 0.674572i \(0.764328\pi\)
\(278\) 72.0602 70.0033i 0.259209 0.251810i
\(279\) −254.021 + 146.659i −0.910469 + 0.525660i
\(280\) 15.1478 3.36138i 0.0540994 0.0120049i
\(281\) 39.1063 + 67.7340i 0.139168 + 0.241046i 0.927182 0.374611i \(-0.122224\pi\)
−0.788014 + 0.615658i \(0.788890\pi\)
\(282\) 321.502 81.1763i 1.14008 0.287859i
\(283\) 101.132 + 58.3887i 0.357357 + 0.206320i 0.667921 0.744232i \(-0.267184\pi\)
−0.310563 + 0.950553i \(0.600518\pi\)
\(284\) 183.620 + 5.31824i 0.646551 + 0.0187262i
\(285\) 3.57430 22.5295i 0.0125414 0.0790509i
\(286\) 140.487 136.477i 0.491213 0.477191i
\(287\) −484.523 279.739i −1.68823 0.974702i
\(288\) −350.011 + 67.1005i −1.21532 + 0.232988i
\(289\) 43.1454 + 74.7300i 0.149292 + 0.258581i
\(290\) −26.7614 + 6.75701i −0.0922807 + 0.0233000i
\(291\) −232.439 + 134.199i −0.798761 + 0.461165i
\(292\) 4.64694 160.443i 0.0159142 0.549462i
\(293\) 121.092 0.413284 0.206642 0.978417i \(-0.433746\pi\)
0.206642 + 0.978417i \(0.433746\pi\)
\(294\) −30.6811 8.69895i −0.104358 0.0295883i
\(295\) −22.1726 + 12.8014i −0.0751614 + 0.0433945i
\(296\) 118.676 108.790i 0.400932 0.367534i
\(297\) 112.605 0.379142
\(298\) −88.3847 + 311.732i −0.296593 + 1.04608i
\(299\) −179.230 103.478i −0.599430 0.346081i
\(300\) −212.416 393.825i −0.708055 1.31275i
\(301\) 125.646 217.626i 0.417429 0.723009i
\(302\) 60.4949 + 239.592i 0.200314 + 0.793352i
\(303\) 262.669i 0.866895i
\(304\) −92.2600 289.662i −0.303487 0.952836i
\(305\) −14.0234 −0.0459783
\(306\) 307.479 77.6358i 1.00483 0.253712i
\(307\) 459.430 + 265.252i 1.49652 + 0.864013i 0.999992 0.00401001i \(-0.00127643\pi\)
0.496523 + 0.868023i \(0.334610\pi\)
\(308\) −299.683 + 161.639i −0.972996 + 0.524802i
\(309\) 230.363 399.000i 0.745510 1.29126i
\(310\) 13.5584 + 3.84418i 0.0437367 + 0.0124006i
\(311\) 54.0586i 0.173822i 0.996216 + 0.0869109i \(0.0276995\pi\)
−0.996216 + 0.0869109i \(0.972300\pi\)
\(312\) 202.320 + 220.704i 0.648461 + 0.707386i
\(313\) 157.796 + 273.310i 0.504139 + 0.873195i 0.999989 + 0.00478603i \(0.00152345\pi\)
−0.495849 + 0.868409i \(0.665143\pi\)
\(314\) 126.552 446.350i 0.403033 1.42150i
\(315\) 21.6007i 0.0685736i
\(316\) −489.633 14.1814i −1.54947 0.0448777i
\(317\) −140.142 242.732i −0.442087 0.765717i 0.555757 0.831345i \(-0.312428\pi\)
−0.997844 + 0.0656277i \(0.979095\pi\)
\(318\) −38.4906 152.443i −0.121040 0.479382i
\(319\) 524.544 302.846i 1.64434 0.949360i
\(320\) 14.0302 + 9.81568i 0.0438445 + 0.0306740i
\(321\) 40.0508 69.3701i 0.124769 0.216106i
\(322\) 250.693 + 258.059i 0.778550 + 0.801425i
\(323\) 96.8783 + 252.572i 0.299933 + 0.781957i
\(324\) 6.62399 228.704i 0.0204444 0.705875i
\(325\) −103.953 + 180.052i −0.319855 + 0.554006i
\(326\) 35.3716 + 140.090i 0.108502 + 0.429725i
\(327\) 749.253 432.581i 2.29129 1.32288i
\(328\) −133.753 602.748i −0.407783 1.83765i
\(329\) 133.920 + 231.956i 0.407052 + 0.705034i
\(330\) −19.6464 20.2236i −0.0595344 0.0612837i
\(331\) 443.490i 1.33985i 0.742429 + 0.669924i \(0.233673\pi\)
−0.742429 + 0.669924i \(0.766327\pi\)
\(332\) −205.905 381.753i −0.620197 1.14986i
\(333\) −112.063 194.098i −0.336524 0.582877i
\(334\) −167.343 + 162.566i −0.501027 + 0.486725i
\(335\) 3.67206i 0.0109614i
\(336\) −233.723 465.070i −0.695603 1.38414i
\(337\) 94.1888 163.140i 0.279492 0.484094i −0.691767 0.722121i \(-0.743167\pi\)
0.971259 + 0.238027i \(0.0765007\pi\)
\(338\) −54.2509 + 191.343i −0.160506 + 0.566102i
\(339\) −744.400 429.779i −2.19587 1.26779i
\(340\) −12.9694 7.99725i −0.0381453 0.0235213i
\(341\) −309.258 −0.906914
\(342\) −421.495 + 38.0302i −1.23244 + 0.111199i
\(343\) 329.460i 0.960524i
\(344\) 270.727 60.0757i 0.786997 0.174639i
\(345\) −14.8961 + 25.8008i −0.0431771 + 0.0747849i
\(346\) −72.5635 + 255.931i −0.209721 + 0.739685i
\(347\) 468.604 + 270.549i 1.35044 + 0.779679i 0.988312 0.152447i \(-0.0487155\pi\)
0.362132 + 0.932127i \(0.382049\pi\)
\(348\) 439.536 + 814.909i 1.26303 + 2.34169i
\(349\) 39.0675 0.111941 0.0559706 0.998432i \(-0.482175\pi\)
0.0559706 + 0.998432i \(0.482175\pi\)
\(350\) 259.243 251.843i 0.740694 0.719552i
\(351\) 69.2645 39.9899i 0.197335 0.113931i
\(352\) −354.964 123.247i −1.00842 0.350134i
\(353\) −389.987 −1.10478 −0.552389 0.833586i \(-0.686284\pi\)
−0.552389 + 0.833586i \(0.686284\pi\)
\(354\) 598.441 + 616.025i 1.69051 + 1.74018i
\(355\) −10.6407 + 6.14344i −0.0299739 + 0.0173055i
\(356\) −178.645 110.157i −0.501811 0.309429i
\(357\) 231.582 + 401.112i 0.648689 + 1.12356i
\(358\) −48.6495 192.678i −0.135893 0.538207i
\(359\) −475.099 274.299i −1.32340 0.764063i −0.339127 0.940740i \(-0.610132\pi\)
−0.984269 + 0.176677i \(0.943465\pi\)
\(360\) 17.5715 16.1078i 0.0488097 0.0447439i
\(361\) −74.8733 353.150i −0.207405 0.978255i
\(362\) 61.1600 + 62.9570i 0.168950 + 0.173914i
\(363\) 65.5999 + 37.8741i 0.180716 + 0.104336i
\(364\) −126.934 + 205.853i −0.348720 + 0.565530i
\(365\) 5.36798 + 9.29762i 0.0147068 + 0.0254729i
\(366\) 115.162 + 456.102i 0.314649 + 1.24618i
\(367\) 193.800 111.891i 0.528066 0.304879i −0.212163 0.977234i \(-0.568051\pi\)
0.740228 + 0.672355i \(0.234717\pi\)
\(368\) −22.9794 + 396.367i −0.0624441 + 1.07709i
\(369\) −859.514 −2.32931
\(370\) −2.93735 + 10.3600i −0.00793878 + 0.0280000i
\(371\) 109.985 63.4996i 0.296454 0.171158i
\(372\) 13.6865 472.547i 0.0367916 1.27029i
\(373\) −655.054 −1.75618 −0.878089 0.478498i \(-0.841182\pi\)
−0.878089 + 0.478498i \(0.841182\pi\)
\(374\) 321.683 + 91.2060i 0.860114 + 0.243866i
\(375\) 51.9128 + 29.9719i 0.138434 + 0.0799250i
\(376\) −88.8241 + 281.911i −0.236234 + 0.749764i
\(377\) 215.101 372.566i 0.570561 0.988240i
\(378\) −134.809 + 34.0380i −0.356637 + 0.0900476i
\(379\) 205.788i 0.542977i 0.962442 + 0.271488i \(0.0875159\pi\)
−0.962442 + 0.271488i \(0.912484\pi\)
\(380\) 15.4216 + 13.2524i 0.0405831 + 0.0348747i
\(381\) 266.146 0.698545
\(382\) −30.9615 122.624i −0.0810511 0.321006i
\(383\) 107.827 + 62.2538i 0.281532 + 0.162542i 0.634117 0.773237i \(-0.281364\pi\)
−0.352585 + 0.935780i \(0.614697\pi\)
\(384\) 204.031 536.932i 0.531332 1.39826i
\(385\) 11.3873 19.7233i 0.0295773 0.0512294i
\(386\) −25.2221 + 88.9581i −0.0653422 + 0.230461i
\(387\) 386.054i 0.997557i
\(388\) 6.92637 239.144i 0.0178515 0.616350i
\(389\) 210.874 + 365.244i 0.542092 + 0.938932i 0.998784 + 0.0493064i \(0.0157011\pi\)
−0.456691 + 0.889625i \(0.650966\pi\)
\(390\) −19.2667 5.46266i −0.0494019 0.0140068i
\(391\) 353.300i 0.903580i
\(392\) 20.9544 19.2089i 0.0534550 0.0490022i
\(393\) 65.5636 + 113.560i 0.166829 + 0.288956i
\(394\) −147.785 + 37.3143i −0.375088 + 0.0947063i
\(395\) 28.3741 16.3818i 0.0718331 0.0414729i
\(396\) −274.553 + 445.251i −0.693315 + 1.12437i
\(397\) 312.624 541.481i 0.787467 1.36393i −0.140047 0.990145i \(-0.544725\pi\)
0.927514 0.373788i \(-0.121941\pi\)
\(398\) −148.514 + 144.275i −0.373151 + 0.362500i
\(399\) −221.354 577.094i −0.554772 1.44635i
\(400\) 398.186 + 23.0849i 0.995465 + 0.0577121i
\(401\) 61.9807 107.354i 0.154565 0.267715i −0.778335 0.627849i \(-0.783936\pi\)
0.932901 + 0.360134i \(0.117269\pi\)
\(402\) 119.431 30.1554i 0.297093 0.0750134i
\(403\) −190.227 + 109.828i −0.472028 + 0.272525i
\(404\) 199.295 + 122.890i 0.493304 + 0.304184i
\(405\) 7.65179 + 13.2533i 0.0188933 + 0.0327242i
\(406\) −536.430 + 521.118i −1.32126 + 1.28354i
\(407\) 236.305i 0.580601i
\(408\) −153.600 + 487.496i −0.376469 + 1.19484i
\(409\) −50.9014 88.1639i −0.124453 0.215560i 0.797066 0.603893i \(-0.206384\pi\)
−0.921519 + 0.388333i \(0.873051\pi\)
\(410\) 28.7751 + 29.6206i 0.0701833 + 0.0722454i
\(411\) 25.4424i 0.0619037i
\(412\) 194.957 + 361.456i 0.473198 + 0.877319i
\(413\) −346.863 + 600.785i −0.839863 + 1.45468i
\(414\) 531.760 + 150.769i 1.28445 + 0.364176i
\(415\) 25.1247 + 14.5057i 0.0605414 + 0.0349536i
\(416\) −262.111 + 50.2492i −0.630074 + 0.120791i
\(417\) 225.414 0.540561
\(418\) −404.910 187.475i −0.968684 0.448505i
\(419\) 155.139i 0.370261i 0.982714 + 0.185130i \(0.0592708\pi\)
−0.982714 + 0.185130i \(0.940729\pi\)
\(420\) 29.6334 + 18.2727i 0.0705556 + 0.0435063i
\(421\) 114.921 199.049i 0.272972 0.472802i −0.696649 0.717412i \(-0.745327\pi\)
0.969621 + 0.244610i \(0.0786600\pi\)
\(422\) 238.321 + 67.5706i 0.564741 + 0.160120i
\(423\) 356.349 + 205.738i 0.842432 + 0.486379i
\(424\) 133.671 + 42.1169i 0.315262 + 0.0993324i
\(425\) −354.921 −0.835108
\(426\) 287.195 + 295.633i 0.674166 + 0.693975i
\(427\) −329.067 + 189.987i −0.770650 + 0.444935i
\(428\) 33.8953 + 62.8426i 0.0791946 + 0.146829i
\(429\) 439.461 1.02439
\(430\) −13.3042 + 12.9245i −0.0309401 + 0.0300569i
\(431\) 21.9723 12.6857i 0.0509799 0.0294333i −0.474293 0.880367i \(-0.657296\pi\)
0.525273 + 0.850934i \(0.323963\pi\)
\(432\) −128.217 84.2803i −0.296798 0.195093i
\(433\) −325.392 563.595i −0.751482 1.30160i −0.947104 0.320926i \(-0.896006\pi\)
0.195623 0.980679i \(-0.437327\pi\)
\(434\) 370.237 93.4814i 0.853080 0.215395i
\(435\) −53.6324 30.9647i −0.123293 0.0711832i
\(436\) −22.3267 + 770.864i −0.0512080 + 1.76804i
\(437\) −73.8757 + 465.653i −0.169052 + 1.06557i
\(438\) 258.317 250.944i 0.589765 0.572931i
\(439\) 582.157 + 336.108i 1.32610 + 0.765623i 0.984694 0.174294i \(-0.0557643\pi\)
0.341404 + 0.939917i \(0.389098\pi\)
\(440\) 24.5359 5.44463i 0.0557633 0.0123742i
\(441\) −19.7867 34.2715i −0.0448677 0.0777132i
\(442\) 230.260 58.1387i 0.520951 0.131535i
\(443\) −98.6335 + 56.9461i −0.222649 + 0.128546i −0.607176 0.794567i \(-0.707698\pi\)
0.384527 + 0.923114i \(0.374364\pi\)
\(444\) 361.075 + 10.4579i 0.813231 + 0.0235538i
\(445\) 14.0380 0.0315460
\(446\) −421.229 119.430i −0.944460 0.267781i
\(447\) −629.607 + 363.504i −1.40852 + 0.813208i
\(448\) 462.210 + 40.2513i 1.03172 + 0.0898467i
\(449\) 96.0975 0.214026 0.107013 0.994258i \(-0.465871\pi\)
0.107013 + 0.994258i \(0.465871\pi\)
\(450\) 151.461 534.200i 0.336579 1.18711i
\(451\) −784.811 453.111i −1.74016 1.00468i
\(452\) 674.355 363.725i 1.49194 0.804702i
\(453\) −277.224 + 480.166i −0.611973 + 1.05997i
\(454\) 57.1895 + 226.501i 0.125968 + 0.498901i
\(455\) 16.1760i 0.0355516i
\(456\) 304.382 610.407i 0.667505 1.33861i
\(457\) 526.215 1.15146 0.575728 0.817641i \(-0.304719\pi\)
0.575728 + 0.817641i \(0.304719\pi\)
\(458\) −315.414 + 79.6393i −0.688678 + 0.173885i
\(459\) 118.243 + 68.2676i 0.257610 + 0.148731i
\(460\) −12.6067 23.3731i −0.0274058 0.0508110i
\(461\) −243.622 + 421.966i −0.528464 + 0.915327i 0.470985 + 0.882141i \(0.343899\pi\)
−0.999449 + 0.0331859i \(0.989435\pi\)
\(462\) −735.002 208.393i −1.59091 0.451068i
\(463\) 151.027i 0.326193i 0.986610 + 0.163096i \(0.0521481\pi\)
−0.986610 + 0.163096i \(0.947852\pi\)
\(464\) −823.933 47.7676i −1.77572 0.102947i
\(465\) 15.8101 + 27.3839i 0.0340003 + 0.0588902i
\(466\) −157.701 + 556.210i −0.338414 + 1.19358i
\(467\) 211.728i 0.453379i −0.973967 0.226690i \(-0.927210\pi\)
0.973967 0.226690i \(-0.0727903\pi\)
\(468\) −10.7564 + 371.381i −0.0229837 + 0.793549i
\(469\) 49.7486 + 86.1672i 0.106074 + 0.183725i
\(470\) −4.83982 19.1683i −0.0102975 0.0407836i
\(471\) 901.495 520.478i 1.91400 1.10505i
\(472\) −747.378 + 165.847i −1.58343 + 0.351371i
\(473\) 203.517 352.501i 0.430268 0.745246i
\(474\) −765.819 788.321i −1.61565 1.66312i
\(475\) 467.789 + 74.2147i 0.984820 + 0.156241i
\(476\) −412.681 11.9526i −0.866977 0.0251104i
\(477\) 97.5530 168.967i 0.204514 0.354228i
\(478\) −138.782 549.651i −0.290339 1.14990i
\(479\) −88.5573 + 51.1286i −0.184879 + 0.106740i −0.589583 0.807708i \(-0.700708\pi\)
0.404704 + 0.914448i \(0.367375\pi\)
\(480\) 7.23357 + 37.7319i 0.0150699 + 0.0786081i
\(481\) −83.9197 145.353i −0.174469 0.302190i
\(482\) −626.145 644.543i −1.29906 1.33723i
\(483\) 807.243i 1.67131i
\(484\) −59.4272 + 32.0531i −0.122784 + 0.0662255i
\(485\) 8.00110 + 13.8583i 0.0164971 + 0.0285738i
\(486\) 492.030 477.986i 1.01241 0.983509i
\(487\) 15.7559i 0.0323530i 0.999869 + 0.0161765i \(0.00514936\pi\)
−0.999869 + 0.0161765i \(0.994851\pi\)
\(488\) −399.937 126.011i −0.819542 0.258220i
\(489\) −162.094 + 280.755i −0.331480 + 0.574140i
\(490\) −0.518641 + 1.82924i −0.00105845 + 0.00373315i
\(491\) 181.944 + 105.045i 0.370558 + 0.213942i 0.673702 0.739003i \(-0.264703\pi\)
−0.303144 + 0.952945i \(0.598036\pi\)
\(492\) 727.088 1179.14i 1.47782 2.39663i
\(493\) 734.408 1.48967
\(494\) −315.642 + 28.4795i −0.638952 + 0.0576508i
\(495\) 34.9879i 0.0706827i
\(496\) 352.132 + 231.466i 0.709944 + 0.466666i
\(497\) −166.461 + 288.319i −0.334932 + 0.580119i
\(498\) 265.464 936.288i 0.533060 1.88010i
\(499\) −208.860 120.586i −0.418558 0.241655i 0.275902 0.961186i \(-0.411023\pi\)
−0.694460 + 0.719531i \(0.744357\pi\)
\(500\) −47.0280 + 25.3654i −0.0940561 + 0.0507308i
\(501\) −523.471 −1.04485
\(502\) −99.0805 + 96.2524i −0.197372 + 0.191738i
\(503\) 8.31936 4.80318i 0.0165395 0.00954908i −0.491707 0.870760i \(-0.663627\pi\)
0.508247 + 0.861211i \(0.330294\pi\)
\(504\) 194.100 616.036i 0.385118 1.22229i
\(505\) −15.6606 −0.0310112
\(506\) 406.063 + 417.994i 0.802495 + 0.826074i
\(507\) −386.456 + 223.120i −0.762240 + 0.440080i
\(508\) −124.517 + 201.933i −0.245112 + 0.397505i
\(509\) 66.9546 + 115.969i 0.131541 + 0.227836i 0.924271 0.381737i \(-0.124674\pi\)
−0.792730 + 0.609574i \(0.791341\pi\)
\(510\) −8.36929 33.1469i −0.0164104 0.0649939i
\(511\) 251.926 + 145.450i 0.493007 + 0.284637i
\(512\) 311.930 + 406.009i 0.609239 + 0.792987i
\(513\) −141.571 114.702i −0.275966 0.223591i
\(514\) −154.866 159.416i −0.301295 0.310148i
\(515\) −23.7888 13.7345i −0.0461919 0.0266689i
\(516\) 529.617 + 326.575i 1.02639 + 0.632897i
\(517\) 216.918 + 375.714i 0.419571 + 0.726719i
\(518\) 71.4295 + 282.899i 0.137895 + 0.546137i
\(519\) −516.906 + 298.436i −0.995964 + 0.575020i
\(520\) 13.1587 12.0625i 0.0253051 0.0231972i
\(521\) 869.670 1.66923 0.834616 0.550832i \(-0.185689\pi\)
0.834616 + 0.550832i \(0.185689\pi\)
\(522\) −313.405 + 1105.38i −0.600392 + 2.11758i
\(523\) 775.040 447.469i 1.48191 0.855582i 0.482122 0.876104i \(-0.339866\pi\)
0.999789 + 0.0205217i \(0.00653270\pi\)
\(524\) −116.835 3.38392i −0.222968 0.00645786i
\(525\) 810.947 1.54466
\(526\) −373.995 106.038i −0.711016 0.201593i
\(527\) −324.741 187.489i −0.616207 0.355767i
\(528\) −378.575 753.302i −0.716998 1.42671i
\(529\) 43.3812 75.1384i 0.0820060 0.142039i
\(530\) −9.08886 + 2.29486i −0.0171488 + 0.00432992i
\(531\) 1065.76i 2.00707i
\(532\) 541.419 + 102.046i 1.01770 + 0.191816i
\(533\) −643.659 −1.20762
\(534\) −115.281 456.576i −0.215883 0.855011i
\(535\) −4.13592 2.38788i −0.00773070 0.00446332i
\(536\) −32.9964 + 104.724i −0.0615605 + 0.195381i
\(537\) 222.941 386.146i 0.415161 0.719079i
\(538\) 134.199 473.319i 0.249441 0.879775i
\(539\) 41.7238i 0.0774097i
\(540\) 10.2585 + 0.297119i 0.0189972 + 0.000550221i
\(541\) −473.984 820.965i −0.876127 1.51750i −0.855558 0.517707i \(-0.826786\pi\)
−0.0205687 0.999788i \(-0.506548\pi\)
\(542\) 803.360 + 227.775i 1.48221 + 0.420249i
\(543\) 196.938i 0.362685i
\(544\) −298.016 344.617i −0.547824 0.633486i
\(545\) −25.7910 44.6713i −0.0473229 0.0819657i
\(546\) −526.114 + 132.839i −0.963579 + 0.243295i
\(547\) −476.141 + 274.900i −0.870459 + 0.502560i −0.867501 0.497436i \(-0.834275\pi\)
−0.00295823 + 0.999996i \(0.500942\pi\)
\(548\) 19.3039 + 11.9033i 0.0352261 + 0.0217213i
\(549\) −291.873 + 505.538i −0.531644 + 0.920835i
\(550\) 419.912 407.926i 0.763476 0.741683i
\(551\) −967.958 153.566i −1.75673 0.278705i
\(552\) −656.667 + 601.967i −1.18961 + 1.09052i
\(553\) 443.877 768.818i 0.802672 1.39027i
\(554\) 793.047 200.237i 1.43149 0.361439i
\(555\) −20.9242 + 12.0806i −0.0377012 + 0.0217668i
\(556\) −105.460 + 171.028i −0.189677 + 0.307605i
\(557\) −293.392 508.170i −0.526736 0.912334i −0.999515 0.0311523i \(-0.990082\pi\)
0.472779 0.881181i \(-0.343251\pi\)
\(558\) 420.776 408.766i 0.754079 0.732555i
\(559\) 289.102i 0.517178i
\(560\) −27.7280 + 13.9348i −0.0495143 + 0.0248836i
\(561\) 375.107 + 649.705i 0.668640 + 1.15812i
\(562\) −108.996 112.199i −0.193944 0.199642i
\(563\) 545.417i 0.968770i 0.874855 + 0.484385i \(0.160957\pi\)
−0.874855 + 0.484385i \(0.839043\pi\)
\(564\) −583.692 + 314.825i −1.03492 + 0.558200i
\(565\) −25.6240 + 44.3820i −0.0453521 + 0.0785522i
\(566\) −224.698 63.7081i −0.396993 0.112558i
\(567\) 359.109 + 207.331i 0.633348 + 0.365664i
\(568\) −358.670 + 79.5907i −0.631462 + 0.140125i
\(569\) −548.968 −0.964795 −0.482397 0.875953i \(-0.660234\pi\)
−0.482397 + 0.875953i \(0.660234\pi\)
\(570\) 4.09973 + 45.4380i 0.00719251 + 0.0797157i
\(571\) 1004.32i 1.75888i −0.476012 0.879439i \(-0.657918\pi\)
0.476012 0.879439i \(-0.342082\pi\)
\(572\) −205.603 + 333.433i −0.359445 + 0.582924i
\(573\) 141.884 245.751i 0.247617 0.428884i
\(574\) 1076.52 + 305.224i 1.87548 + 0.531750i
\(575\) −535.713 309.294i −0.931674 0.537902i
\(576\) 645.868 301.489i 1.12130 0.523418i
\(577\) 377.294 0.653890 0.326945 0.945043i \(-0.393981\pi\)
0.326945 + 0.945043i \(0.393981\pi\)
\(578\) −120.254 123.787i −0.208052 0.214165i
\(579\) −179.669 + 103.732i −0.310309 + 0.179157i
\(580\) 48.5858 26.2056i 0.0837687 0.0451821i
\(581\) 786.089 1.35299
\(582\) 385.027 374.037i 0.661559 0.642675i
\(583\) 178.149 102.854i 0.305572 0.176422i
\(584\) 69.5444 + 313.397i 0.119083 + 0.536639i
\(585\) −12.4254 21.5214i −0.0212400 0.0367887i
\(586\) −234.815 + 59.2888i −0.400709 + 0.101175i
\(587\) −262.988 151.836i −0.448020 0.258665i 0.258973 0.965884i \(-0.416616\pi\)
−0.706994 + 0.707220i \(0.749949\pi\)
\(588\) 63.7542 + 1.84653i 0.108426 + 0.00314035i
\(589\) 388.808 + 315.017i 0.660115 + 0.534833i
\(590\) 36.7281 35.6798i 0.0622511 0.0604742i
\(591\) −296.174 170.996i −0.501141 0.289334i
\(592\) −176.864 + 269.065i −0.298757 + 0.454502i
\(593\) 51.2041 + 88.6881i 0.0863475 + 0.149558i 0.905965 0.423353i \(-0.139147\pi\)
−0.819617 + 0.572912i \(0.805814\pi\)
\(594\) −218.358 + 55.1334i −0.367605 + 0.0928171i
\(595\) 23.9147 13.8072i 0.0401928 0.0232053i
\(596\) 18.7614 647.768i 0.0314789 1.08686i
\(597\) −464.572 −0.778177
\(598\) 398.216 + 112.905i 0.665914 + 0.188805i
\(599\) 669.678 386.639i 1.11799 0.645474i 0.177105 0.984192i \(-0.443327\pi\)
0.940888 + 0.338718i \(0.109993\pi\)
\(600\) 604.729 + 659.680i 1.00788 + 1.09947i
\(601\) 399.651 0.664977 0.332489 0.943107i \(-0.392112\pi\)
0.332489 + 0.943107i \(0.392112\pi\)
\(602\) −137.093 + 483.526i −0.227729 + 0.803199i
\(603\) 132.377 + 76.4277i 0.219530 + 0.126746i
\(604\) −234.617 434.984i −0.388438 0.720173i
\(605\) 2.25810 3.91114i 0.00373239 0.00646470i
\(606\) 128.607 + 509.353i 0.212223 + 0.840516i
\(607\) 244.707i 0.403142i 0.979474 + 0.201571i \(0.0646046\pi\)
−0.979474 + 0.201571i \(0.935395\pi\)
\(608\) 320.729 + 516.524i 0.527514 + 0.849546i
\(609\) −1678.02 −2.75538
\(610\) 27.1933 6.86607i 0.0445792 0.0112559i
\(611\) 266.857 + 154.070i 0.436754 + 0.252160i
\(612\) −558.235 + 301.094i −0.912148 + 0.491983i
\(613\) −396.466 + 686.700i −0.646764 + 1.12023i 0.337127 + 0.941459i \(0.390545\pi\)
−0.983891 + 0.178769i \(0.942789\pi\)
\(614\) −1020.77 289.417i −1.66250 0.471364i
\(615\) 92.6573i 0.150662i
\(616\) 501.986 460.171i 0.814913 0.747031i
\(617\) −142.607 247.003i −0.231130 0.400328i 0.727011 0.686626i \(-0.240909\pi\)
−0.958141 + 0.286297i \(0.907576\pi\)
\(618\) −251.349 + 886.507i −0.406714 + 1.43448i
\(619\) 249.474i 0.403028i −0.979486 0.201514i \(-0.935414\pi\)
0.979486 0.201514i \(-0.0645861\pi\)
\(620\) −28.1738 0.816004i −0.0454416 0.00131614i
\(621\) 118.983 + 206.084i 0.191599 + 0.331859i
\(622\) −26.4680 104.827i −0.0425530 0.168533i
\(623\) 329.410 190.185i 0.528747 0.305272i
\(624\) −500.388 328.918i −0.801903 0.527113i
\(625\) −309.818 + 536.621i −0.495709 + 0.858594i
\(626\) −439.805 452.728i −0.702564 0.723207i
\(627\) −358.541 934.753i −0.571835 1.49083i
\(628\) −26.8633 + 927.498i −0.0427760 + 1.47691i
\(629\) 143.261 248.135i 0.227760 0.394492i
\(630\) 10.5760 + 41.8868i 0.0167874 + 0.0664870i
\(631\) 672.867 388.480i 1.06635 0.615658i 0.139169 0.990269i \(-0.455557\pi\)
0.927182 + 0.374611i \(0.122224\pi\)
\(632\) 956.412 212.233i 1.51331 0.335811i
\(633\) 277.901 + 481.338i 0.439022 + 0.760408i
\(634\) 390.600 + 402.077i 0.616089 + 0.634191i
\(635\) 15.8679i 0.0249888i
\(636\) 149.278 + 276.764i 0.234713 + 0.435164i
\(637\) −14.8175 25.6647i −0.0232614 0.0402900i
\(638\) −868.888 + 844.087i −1.36189 + 1.32302i
\(639\) 511.461i 0.800408i
\(640\) −32.0125 12.1646i −0.0500196 0.0190072i
\(641\) −237.718 + 411.740i −0.370855 + 0.642340i −0.989697 0.143175i \(-0.954269\pi\)
0.618842 + 0.785515i \(0.287602\pi\)
\(642\) −43.6996 + 154.128i −0.0680679 + 0.240075i
\(643\) −153.600 88.6809i −0.238880 0.137917i 0.375782 0.926708i \(-0.377374\pi\)
−0.614662 + 0.788791i \(0.710708\pi\)
\(644\) −612.479 377.670i −0.951055 0.586444i
\(645\) −41.6174 −0.0645231
\(646\) −311.524 442.340i −0.482236 0.684737i
\(647\) 779.535i 1.20484i 0.798177 + 0.602422i \(0.205798\pi\)
−0.798177 + 0.602422i \(0.794202\pi\)
\(648\) 99.1321 + 446.732i 0.152982 + 0.689401i
\(649\) −561.835 + 973.127i −0.865694 + 1.49943i
\(650\) 113.423 400.044i 0.174498 0.615452i
\(651\) 741.990 + 428.388i 1.13977 + 0.658046i
\(652\) −137.181 254.337i −0.210400 0.390087i
\(653\) −235.113 −0.360050 −0.180025 0.983662i \(-0.557618\pi\)
−0.180025 + 0.983662i \(0.557618\pi\)
\(654\) −1241.11 + 1205.68i −1.89772 + 1.84355i
\(655\) 6.77055 3.90898i 0.0103367 0.00596791i
\(656\) 554.481 + 1103.33i 0.845246 + 1.68190i
\(657\) 446.902 0.680216
\(658\) −373.260 384.227i −0.567264 0.583932i
\(659\) 713.472 411.923i 1.08266 0.625073i 0.151046 0.988527i \(-0.451736\pi\)
0.931612 + 0.363454i \(0.118403\pi\)
\(660\) 47.9989 + 29.5973i 0.0727257 + 0.0448444i
\(661\) −448.256 776.402i −0.678148 1.17459i −0.975538 0.219830i \(-0.929450\pi\)
0.297390 0.954756i \(-0.403884\pi\)
\(662\) −217.140 859.990i −0.328006 1.29908i
\(663\) 461.464 + 266.426i 0.696024 + 0.401849i
\(664\) 586.192 + 639.459i 0.882820 + 0.963041i
\(665\) −34.4070 + 13.1974i −0.0517398 + 0.0198457i
\(666\) 312.339 + 321.516i 0.468978 + 0.482757i
\(667\) 1108.51 + 639.996i 1.66193 + 0.959514i
\(668\) 244.907 397.173i 0.366627 0.594571i
\(669\) −491.186 850.759i −0.734209 1.27169i
\(670\) −1.79790 7.12064i −0.00268343 0.0106278i
\(671\) −533.010 + 307.734i −0.794352 + 0.458619i
\(672\) 680.928 + 787.403i 1.01329 + 1.17173i
\(673\) 769.535 1.14344 0.571720 0.820449i \(-0.306276\pi\)
0.571720 + 0.820449i \(0.306276\pi\)
\(674\) −102.770 + 362.468i −0.152477 + 0.537786i
\(675\) 207.030 119.529i 0.306711 0.177080i
\(676\) 11.5159 397.603i 0.0170353 0.588170i
\(677\) 371.960 0.549424 0.274712 0.961527i \(-0.411417\pi\)
0.274712 + 0.961527i \(0.411417\pi\)
\(678\) 1653.92 + 468.934i 2.43942 + 0.691642i
\(679\) 375.502 + 216.796i 0.553022 + 0.319287i
\(680\) 29.0651 + 9.15778i 0.0427428 + 0.0134673i
\(681\) −262.076 + 453.930i −0.384841 + 0.666564i
\(682\) 599.695 151.418i 0.879318 0.222020i
\(683\) 1047.47i 1.53363i −0.641866 0.766817i \(-0.721840\pi\)
0.641866 0.766817i \(-0.278160\pi\)
\(684\) 798.719 280.117i 1.16772 0.409527i
\(685\) −1.51691 −0.00221446
\(686\) −161.309 638.869i −0.235144 0.931297i
\(687\) −632.121 364.955i −0.920117 0.531230i
\(688\) −495.564 + 249.048i −0.720297 + 0.361988i
\(689\) 73.0539 126.533i 0.106029 0.183647i
\(690\) 16.2532 57.3248i 0.0235553 0.0830794i
\(691\) 75.1204i 0.108713i −0.998522 0.0543563i \(-0.982689\pi\)
0.998522 0.0543563i \(-0.0173107\pi\)
\(692\) 15.4031 531.815i 0.0222588 0.768519i
\(693\) −474.013 821.014i −0.684001 1.18472i
\(694\) −1041.16 295.196i −1.50022 0.425355i
\(695\) 13.4394i 0.0193373i
\(696\) −1251.32 1365.02i −1.79787 1.96124i
\(697\) −549.402 951.593i −0.788239 1.36527i
\(698\) −75.7574 + 19.1281i −0.108535 + 0.0274041i
\(699\) −1123.38 + 648.585i −1.60713 + 0.927875i
\(700\) −379.403 + 615.290i −0.542004 + 0.878985i
\(701\) −210.478 + 364.558i −0.300253 + 0.520054i −0.976193 0.216903i \(-0.930405\pi\)
0.675940 + 0.736957i \(0.263738\pi\)
\(702\) −114.734 + 111.459i −0.163439 + 0.158774i
\(703\) −240.705 + 297.089i −0.342397 + 0.422602i
\(704\) 748.670 + 65.1975i 1.06345 + 0.0926101i
\(705\) 22.1790 38.4151i 0.0314595 0.0544895i
\(706\) 756.240 190.944i 1.07116 0.270459i
\(707\) −367.487 + 212.169i −0.519784 + 0.300097i
\(708\) −1462.08 901.554i −2.06508 1.27338i
\(709\) 562.723 + 974.665i 0.793686 + 1.37470i 0.923670 + 0.383188i \(0.125174\pi\)
−0.129984 + 0.991516i \(0.541493\pi\)
\(710\) 17.6260 17.1229i 0.0248253 0.0241167i
\(711\) 1363.84i 1.91819i
\(712\) 400.353 + 126.142i 0.562293 + 0.177166i
\(713\) −326.773 565.987i −0.458307 0.793811i
\(714\) −645.461 664.426i −0.904007 0.930569i
\(715\) 26.2012i 0.0366450i
\(716\) 188.677 + 349.811i 0.263515 + 0.488563i
\(717\) 635.983 1101.55i 0.887005 1.53634i
\(718\) 1055.59 + 299.288i 1.47018 + 0.416836i
\(719\) 185.767 + 107.253i 0.258369 + 0.149169i 0.623590 0.781751i \(-0.285673\pi\)
−0.365221 + 0.930921i \(0.619007\pi\)
\(720\) −26.1870 + 39.8386i −0.0363708 + 0.0553314i
\(721\) −744.293 −1.03231
\(722\) 318.098 + 648.149i 0.440579 + 0.897714i
\(723\) 2016.22i 2.78868i
\(724\) −149.423 92.1377i −0.206385 0.127262i
\(725\) 642.933 1113.59i 0.886804 1.53599i
\(726\) −145.751 41.3245i −0.200759 0.0569209i
\(727\) −611.381 352.981i −0.840964 0.485531i 0.0166275 0.999862i \(-0.494707\pi\)
−0.857592 + 0.514331i \(0.828040\pi\)
\(728\) 145.354 461.328i 0.199662 0.633692i
\(729\) 1024.34 1.40513
\(730\) −14.9616 15.4012i −0.0204953 0.0210975i
\(731\) 427.412 246.766i 0.584695 0.337574i
\(732\) −446.630 828.062i −0.610150 1.13123i
\(733\) −333.184 −0.454549 −0.227274 0.973831i \(-0.572981\pi\)
−0.227274 + 0.973831i \(0.572981\pi\)
\(734\) −321.023 + 311.859i −0.437361 + 0.424877i
\(735\) −3.69454 + 2.13304i −0.00502658 + 0.00290210i
\(736\) −149.508 779.864i −0.203135 1.05960i
\(737\) 80.5809 + 139.570i 0.109336 + 0.189376i
\(738\) 1666.72 420.832i 2.25843 0.570233i
\(739\) −103.982 60.0342i −0.140707 0.0812370i 0.427994 0.903782i \(-0.359220\pi\)
−0.568701 + 0.822545i \(0.692554\pi\)
\(740\) 0.623511 21.5277i 0.000842583 0.0290915i
\(741\) −552.504 447.646i −0.745619 0.604110i
\(742\) −182.185 + 176.985i −0.245533 + 0.238524i
\(743\) −207.224 119.641i −0.278901 0.161024i 0.354025 0.935236i \(-0.384813\pi\)
−0.632926 + 0.774212i \(0.718146\pi\)
\(744\) 204.827 + 923.038i 0.275305 + 1.24064i
\(745\) 21.6725 + 37.5379i 0.0290906 + 0.0503865i
\(746\) 1270.24 320.725i 1.70274 0.429927i
\(747\) 1045.86 603.825i 1.40007 0.808333i
\(748\) −668.445 19.3603i −0.893643 0.0258828i
\(749\) −129.403 −0.172767
\(750\) −115.341 32.7024i −0.153788 0.0436032i
\(751\) −788.836 + 455.435i −1.05038 + 0.606438i −0.922756 0.385384i \(-0.874069\pi\)
−0.127625 + 0.991822i \(0.540736\pi\)
\(752\) 34.2143 590.156i 0.0454978 0.784782i
\(753\) −309.937 −0.411603
\(754\) −234.698 + 827.777i −0.311270 + 1.09785i
\(755\) 28.6280 + 16.5284i 0.0379179 + 0.0218919i
\(756\) 244.748 132.009i 0.323740 0.174615i
\(757\) 387.365 670.935i 0.511710 0.886308i −0.488198 0.872733i \(-0.662345\pi\)
0.999908 0.0135751i \(-0.00432124\pi\)
\(758\) −100.757 399.053i −0.132925 0.526455i
\(759\) 1307.54i 1.72271i
\(760\) −36.3932 18.1476i −0.0478858 0.0238785i
\(761\) 1111.15 1.46011 0.730057 0.683386i \(-0.239494\pi\)
0.730057 + 0.683386i \(0.239494\pi\)
\(762\) −516.095 + 130.309i −0.677289 + 0.171010i
\(763\) −1210.41 698.828i −1.58638 0.915895i
\(764\) 120.078 + 222.627i 0.157170 + 0.291396i
\(765\) 21.2116 36.7396i 0.0277276 0.0480257i
\(766\) −239.572 67.9253i −0.312757 0.0886753i
\(767\) 798.106i 1.04056i
\(768\) −132.755 + 1141.09i −0.172858 + 1.48579i
\(769\) 299.646 + 519.002i 0.389657 + 0.674905i 0.992403 0.123028i \(-0.0392603\pi\)
−0.602747 + 0.797933i \(0.705927\pi\)
\(770\) −12.4247 + 43.8217i −0.0161359 + 0.0569113i
\(771\) 498.674i 0.646789i
\(772\) 5.35389 184.852i 0.00693510 0.239445i
\(773\) 104.830 + 181.572i 0.135615 + 0.234892i 0.925832 0.377