Properties

Label 76.3.g.c.11.1
Level $76$
Weight $3$
Character 76.11
Analytic conductor $2.071$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.1
Character \(\chi\) \(=\) 76.11
Dual form 76.3.g.c.7.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.99453 - 0.147792i) q^{2} +(3.58197 + 2.06805i) q^{3} +(3.95632 + 0.589552i) q^{4} +(-3.72976 + 6.46014i) q^{5} +(-6.83872 - 4.65419i) q^{6} -3.06851i q^{7} +(-7.80387 - 1.76059i) q^{8} +(4.05369 + 7.02120i) q^{9} +O(q^{10})\) \(q+(-1.99453 - 0.147792i) q^{2} +(3.58197 + 2.06805i) q^{3} +(3.95632 + 0.589552i) q^{4} +(-3.72976 + 6.46014i) q^{5} +(-6.83872 - 4.65419i) q^{6} -3.06851i q^{7} +(-7.80387 - 1.76059i) q^{8} +(4.05369 + 7.02120i) q^{9} +(8.39388 - 12.3337i) q^{10} +6.31466i q^{11} +(12.9522 + 10.2936i) q^{12} +(8.74659 + 15.1495i) q^{13} +(-0.453501 + 6.12024i) q^{14} +(-26.7198 + 15.4267i) q^{15} +(15.3049 + 4.66490i) q^{16} +(10.6765 - 18.4922i) q^{17} +(-7.04754 - 14.6031i) q^{18} +(6.62587 - 17.8072i) q^{19} +(-18.5647 + 23.3594i) q^{20} +(6.34585 - 10.9913i) q^{21} +(0.933256 - 12.5948i) q^{22} +(-5.19772 + 3.00090i) q^{23} +(-24.3122 - 22.4452i) q^{24} +(-15.3222 - 26.5389i) q^{25} +(-15.2064 - 31.5089i) q^{26} -3.69197i q^{27} +(1.80905 - 12.1400i) q^{28} +(18.2919 + 31.6825i) q^{29} +(55.5735 - 26.8201i) q^{30} -53.3857i q^{31} +(-29.8366 - 11.5662i) q^{32} +(-13.0591 + 22.6189i) q^{33} +(-24.0276 + 35.3055i) q^{34} +(19.8230 + 11.4448i) q^{35} +(11.8983 + 30.1679i) q^{36} -39.2040 q^{37} +(-15.8473 + 34.5379i) q^{38} +72.3537i q^{39} +(40.4802 - 43.8474i) q^{40} +(18.2738 - 31.6512i) q^{41} +(-14.2814 + 20.9847i) q^{42} +(31.7551 + 18.3338i) q^{43} +(-3.72282 + 24.9828i) q^{44} -60.4772 q^{45} +(10.8105 - 5.21722i) q^{46} +(0.0577813 - 0.0333600i) q^{47} +(45.1743 + 48.3608i) q^{48} +39.5842 q^{49} +(26.6385 + 55.1972i) q^{50} +(76.4859 - 44.1592i) q^{51} +(25.6728 + 65.0929i) q^{52} +(-31.6606 - 54.8377i) q^{53} +(-0.545644 + 7.36376i) q^{54} +(-40.7936 - 23.5522i) q^{55} +(-5.40240 + 23.9463i) q^{56} +(60.5600 - 50.0824i) q^{57} +(-31.8013 - 65.8951i) q^{58} +(-41.8467 - 24.1602i) q^{59} +(-114.807 + 45.2801i) q^{60} +(29.8565 + 51.7130i) q^{61} +(-7.88997 + 106.479i) q^{62} +(21.5446 - 12.4388i) q^{63} +(57.8006 + 27.4788i) q^{64} -130.491 q^{65} +(29.3896 - 43.1842i) q^{66} +(-58.4513 + 33.7469i) q^{67} +(53.1418 - 66.8668i) q^{68} -24.8241 q^{69} +(-37.8462 - 25.7567i) q^{70} +(30.0423 + 17.3449i) q^{71} +(-19.2730 - 61.9294i) q^{72} +(-17.7736 + 30.7848i) q^{73} +(78.1937 + 5.79404i) q^{74} -126.749i q^{75} +(36.7123 - 66.5448i) q^{76} +19.3766 q^{77} +(10.6933 - 144.312i) q^{78} +(-65.0141 - 37.5359i) q^{79} +(-87.2194 + 81.4725i) q^{80} +(44.1184 - 76.4153i) q^{81} +(-41.1256 + 60.4287i) q^{82} +53.5823i q^{83} +(31.5861 - 39.7440i) q^{84} +(79.6416 + 137.943i) q^{85} +(-60.6270 - 41.2606i) q^{86} +151.314i q^{87} +(11.1175 - 49.2788i) q^{88} +(36.5343 + 63.2793i) q^{89} +(120.624 + 8.93804i) q^{90} +(46.4866 - 26.8390i) q^{91} +(-22.3330 + 8.80820i) q^{92} +(110.404 - 191.226i) q^{93} +(-0.120177 + 0.0579980i) q^{94} +(90.3243 + 109.221i) q^{95} +(-82.9543 - 103.134i) q^{96} +(-59.7660 + 103.518i) q^{97} +(-78.9520 - 5.85023i) q^{98} +(-44.3365 + 25.5977i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + O(q^{10}) \) \( 28q - 5q^{2} - 11q^{4} + 6q^{5} - 3q^{6} - 62q^{8} + 20q^{9} + 26q^{12} + 30q^{13} - 30q^{14} - 19q^{16} + 38q^{17} - 60q^{18} - 44q^{20} + 80q^{21} + 45q^{22} + 17q^{24} - 16q^{25} - 56q^{26} + 54q^{28} + 6q^{29} + 96q^{30} - 45q^{32} - 176q^{33} - 20q^{34} + 30q^{36} + 104q^{37} - 258q^{38} + 94q^{40} - 2q^{41} - 2q^{42} + 201q^{44} - 360q^{45} + 164q^{46} - 17q^{48} - 20q^{49} + 490q^{50} - 102q^{52} - 242q^{53} - 13q^{54} + 276q^{56} - 254q^{57} + 96q^{58} + 10q^{60} - 58q^{61} - 36q^{62} - 74q^{64} - 260q^{65} + 167q^{66} + 396q^{68} + 340q^{69} + 60q^{70} - 422q^{72} - 82q^{73} - 136q^{74} + 123q^{76} - 144q^{77} + 224q^{78} - 174q^{80} + 410q^{81} - 305q^{82} + 252q^{84} + 714q^{85} + 166q^{86} - 718q^{88} + 150q^{89} - 272q^{90} - 588q^{92} + 344q^{93} - 488q^{94} - 122q^{96} + 94q^{97} + 307q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99453 0.147792i −0.997266 0.0738960i
\(3\) 3.58197 + 2.06805i 1.19399 + 0.689351i 0.959209 0.282697i \(-0.0912291\pi\)
0.234782 + 0.972048i \(0.424562\pi\)
\(4\) 3.95632 + 0.589552i 0.989079 + 0.147388i
\(5\) −3.72976 + 6.46014i −0.745952 + 1.29203i 0.203796 + 0.979013i \(0.434672\pi\)
−0.949749 + 0.313014i \(0.898661\pi\)
\(6\) −6.83872 4.65419i −1.13979 0.775698i
\(7\) 3.06851i 0.438359i −0.975685 0.219179i \(-0.929662\pi\)
0.975685 0.219179i \(-0.0703380\pi\)
\(8\) −7.80387 1.76059i −0.975483 0.220074i
\(9\) 4.05369 + 7.02120i 0.450410 + 0.780133i
\(10\) 8.39388 12.3337i 0.839388 1.23337i
\(11\) 6.31466i 0.574060i 0.957922 + 0.287030i \(0.0926679\pi\)
−0.957922 + 0.287030i \(0.907332\pi\)
\(12\) 12.9522 + 10.2936i 1.07935 + 0.857802i
\(13\) 8.74659 + 15.1495i 0.672815 + 1.16535i 0.977102 + 0.212769i \(0.0682483\pi\)
−0.304288 + 0.952580i \(0.598418\pi\)
\(14\) −0.453501 + 6.12024i −0.0323930 + 0.437160i
\(15\) −26.7198 + 15.4267i −1.78132 + 1.02845i
\(16\) 15.3049 + 4.66490i 0.956554 + 0.291557i
\(17\) 10.6765 18.4922i 0.628030 1.08778i −0.359917 0.932984i \(-0.617195\pi\)
0.987947 0.154795i \(-0.0494717\pi\)
\(18\) −7.04754 14.6031i −0.391530 0.811284i
\(19\) 6.62587 17.8072i 0.348730 0.937223i
\(20\) −18.5647 + 23.3594i −0.928235 + 1.16797i
\(21\) 6.34585 10.9913i 0.302183 0.523397i
\(22\) 0.933256 12.5948i 0.0424207 0.572490i
\(23\) −5.19772 + 3.00090i −0.225988 + 0.130474i −0.608720 0.793385i \(-0.708317\pi\)
0.382732 + 0.923859i \(0.374983\pi\)
\(24\) −24.3122 22.4452i −1.01301 0.935217i
\(25\) −15.3222 26.5389i −0.612889 1.06156i
\(26\) −15.2064 31.5089i −0.584861 1.21188i
\(27\) 3.69197i 0.136740i
\(28\) 1.80905 12.1400i 0.0646088 0.433571i
\(29\) 18.2919 + 31.6825i 0.630755 + 1.09250i 0.987398 + 0.158258i \(0.0505879\pi\)
−0.356643 + 0.934241i \(0.616079\pi\)
\(30\) 55.5735 26.8201i 1.85245 0.894002i
\(31\) 53.3857i 1.72212i −0.508505 0.861059i \(-0.669802\pi\)
0.508505 0.861059i \(-0.330198\pi\)
\(32\) −29.8366 11.5662i −0.932393 0.361445i
\(33\) −13.0591 + 22.6189i −0.395729 + 0.685423i
\(34\) −24.0276 + 35.3055i −0.706695 + 1.03840i
\(35\) 19.8230 + 11.4448i 0.566372 + 0.326995i
\(36\) 11.8983 + 30.1679i 0.330509 + 0.837998i
\(37\) −39.2040 −1.05957 −0.529784 0.848133i \(-0.677727\pi\)
−0.529784 + 0.848133i \(0.677727\pi\)
\(38\) −15.8473 + 34.5379i −0.417034 + 0.908891i
\(39\) 72.3537i 1.85522i
\(40\) 40.4802 43.8474i 1.01201 1.09619i
\(41\) 18.2738 31.6512i 0.445704 0.771981i −0.552397 0.833581i \(-0.686287\pi\)
0.998101 + 0.0615997i \(0.0196202\pi\)
\(42\) −14.2814 + 20.9847i −0.340034 + 0.499635i
\(43\) 31.7551 + 18.3338i 0.738491 + 0.426368i 0.821521 0.570179i \(-0.193126\pi\)
−0.0830292 + 0.996547i \(0.526459\pi\)
\(44\) −3.72282 + 24.9828i −0.0846095 + 0.567791i
\(45\) −60.4772 −1.34394
\(46\) 10.8105 5.21722i 0.235011 0.113418i
\(47\) 0.0577813 0.0333600i 0.00122939 0.000709788i −0.499385 0.866380i \(-0.666441\pi\)
0.500615 + 0.865670i \(0.333107\pi\)
\(48\) 45.1743 + 48.3608i 0.941132 + 1.00752i
\(49\) 39.5842 0.807842
\(50\) 26.6385 + 55.1972i 0.532769 + 1.10394i
\(51\) 76.4859 44.1592i 1.49972 0.865866i
\(52\) 25.6728 + 65.0929i 0.493708 + 1.25179i
\(53\) −31.6606 54.8377i −0.597369 1.03467i −0.993208 0.116354i \(-0.962879\pi\)
0.395839 0.918320i \(-0.370454\pi\)
\(54\) −0.545644 + 7.36376i −0.0101045 + 0.136366i
\(55\) −40.7936 23.5522i −0.741701 0.428221i
\(56\) −5.40240 + 23.9463i −0.0964714 + 0.427612i
\(57\) 60.5600 50.0824i 1.06246 0.878639i
\(58\) −31.8013 65.8951i −0.548299 1.13612i
\(59\) −41.8467 24.1602i −0.709266 0.409495i 0.101524 0.994833i \(-0.467628\pi\)
−0.810789 + 0.585339i \(0.800962\pi\)
\(60\) −114.807 + 45.2801i −1.91345 + 0.754669i
\(61\) 29.8565 + 51.7130i 0.489451 + 0.847754i 0.999926 0.0121386i \(-0.00386392\pi\)
−0.510475 + 0.859892i \(0.670531\pi\)
\(62\) −7.88997 + 106.479i −0.127258 + 1.71741i
\(63\) 21.5446 12.4388i 0.341978 0.197441i
\(64\) 57.8006 + 27.4788i 0.903135 + 0.429357i
\(65\) −130.491 −2.00755
\(66\) 29.3896 43.1842i 0.445297 0.654306i
\(67\) −58.4513 + 33.7469i −0.872408 + 0.503685i −0.868148 0.496306i \(-0.834689\pi\)
−0.00426017 + 0.999991i \(0.501356\pi\)
\(68\) 53.1418 66.8668i 0.781496 0.983335i
\(69\) −24.8241 −0.359770
\(70\) −37.8462 25.7567i −0.540659 0.367953i
\(71\) 30.0423 + 17.3449i 0.423131 + 0.244295i 0.696416 0.717638i \(-0.254777\pi\)
−0.273285 + 0.961933i \(0.588110\pi\)
\(72\) −19.2730 61.9294i −0.267680 0.860130i
\(73\) −17.7736 + 30.7848i −0.243474 + 0.421710i −0.961702 0.274099i \(-0.911620\pi\)
0.718227 + 0.695809i \(0.244954\pi\)
\(74\) 78.1937 + 5.79404i 1.05667 + 0.0782979i
\(75\) 126.749i 1.68998i
\(76\) 36.7123 66.5448i 0.483057 0.875589i
\(77\) 19.3766 0.251644
\(78\) 10.6933 144.312i 0.137094 1.85015i
\(79\) −65.0141 37.5359i −0.822963 0.475138i 0.0284739 0.999595i \(-0.490935\pi\)
−0.851437 + 0.524456i \(0.824269\pi\)
\(80\) −87.2194 + 81.4725i −1.09024 + 1.01841i
\(81\) 44.1184 76.4153i 0.544672 0.943399i
\(82\) −41.1256 + 60.4287i −0.501531 + 0.736935i
\(83\) 53.5823i 0.645570i 0.946472 + 0.322785i \(0.104619\pi\)
−0.946472 + 0.322785i \(0.895381\pi\)
\(84\) 31.5861 39.7440i 0.376025 0.473142i
\(85\) 79.6416 + 137.943i 0.936960 + 1.62286i
\(86\) −60.6270 41.2606i −0.704965 0.479774i
\(87\) 151.314i 1.73925i
\(88\) 11.1175 49.2788i 0.126336 0.559986i
\(89\) 36.5343 + 63.2793i 0.410498 + 0.711003i 0.994944 0.100429i \(-0.0320216\pi\)
−0.584446 + 0.811432i \(0.698688\pi\)
\(90\) 120.624 + 8.93804i 1.34026 + 0.0993116i
\(91\) 46.4866 26.8390i 0.510841 0.294934i
\(92\) −22.3330 + 8.80820i −0.242750 + 0.0957413i
\(93\) 110.404 191.226i 1.18714 2.05619i
\(94\) −0.120177 + 0.0579980i −0.00127848 + 0.000617000i
\(95\) 90.3243 + 109.221i 0.950782 + 1.14969i
\(96\) −82.9543 103.134i −0.864107 1.07431i
\(97\) −59.7660 + 103.518i −0.616144 + 1.06719i 0.374039 + 0.927413i \(0.377973\pi\)
−0.990183 + 0.139780i \(0.955361\pi\)
\(98\) −78.9520 5.85023i −0.805633 0.0596963i
\(99\) −44.3365 + 25.5977i −0.447843 + 0.258562i
\(100\) −44.9735 114.029i −0.449735 1.14029i
\(101\) −13.0976 22.6857i −0.129679 0.224611i 0.793873 0.608083i \(-0.208061\pi\)
−0.923552 + 0.383473i \(0.874728\pi\)
\(102\) −159.080 + 76.7729i −1.55961 + 0.752675i
\(103\) 130.318i 1.26522i 0.774469 + 0.632612i \(0.218017\pi\)
−0.774469 + 0.632612i \(0.781983\pi\)
\(104\) −41.5851 133.624i −0.399857 1.28485i
\(105\) 47.3370 + 81.9901i 0.450828 + 0.780858i
\(106\) 55.0434 + 114.055i 0.519278 + 1.07599i
\(107\) 154.669i 1.44550i −0.691109 0.722751i \(-0.742877\pi\)
0.691109 0.722751i \(-0.257123\pi\)
\(108\) 2.17661 14.6066i 0.0201538 0.135246i
\(109\) 44.6984 77.4198i 0.410077 0.710274i −0.584821 0.811162i \(-0.698835\pi\)
0.994898 + 0.100889i \(0.0321686\pi\)
\(110\) 77.8832 + 53.0045i 0.708029 + 0.481859i
\(111\) −140.428 81.0760i −1.26512 0.730415i
\(112\) 14.3143 46.9631i 0.127806 0.419314i
\(113\) −93.6713 −0.828949 −0.414475 0.910061i \(-0.636035\pi\)
−0.414475 + 0.910061i \(0.636035\pi\)
\(114\) −128.191 + 90.9407i −1.12448 + 0.797725i
\(115\) 44.7706i 0.389310i
\(116\) 53.6900 + 136.130i 0.462845 + 1.17353i
\(117\) −70.9120 + 122.823i −0.606085 + 1.04977i
\(118\) 79.8938 + 54.3729i 0.677066 + 0.460787i
\(119\) −56.7437 32.7610i −0.476838 0.275302i
\(120\) 235.678 73.3451i 1.96398 0.611210i
\(121\) 81.1251 0.670455
\(122\) −51.9070 107.556i −0.425467 0.881604i
\(123\) 130.913 75.5826i 1.06433 0.614493i
\(124\) 31.4736 211.210i 0.253819 1.70331i
\(125\) 42.1051 0.336841
\(126\) −44.8098 + 21.6255i −0.355633 + 0.171631i
\(127\) −136.963 + 79.0756i −1.07845 + 0.622643i −0.930477 0.366349i \(-0.880608\pi\)
−0.147971 + 0.988992i \(0.547274\pi\)
\(128\) −111.224 63.3499i −0.868938 0.494921i
\(129\) 75.8307 + 131.343i 0.587835 + 1.01816i
\(130\) 260.268 + 19.2855i 2.00206 + 0.148350i
\(131\) −9.89072 5.71041i −0.0755017 0.0435909i 0.461774 0.886998i \(-0.347213\pi\)
−0.537276 + 0.843407i \(0.680546\pi\)
\(132\) −65.0008 + 81.7887i −0.492430 + 0.619611i
\(133\) −54.6417 20.3316i −0.410840 0.152869i
\(134\) 121.571 58.6706i 0.907243 0.437840i
\(135\) 23.8506 + 13.7702i 0.176671 + 0.102001i
\(136\) −115.875 + 125.514i −0.852024 + 0.922897i
\(137\) −2.90159 5.02570i −0.0211795 0.0366839i 0.855241 0.518230i \(-0.173409\pi\)
−0.876421 + 0.481546i \(0.840075\pi\)
\(138\) 49.5125 + 3.66881i 0.358786 + 0.0265855i
\(139\) −62.5836 + 36.1327i −0.450242 + 0.259947i −0.707932 0.706280i \(-0.750372\pi\)
0.257690 + 0.966228i \(0.417039\pi\)
\(140\) 71.6787 + 56.9660i 0.511991 + 0.406900i
\(141\) 0.275961 0.00195717
\(142\) −57.3569 39.0350i −0.403922 0.274895i
\(143\) −95.6642 + 55.2318i −0.668981 + 0.386236i
\(144\) 29.2879 + 126.368i 0.203388 + 0.877559i
\(145\) −272.897 −1.88205
\(146\) 39.9998 58.7745i 0.273971 0.402565i
\(147\) 141.790 + 81.8623i 0.964556 + 0.556886i
\(148\) −155.103 23.1128i −1.04800 0.156168i
\(149\) 42.7490 74.0435i 0.286906 0.496936i −0.686163 0.727447i \(-0.740706\pi\)
0.973070 + 0.230511i \(0.0740398\pi\)
\(150\) −18.7325 + 252.805i −0.124883 + 1.68536i
\(151\) 193.207i 1.27952i −0.768576 0.639759i \(-0.779034\pi\)
0.768576 0.639759i \(-0.220966\pi\)
\(152\) −83.0587 + 127.300i −0.546439 + 0.837499i
\(153\) 173.117 1.13148
\(154\) −38.6473 2.86371i −0.250956 0.0185955i
\(155\) 344.879 + 199.116i 2.22502 + 1.28462i
\(156\) −42.6562 + 286.254i −0.273437 + 1.83496i
\(157\) −39.5456 + 68.4951i −0.251883 + 0.436274i −0.964044 0.265742i \(-0.914383\pi\)
0.712161 + 0.702016i \(0.247717\pi\)
\(158\) 124.125 + 84.4751i 0.785603 + 0.534653i
\(159\) 261.903i 1.64719i
\(160\) 186.003 149.609i 1.16252 0.935057i
\(161\) 9.20831 + 15.9493i 0.0571945 + 0.0990637i
\(162\) −99.2891 + 145.892i −0.612896 + 0.900571i
\(163\) 161.432i 0.990381i 0.868785 + 0.495190i \(0.164902\pi\)
−0.868785 + 0.495190i \(0.835098\pi\)
\(164\) 90.9571 114.449i 0.554617 0.697859i
\(165\) −97.4143 168.727i −0.590390 1.02258i
\(166\) 7.91904 106.872i 0.0477051 0.643805i
\(167\) −20.6601 + 11.9281i −0.123713 + 0.0714257i −0.560579 0.828101i \(-0.689422\pi\)
0.436866 + 0.899526i \(0.356088\pi\)
\(168\) −68.8734 + 74.6024i −0.409961 + 0.444062i
\(169\) −68.5058 + 118.656i −0.405360 + 0.702104i
\(170\) −138.461 286.903i −0.814476 1.68766i
\(171\) 151.887 25.6635i 0.888230 0.150079i
\(172\) 114.825 + 91.2557i 0.667585 + 0.530556i
\(173\) 65.7413 113.867i 0.380008 0.658193i −0.611055 0.791588i \(-0.709255\pi\)
0.991063 + 0.133395i \(0.0425880\pi\)
\(174\) 22.3631 301.801i 0.128523 1.73449i
\(175\) −81.4349 + 47.0165i −0.465342 + 0.268666i
\(176\) −29.4573 + 96.6450i −0.167371 + 0.549119i
\(177\) −99.9291 173.082i −0.564571 0.977866i
\(178\) −63.5167 131.612i −0.356835 0.739393i
\(179\) 186.389i 1.04128i −0.853776 0.520641i \(-0.825693\pi\)
0.853776 0.520641i \(-0.174307\pi\)
\(180\) −239.267 35.6544i −1.32926 0.198080i
\(181\) −126.815 219.650i −0.700635 1.21354i −0.968244 0.250008i \(-0.919567\pi\)
0.267609 0.963528i \(-0.413766\pi\)
\(182\) −96.6855 + 46.6610i −0.531239 + 0.256379i
\(183\) 246.979i 1.34961i
\(184\) 45.8457 14.2676i 0.249161 0.0775413i
\(185\) 146.222 253.263i 0.790387 1.36899i
\(186\) −248.467 + 365.089i −1.33584 + 1.96285i
\(187\) 116.772 + 67.4185i 0.624451 + 0.360527i
\(188\) 0.248268 0.0979177i 0.00132058 0.000520839i
\(189\) −11.3289 −0.0599411
\(190\) −164.013 231.194i −0.863225 1.21681i
\(191\) 17.2555i 0.0903429i −0.998979 0.0451715i \(-0.985617\pi\)
0.998979 0.0451715i \(-0.0143834\pi\)
\(192\) 150.213 + 217.963i 0.782358 + 1.13523i
\(193\) −52.3338 + 90.6447i −0.271159 + 0.469662i −0.969159 0.246436i \(-0.920740\pi\)
0.698000 + 0.716098i \(0.254074\pi\)
\(194\) 134.504 197.636i 0.693321 1.01874i
\(195\) −467.415 269.862i −2.39700 1.38391i
\(196\) 156.608 + 23.3370i 0.799019 + 0.119066i
\(197\) 1.28215 0.00650837 0.00325418 0.999995i \(-0.498964\pi\)
0.00325418 + 0.999995i \(0.498964\pi\)
\(198\) 92.2136 44.5028i 0.465725 0.224762i
\(199\) 243.279 140.457i 1.22251 0.705814i 0.257054 0.966397i \(-0.417248\pi\)
0.965451 + 0.260583i \(0.0839148\pi\)
\(200\) 72.8485 + 234.082i 0.364243 + 1.17041i
\(201\) −279.161 −1.38886
\(202\) 22.7708 + 47.1831i 0.112727 + 0.233580i
\(203\) 97.2180 56.1289i 0.478907 0.276497i
\(204\) 328.636 129.615i 1.61096 0.635368i
\(205\) 136.314 + 236.103i 0.664947 + 1.15172i
\(206\) 19.2600 259.924i 0.0934950 1.26177i
\(207\) −42.1399 24.3295i −0.203574 0.117534i
\(208\) 63.1942 + 272.664i 0.303818 + 1.31088i
\(209\) 112.447 + 41.8401i 0.538022 + 0.200192i
\(210\) −82.2976 170.528i −0.391894 0.812037i
\(211\) −24.0326 13.8753i −0.113899 0.0657595i 0.441968 0.897031i \(-0.354280\pi\)
−0.555867 + 0.831271i \(0.687614\pi\)
\(212\) −92.9295 235.621i −0.438347 1.11142i
\(213\) 71.7405 + 124.258i 0.336810 + 0.583372i
\(214\) −22.8588 + 308.492i −0.106817 + 1.44155i
\(215\) −236.878 + 136.762i −1.10176 + 0.636101i
\(216\) −6.50005 + 28.8117i −0.0300928 + 0.133387i
\(217\) −163.815 −0.754906
\(218\) −100.594 + 147.810i −0.461442 + 0.678029i
\(219\) −127.329 + 73.5136i −0.581412 + 0.335679i
\(220\) −147.507 117.230i −0.670486 0.532862i
\(221\) 373.532 1.69019
\(222\) 268.105 + 182.463i 1.20768 + 0.821905i
\(223\) −227.599 131.404i −1.02062 0.589257i −0.106339 0.994330i \(-0.533913\pi\)
−0.914284 + 0.405073i \(0.867246\pi\)
\(224\) −35.4911 + 91.5539i −0.158443 + 0.408723i
\(225\) 124.223 215.161i 0.552103 0.956271i
\(226\) 186.830 + 13.8439i 0.826683 + 0.0612560i
\(227\) 108.770i 0.479161i −0.970876 0.239581i \(-0.922990\pi\)
0.970876 0.239581i \(-0.0770100\pi\)
\(228\) 269.121 162.439i 1.18035 0.712450i
\(229\) −242.070 −1.05707 −0.528536 0.848911i \(-0.677259\pi\)
−0.528536 + 0.848911i \(0.677259\pi\)
\(230\) −6.61674 + 89.2964i −0.0287684 + 0.388245i
\(231\) 69.4065 + 40.0719i 0.300461 + 0.173471i
\(232\) −86.9675 279.450i −0.374860 1.20453i
\(233\) 133.782 231.717i 0.574170 0.994492i −0.421961 0.906614i \(-0.638658\pi\)
0.996131 0.0878782i \(-0.0280086\pi\)
\(234\) 159.588 234.494i 0.682002 1.00211i
\(235\) 0.497700i 0.00211787i
\(236\) −151.315 120.256i −0.641165 0.509560i
\(237\) −155.253 268.905i −0.655074 1.13462i
\(238\) 108.335 + 73.7291i 0.455190 + 0.309786i
\(239\) 54.4854i 0.227972i −0.993482 0.113986i \(-0.963638\pi\)
0.993482 0.113986i \(-0.0363619\pi\)
\(240\) −480.907 + 111.458i −2.00378 + 0.464408i
\(241\) 109.544 + 189.736i 0.454541 + 0.787288i 0.998662 0.0517191i \(-0.0164701\pi\)
−0.544121 + 0.839007i \(0.683137\pi\)
\(242\) −161.807 11.9896i −0.668622 0.0495440i
\(243\) 287.286 165.865i 1.18225 0.682570i
\(244\) 87.6343 + 222.195i 0.359157 + 0.910634i
\(245\) −147.640 + 255.720i −0.602611 + 1.04375i
\(246\) −272.280 + 131.404i −1.10683 + 0.534163i
\(247\) 327.725 55.3738i 1.32682 0.224185i
\(248\) −93.9903 + 416.614i −0.378993 + 1.67990i
\(249\) −110.811 + 191.930i −0.445025 + 0.770805i
\(250\) −83.9799 6.22279i −0.335920 0.0248912i
\(251\) −272.951 + 157.589i −1.08746 + 0.627843i −0.932898 0.360141i \(-0.882729\pi\)
−0.154558 + 0.987984i \(0.549395\pi\)
\(252\) 92.5706 36.5101i 0.367344 0.144881i
\(253\) −18.9497 32.8218i −0.0748999 0.129730i
\(254\) 284.864 137.477i 1.12151 0.541247i
\(255\) 658.813i 2.58358i
\(256\) 212.477 + 142.791i 0.829990 + 0.557779i
\(257\) 61.4006 + 106.349i 0.238913 + 0.413809i 0.960403 0.278616i \(-0.0898757\pi\)
−0.721490 + 0.692425i \(0.756542\pi\)
\(258\) −131.835 273.174i −0.510990 1.05881i
\(259\) 120.298i 0.464471i
\(260\) −516.263 76.9311i −1.98563 0.295889i
\(261\) −148.299 + 256.862i −0.568196 + 0.984145i
\(262\) 18.8834 + 12.8514i 0.0720741 + 0.0490510i
\(263\) −23.7444 13.7088i −0.0902828 0.0521248i 0.454179 0.890910i \(-0.349933\pi\)
−0.544462 + 0.838786i \(0.683266\pi\)
\(264\) 141.734 153.524i 0.536871 0.581529i
\(265\) 472.345 1.78244
\(266\) 105.980 + 48.6276i 0.398420 + 0.182810i
\(267\) 302.220i 1.13191i
\(268\) −251.147 + 99.0532i −0.937117 + 0.369602i
\(269\) −189.509 + 328.239i −0.704494 + 1.22022i 0.262380 + 0.964965i \(0.415493\pi\)
−0.966874 + 0.255255i \(0.917841\pi\)
\(270\) −45.5357 30.9900i −0.168651 0.114778i
\(271\) 228.515 + 131.933i 0.843229 + 0.486838i 0.858360 0.513047i \(-0.171483\pi\)
−0.0151315 + 0.999886i \(0.504817\pi\)
\(272\) 249.667 233.216i 0.917893 0.857413i
\(273\) 222.018 0.813253
\(274\) 5.04455 + 10.4528i 0.0184108 + 0.0381487i
\(275\) 167.584 96.7547i 0.609397 0.351835i
\(276\) −98.2120 14.6351i −0.355841 0.0530257i
\(277\) 184.425 0.665796 0.332898 0.942963i \(-0.391974\pi\)
0.332898 + 0.942963i \(0.391974\pi\)
\(278\) 130.165 62.8184i 0.468220 0.225966i
\(279\) 374.831 216.409i 1.34348 0.775659i
\(280\) −134.546 124.214i −0.480523 0.443621i
\(281\) 67.1367 + 116.284i 0.238921 + 0.413823i 0.960405 0.278608i \(-0.0898731\pi\)
−0.721484 + 0.692431i \(0.756540\pi\)
\(282\) −0.550414 0.0407849i −0.00195182 0.000144627i
\(283\) −202.571 116.955i −0.715800 0.413267i 0.0974050 0.995245i \(-0.468946\pi\)
−0.813205 + 0.581978i \(0.802279\pi\)
\(284\) 108.631 + 86.3335i 0.382504 + 0.303991i
\(285\) 97.6648 + 578.021i 0.342683 + 2.02815i
\(286\) 198.968 96.0231i 0.695693 0.335745i
\(287\) −97.1222 56.0735i −0.338405 0.195378i
\(288\) −39.7395 256.375i −0.137984 0.890189i
\(289\) −83.4755 144.584i −0.288843 0.500290i
\(290\) 544.303 + 40.3321i 1.87691 + 0.139076i
\(291\) −428.160 + 247.198i −1.47134 + 0.849479i
\(292\) −88.4673 + 111.316i −0.302970 + 0.381219i
\(293\) 107.004 0.365202 0.182601 0.983187i \(-0.441548\pi\)
0.182601 + 0.983187i \(0.441548\pi\)
\(294\) −270.705 184.232i −0.920767 0.626641i
\(295\) 312.156 180.223i 1.05816 0.610927i
\(296\) 305.943 + 69.0223i 1.03359 + 0.233183i
\(297\) 23.3135 0.0784968
\(298\) −96.2074 + 141.364i −0.322844 + 0.474376i
\(299\) −90.9246 52.4954i −0.304096 0.175570i
\(300\) 74.7250 501.458i 0.249083 1.67153i
\(301\) 56.2576 97.4410i 0.186902 0.323724i
\(302\) −28.5545 + 385.358i −0.0945513 + 1.27602i
\(303\) 108.346i 0.357578i
\(304\) 184.477 241.628i 0.606833 0.794830i
\(305\) −445.430 −1.46043
\(306\) −345.287 25.5853i −1.12839 0.0836121i
\(307\) −369.984 213.610i −1.20516 0.695799i −0.243461 0.969911i \(-0.578283\pi\)
−0.961698 + 0.274112i \(0.911616\pi\)
\(308\) 76.6600 + 11.4235i 0.248896 + 0.0370893i
\(309\) −269.505 + 466.796i −0.872184 + 1.51067i
\(310\) −658.444 448.113i −2.12401 1.44553i
\(311\) 33.0155i 0.106159i 0.998590 + 0.0530796i \(0.0169037\pi\)
−0.998590 + 0.0530796i \(0.983096\pi\)
\(312\) 127.385 564.638i 0.408286 1.80974i
\(313\) −135.658 234.967i −0.433412 0.750692i 0.563752 0.825944i \(-0.309357\pi\)
−0.997165 + 0.0752519i \(0.976024\pi\)
\(314\) 88.9981 130.771i 0.283433 0.416468i
\(315\) 185.575i 0.589127i
\(316\) −235.087 186.833i −0.743946 0.591244i
\(317\) −85.3897 147.899i −0.269368 0.466559i 0.699331 0.714798i \(-0.253482\pi\)
−0.968699 + 0.248239i \(0.920148\pi\)
\(318\) −38.7072 + 522.374i −0.121721 + 1.64269i
\(319\) −200.064 + 115.507i −0.627160 + 0.362091i
\(320\) −393.100 + 270.910i −1.22844 + 0.846595i
\(321\) 319.863 554.019i 0.996458 1.72592i
\(322\) −16.0091 33.1722i −0.0497177 0.103019i
\(323\) −258.555 312.646i −0.800479 0.967945i
\(324\) 219.597 276.313i 0.677769 0.852818i
\(325\) 268.035 464.250i 0.824722 1.42846i
\(326\) 23.8584 321.981i 0.0731852 0.987673i
\(327\) 320.217 184.877i 0.979256 0.565374i
\(328\) −198.332 + 214.829i −0.604669 + 0.654967i
\(329\) −0.102366 0.177302i −0.000311142 0.000538913i
\(330\) 169.360 + 350.927i 0.513211 + 1.06342i
\(331\) 536.931i 1.62215i 0.584944 + 0.811074i \(0.301117\pi\)
−0.584944 + 0.811074i \(0.698883\pi\)
\(332\) −31.5896 + 211.989i −0.0951493 + 0.638520i
\(333\) −158.921 275.259i −0.477240 0.826604i
\(334\) 42.9700 20.7376i 0.128653 0.0620885i
\(335\) 503.471i 1.50290i
\(336\) 148.396 138.618i 0.441654 0.412553i
\(337\) −14.1730 + 24.5483i −0.0420563 + 0.0728436i −0.886287 0.463136i \(-0.846724\pi\)
0.844231 + 0.535979i \(0.180058\pi\)
\(338\) 154.173 226.538i 0.456134 0.670230i
\(339\) −335.528 193.717i −0.989758 0.571437i
\(340\) 233.763 + 592.700i 0.687537 + 1.74324i
\(341\) 337.112 0.988599
\(342\) −306.737 + 28.7389i −0.896892 + 0.0840319i
\(343\) 271.822i 0.792483i
\(344\) −215.534 198.983i −0.626553 0.578438i
\(345\) 92.5880 160.367i 0.268371 0.464832i
\(346\) −147.952 + 217.396i −0.427606 + 0.628312i
\(347\) 281.728 + 162.656i 0.811897 + 0.468749i 0.847614 0.530613i \(-0.178038\pi\)
−0.0357172 + 0.999362i \(0.511372\pi\)
\(348\) −89.2076 + 598.647i −0.256344 + 1.72025i
\(349\) 208.896 0.598556 0.299278 0.954166i \(-0.403254\pi\)
0.299278 + 0.954166i \(0.403254\pi\)
\(350\) 169.373 81.7404i 0.483923 0.233544i
\(351\) 55.9317 32.2922i 0.159350 0.0920005i
\(352\) 73.0368 188.408i 0.207491 0.535250i
\(353\) −174.981 −0.495696 −0.247848 0.968799i \(-0.579723\pi\)
−0.247848 + 0.968799i \(0.579723\pi\)
\(354\) 173.732 + 359.987i 0.490767 + 1.01691i
\(355\) −224.101 + 129.385i −0.631271 + 0.364465i
\(356\) 107.235 + 271.892i 0.301221 + 0.763740i
\(357\) −135.503 234.698i −0.379560 0.657417i
\(358\) −27.5469 + 371.760i −0.0769466 + 1.03843i
\(359\) −351.682 203.043i −0.979614 0.565581i −0.0774606 0.996995i \(-0.524681\pi\)
−0.902154 + 0.431415i \(0.858015\pi\)
\(360\) 471.956 + 106.476i 1.31099 + 0.295766i
\(361\) −273.196 235.977i −0.756775 0.653676i
\(362\) 220.474 + 456.841i 0.609044 + 1.26199i
\(363\) 290.588 + 167.771i 0.800518 + 0.462179i
\(364\) 199.738 78.7774i 0.548732 0.216421i
\(365\) −132.583 229.640i −0.363240 0.629151i
\(366\) 36.5016 492.608i 0.0997311 1.34592i
\(367\) −61.6040 + 35.5671i −0.167858 + 0.0969131i −0.581576 0.813492i \(-0.697564\pi\)
0.413717 + 0.910405i \(0.364230\pi\)
\(368\) −93.5492 + 21.6815i −0.254210 + 0.0589172i
\(369\) 296.306 0.802997
\(370\) −329.074 + 483.531i −0.889389 + 1.30684i
\(371\) −168.270 + 97.1508i −0.453558 + 0.261862i
\(372\) 549.532 691.461i 1.47724 1.85877i
\(373\) 388.010 1.04024 0.520121 0.854092i \(-0.325887\pi\)
0.520121 + 0.854092i \(0.325887\pi\)
\(374\) −222.942 151.726i −0.596102 0.405685i
\(375\) 150.819 + 87.0755i 0.402185 + 0.232201i
\(376\) −0.509651 + 0.158608i −0.00135545 + 0.000421830i
\(377\) −319.983 + 554.227i −0.848762 + 1.47010i
\(378\) 22.5958 + 1.67431i 0.0597772 + 0.00442940i
\(379\) 259.526i 0.684764i 0.939561 + 0.342382i \(0.111234\pi\)
−0.939561 + 0.342382i \(0.888766\pi\)
\(380\) 292.960 + 485.363i 0.770947 + 1.27727i
\(381\) −654.130 −1.71688
\(382\) −2.55023 + 34.4166i −0.00667598 + 0.0900959i
\(383\) 560.066 + 323.354i 1.46231 + 0.844267i 0.999118 0.0419895i \(-0.0133696\pi\)
0.463195 + 0.886256i \(0.346703\pi\)
\(384\) −267.391 456.935i −0.696330 1.18993i
\(385\) −72.2701 + 125.176i −0.187715 + 0.325131i
\(386\) 117.778 173.059i 0.305124 0.448340i
\(387\) 297.279i 0.768162i
\(388\) −297.482 + 374.314i −0.766706 + 0.964726i
\(389\) −126.672 219.402i −0.325635 0.564016i 0.656006 0.754756i \(-0.272245\pi\)
−0.981641 + 0.190740i \(0.938911\pi\)
\(390\) 892.390 + 607.328i 2.28818 + 1.55725i
\(391\) 128.157i 0.327766i
\(392\) −308.910 69.6917i −0.788036 0.177785i
\(393\) −23.6189 40.9091i −0.0600989 0.104094i
\(394\) −2.55729 0.189491i −0.00649057 0.000480942i
\(395\) 484.974 280.000i 1.22778 0.708861i
\(396\) −190.500 + 75.1338i −0.481061 + 0.189732i
\(397\) 25.8490 44.7718i 0.0651109 0.112775i −0.831632 0.555327i \(-0.812593\pi\)
0.896743 + 0.442551i \(0.145927\pi\)
\(398\) −505.985 + 244.191i −1.27132 + 0.613546i
\(399\) −153.678 185.829i −0.385159 0.465737i
\(400\) −110.703 477.651i −0.276758 1.19413i
\(401\) −68.4096 + 118.489i −0.170598 + 0.295484i −0.938629 0.344929i \(-0.887903\pi\)
0.768031 + 0.640412i \(0.221236\pi\)
\(402\) 556.796 + 41.2578i 1.38507 + 0.102631i
\(403\) 808.768 466.943i 2.00687 1.15867i
\(404\) −38.4438 97.4735i −0.0951580 0.241271i
\(405\) 329.102 + 570.022i 0.812598 + 1.40746i
\(406\) −202.200 + 97.5828i −0.498029 + 0.240352i
\(407\) 247.560i 0.608256i
\(408\) −674.632 + 209.952i −1.65351 + 0.514588i
\(409\) 85.8621 + 148.718i 0.209932 + 0.363613i 0.951693 0.307052i \(-0.0993425\pi\)
−0.741761 + 0.670664i \(0.766009\pi\)
\(410\) −236.989 491.061i −0.578022 1.19771i
\(411\) 24.0026i 0.0584004i
\(412\) −76.8293 + 515.580i −0.186479 + 1.25141i
\(413\) −74.1358 + 128.407i −0.179506 + 0.310913i
\(414\) 80.4536 + 54.7538i 0.194332 + 0.132256i
\(415\) −346.149 199.849i −0.834094 0.481565i
\(416\) −85.7453 553.176i −0.206119 1.32975i
\(417\) −298.897 −0.716780
\(418\) −218.095 100.070i −0.521758 0.239402i
\(419\) 594.571i 1.41902i 0.704693 + 0.709512i \(0.251085\pi\)
−0.704693 + 0.709512i \(0.748915\pi\)
\(420\) 138.943 + 352.286i 0.330816 + 0.838776i
\(421\) 47.4370 82.1633i 0.112677 0.195162i −0.804172 0.594397i \(-0.797391\pi\)
0.916849 + 0.399235i \(0.130724\pi\)
\(422\) 45.8832 + 31.2265i 0.108728 + 0.0739964i
\(423\) 0.468455 + 0.270462i 0.00110746 + 0.000639391i
\(424\) 150.528 + 483.687i 0.355019 + 1.14077i
\(425\) −654.352 −1.53965
\(426\) −124.724 258.440i −0.292780 0.606666i
\(427\) 158.682 91.6150i 0.371620 0.214555i
\(428\) 91.1852 611.918i 0.213050 1.42972i
\(429\) −456.889 −1.06501
\(430\) 492.673 237.767i 1.14575 0.552946i
\(431\) 444.572 256.674i 1.03149 0.595531i 0.114079 0.993472i \(-0.463608\pi\)
0.917411 + 0.397940i \(0.130275\pi\)
\(432\) 17.2227 56.5051i 0.0398674 0.130799i
\(433\) −342.746 593.654i −0.791562 1.37103i −0.925000 0.379968i \(-0.875935\pi\)
0.133438 0.991057i \(-0.457398\pi\)
\(434\) 326.733 + 24.2105i 0.752842 + 0.0557845i
\(435\) −977.511 564.366i −2.24715 1.29739i
\(436\) 222.484 279.945i 0.510284 0.642076i
\(437\) 18.9984 + 112.441i 0.0434746 + 0.257301i
\(438\) 264.827 127.807i 0.604628 0.291797i
\(439\) 450.012 + 259.814i 1.02508 + 0.591832i 0.915572 0.402153i \(-0.131738\pi\)
0.109511 + 0.993986i \(0.465071\pi\)
\(440\) 276.882 + 255.619i 0.629277 + 0.580952i
\(441\) 160.462 + 277.929i 0.363860 + 0.630224i
\(442\) −745.022 55.2051i −1.68557 0.124898i
\(443\) 12.1016 6.98684i 0.0273173 0.0157716i −0.486279 0.873804i \(-0.661646\pi\)
0.513596 + 0.858032i \(0.328313\pi\)
\(444\) −507.778 403.552i −1.14364 0.908900i
\(445\) −545.057 −1.22485
\(446\) 434.533 + 295.727i 0.974289 + 0.663066i
\(447\) 306.252 176.815i 0.685127 0.395558i
\(448\) 84.3191 177.362i 0.188212 0.395897i
\(449\) 685.603 1.52695 0.763477 0.645835i \(-0.223490\pi\)
0.763477 + 0.645835i \(0.223490\pi\)
\(450\) −279.566 + 410.786i −0.621258 + 0.912858i
\(451\) 199.867 + 115.393i 0.443164 + 0.255861i
\(452\) −370.593 55.2241i −0.819896 0.122177i
\(453\) 399.563 692.063i 0.882037 1.52773i
\(454\) −16.0753 + 216.944i −0.0354081 + 0.477851i
\(455\) 400.413i 0.880028i
\(456\) −560.777 + 284.215i −1.22977 + 0.623278i
\(457\) 729.031 1.59525 0.797627 0.603151i \(-0.206089\pi\)
0.797627 + 0.603151i \(0.206089\pi\)
\(458\) 482.815 + 35.7759i 1.05418 + 0.0781134i
\(459\) −68.2729 39.4174i −0.148743 0.0858766i
\(460\) 26.3946 177.127i 0.0573795 0.385058i
\(461\) 168.346 291.583i 0.365175 0.632501i −0.623629 0.781720i \(-0.714343\pi\)
0.988804 + 0.149219i \(0.0476759\pi\)
\(462\) −132.511 90.1823i −0.286821 0.195200i
\(463\) 430.676i 0.930186i −0.885262 0.465093i \(-0.846021\pi\)
0.885262 0.465093i \(-0.153979\pi\)
\(464\) 132.159 + 570.226i 0.284825 + 1.22893i
\(465\) 823.564 + 1426.45i 1.77111 + 3.06764i
\(466\) −301.078 + 442.394i −0.646090 + 0.949344i
\(467\) 457.514i 0.979687i 0.871810 + 0.489844i \(0.162946\pi\)
−0.871810 + 0.489844i \(0.837054\pi\)
\(468\) −352.961 + 444.121i −0.754189 + 0.948976i
\(469\) 103.553 + 179.359i 0.220795 + 0.382428i
\(470\) 0.0735560 0.992678i 0.000156502 0.00211208i
\(471\) −283.303 + 163.565i −0.601492 + 0.347272i
\(472\) 284.030 + 262.218i 0.601757 + 0.555546i
\(473\) −115.772 + 200.523i −0.244761 + 0.423938i
\(474\) 269.914 + 559.285i 0.569439 + 1.17993i
\(475\) −574.108 + 97.0035i −1.20865 + 0.204218i
\(476\) −205.182 163.066i −0.431054 0.342576i
\(477\) 256.684 444.590i 0.538122 0.932055i
\(478\) −8.05250 + 108.673i −0.0168462 + 0.227349i
\(479\) −781.003 + 450.912i −1.63049 + 0.941361i −0.646543 + 0.762877i \(0.723786\pi\)
−0.983943 + 0.178484i \(0.942881\pi\)
\(480\) 975.657 151.232i 2.03262 0.315067i
\(481\) −342.902 593.923i −0.712893 1.23477i
\(482\) −190.448 394.625i −0.395121 0.818724i
\(483\) 76.1731i 0.157708i
\(484\) 320.956 + 47.8274i 0.663133 + 0.0988170i
\(485\) −445.826 772.193i −0.919228 1.59215i
\(486\) −597.514 + 288.364i −1.22945 + 0.593341i
\(487\) 114.636i 0.235393i −0.993050 0.117697i \(-0.962449\pi\)
0.993050 0.117697i \(-0.0375510\pi\)
\(488\) −141.951 456.126i −0.290883 0.934685i
\(489\) −333.850 + 578.245i −0.682720 + 1.18251i
\(490\) 332.265 488.221i 0.678093 0.996369i
\(491\) 720.122 + 415.763i 1.46664 + 0.846768i 0.999304 0.0373098i \(-0.0118788\pi\)
0.467341 + 0.884077i \(0.345212\pi\)
\(492\) 562.492 221.849i 1.14328 0.450912i
\(493\) 781.173 1.58453
\(494\) −661.843 + 62.0096i −1.33976 + 0.125525i
\(495\) 381.893i 0.771501i
\(496\) 249.039 817.060i 0.502095 1.64730i
\(497\) 53.2231 92.1852i 0.107089 0.185483i
\(498\) 249.382 366.434i 0.500767 0.735812i
\(499\) −231.504 133.659i −0.463935 0.267853i 0.249762 0.968307i \(-0.419648\pi\)
−0.713698 + 0.700454i \(0.752981\pi\)
\(500\) 166.581 + 24.8231i 0.333162 + 0.0496462i
\(501\) −98.6718 −0.196950
\(502\) 567.701 273.975i 1.13088 0.545768i
\(503\) −638.949 + 368.897i −1.27028 + 0.733394i −0.975040 0.222030i \(-0.928732\pi\)
−0.295236 + 0.955424i \(0.595398\pi\)
\(504\) −190.031 + 59.1394i −0.377046 + 0.117340i
\(505\) 195.404 0.386938
\(506\) 32.9449 + 68.2648i 0.0651086 + 0.134911i
\(507\) −490.772 + 283.347i −0.967992 + 0.558870i
\(508\) −588.488 + 232.101i −1.15844 + 0.456892i
\(509\) 364.128 + 630.688i 0.715379 + 1.23907i 0.962813 + 0.270169i \(0.0870794\pi\)
−0.247434 + 0.968905i \(0.579587\pi\)
\(510\) 97.3672 1314.02i 0.190916 2.57651i
\(511\) 94.4636 + 54.5386i 0.184860 + 0.106729i
\(512\) −402.689 316.204i −0.786503 0.617587i
\(513\) −65.7438 24.4625i −0.128156 0.0476852i
\(514\) −106.748 221.191i −0.207681 0.430332i
\(515\) −841.873 486.056i −1.63470 0.943797i
\(516\) 222.577 + 564.339i 0.431350 + 1.09368i
\(517\) 0.210657 + 0.364869i 0.000407461 + 0.000705743i
\(518\) 17.7791 239.938i 0.0343226 0.463201i
\(519\) 470.967 271.913i 0.907452 0.523917i
\(520\) 1018.33 + 229.741i 1.95833 + 0.441810i
\(521\) −527.221 −1.01194 −0.505970 0.862551i \(-0.668865\pi\)
−0.505970 + 0.862551i \(0.668865\pi\)
\(522\) 333.750 490.402i 0.639367 0.939467i
\(523\) −412.028 + 237.885i −0.787817 + 0.454846i −0.839194 0.543833i \(-0.816973\pi\)
0.0513764 + 0.998679i \(0.483639\pi\)
\(524\) −35.7642 28.4233i −0.0682524 0.0542429i
\(525\) −388.930 −0.740819
\(526\) 45.3328 + 30.8519i 0.0861841 + 0.0586538i
\(527\) −987.221 569.972i −1.87328 1.08154i
\(528\) −305.382 + 285.260i −0.578375 + 0.540266i
\(529\) −246.489 + 426.932i −0.465953 + 0.807054i
\(530\) −942.108 69.8089i −1.77756 0.131715i
\(531\) 391.752i 0.737762i
\(532\) −204.193 112.652i −0.383822 0.211752i
\(533\) 639.336 1.19950
\(534\) 44.6656 602.787i 0.0836435 1.12881i
\(535\) 999.181 + 576.877i 1.86763 + 1.07828i
\(536\) 515.561 160.447i 0.961867 0.299342i
\(537\) 385.463 667.642i 0.717809 1.24328i
\(538\) 426.493 626.675i 0.792737 1.16482i
\(539\) 249.961i 0.463749i
\(540\) 86.2424 + 68.5403i 0.159708 + 0.126927i
\(541\) 26.5528 + 45.9909i 0.0490810 + 0.0850109i 0.889522 0.456892i \(-0.151037\pi\)
−0.840441 + 0.541903i \(0.817704\pi\)
\(542\) −436.282 296.918i −0.804948 0.547819i
\(543\) 1049.04i 1.93193i
\(544\) −532.436 + 428.259i −0.978743 + 0.787240i
\(545\) 333.428 + 577.515i 0.611795 + 1.05966i
\(546\) −442.822 32.8125i −0.811030 0.0600962i
\(547\) −34.0324 + 19.6486i −0.0622165 + 0.0359207i −0.530786 0.847506i \(-0.678103\pi\)
0.468569 + 0.883427i \(0.344770\pi\)
\(548\) −8.51669 21.5939i −0.0155414 0.0394049i
\(549\) −242.058 + 419.257i −0.440907 + 0.763674i
\(550\) −348.551 + 168.213i −0.633730 + 0.305841i
\(551\) 685.377 115.804i 1.24388 0.210171i
\(552\) 193.724 + 43.7051i 0.350949 + 0.0791759i
\(553\) −115.179 + 199.497i −0.208281 + 0.360753i
\(554\) −367.843 27.2566i −0.663976 0.0491997i
\(555\) 1047.52 604.788i 1.88743 1.08971i
\(556\) −268.903 + 106.056i −0.483638 + 0.190748i
\(557\) 288.247 + 499.259i 0.517500 + 0.896336i 0.999793 + 0.0203261i \(0.00647046\pi\)
−0.482294 + 0.876010i \(0.660196\pi\)
\(558\) −779.596 + 376.237i −1.39713 + 0.674261i
\(559\) 641.434i 1.14747i
\(560\) 249.999 + 267.634i 0.446427 + 0.477917i
\(561\) 278.850 + 482.983i 0.497059 + 0.860931i
\(562\) −116.720 241.855i −0.207688 0.430346i
\(563\) 971.322i 1.72526i 0.505834 + 0.862631i \(0.331185\pi\)
−0.505834 + 0.862631i \(0.668815\pi\)
\(564\) 1.09179 + 0.162693i 0.00193580 + 0.000288464i
\(565\) 349.371 605.129i 0.618356 1.07102i
\(566\) 386.750 + 263.208i 0.683304 + 0.465032i
\(567\) −234.481 135.378i −0.413547 0.238762i
\(568\) −203.909 188.250i −0.358994 0.331426i
\(569\) −904.483 −1.58960 −0.794800 0.606871i \(-0.792424\pi\)
−0.794800 + 0.606871i \(0.792424\pi\)
\(570\) −109.369 1167.32i −0.191875 2.04792i
\(571\) 143.659i 0.251591i 0.992056 + 0.125796i \(0.0401483\pi\)
−0.992056 + 0.125796i \(0.959852\pi\)
\(572\) −411.040 + 162.115i −0.718601 + 0.283418i
\(573\) 35.6853 61.8088i 0.0622780 0.107869i
\(574\) 185.426 + 126.194i 0.323042 + 0.219851i
\(575\) 159.281 + 91.9611i 0.277011 + 0.159932i
\(576\) 41.3715 + 517.220i 0.0718256 + 0.897952i
\(577\) 403.285 0.698934 0.349467 0.936949i \(-0.386363\pi\)
0.349467 + 0.936949i \(0.386363\pi\)
\(578\) 145.126 + 300.714i 0.251083 + 0.520267i
\(579\) −374.916 + 216.458i −0.647524 + 0.373848i
\(580\) −1079.67 160.887i −1.86150 0.277392i
\(581\) 164.418 0.282991
\(582\) 890.513 429.767i 1.53009 0.738431i
\(583\) 346.282 199.926i 0.593965 0.342926i
\(584\) 192.902 208.948i 0.330312 0.357788i
\(585\) −528.969 916.202i −0.904221 1.56616i
\(586\) −213.424 15.8144i −0.364204 0.0269870i
\(587\) 782.409 + 451.724i 1.33289 + 0.769547i 0.985742 0.168262i \(-0.0538154\pi\)
0.347152 + 0.937809i \(0.387149\pi\)
\(588\) 512.703 + 407.465i 0.871943 + 0.692968i
\(589\) −950.651 353.726i −1.61401 0.600554i
\(590\) −649.241 + 313.327i −1.10041 + 0.531063i
\(591\) 4.59262 + 2.65155i 0.00777093 + 0.00448655i
\(592\) −600.012 182.883i −1.01353 0.308924i
\(593\) −181.794 314.876i −0.306567 0.530989i 0.671042 0.741419i \(-0.265847\pi\)
−0.977609 + 0.210430i \(0.932514\pi\)
\(594\) −46.4996 3.44556i −0.0782822 0.00580060i
\(595\) 423.281 244.381i 0.711396 0.410725i
\(596\) 212.781 267.737i 0.357015 0.449223i
\(597\) 1161.89 1.94621
\(598\) 173.594 + 118.142i 0.290290 + 0.197561i
\(599\) 67.8348 39.1645i 0.113247 0.0653831i −0.442307 0.896864i \(-0.645840\pi\)
0.555554 + 0.831481i \(0.312506\pi\)
\(600\) −223.153 + 989.131i −0.371921 + 1.64855i
\(601\) −663.826 −1.10454 −0.552268 0.833666i \(-0.686238\pi\)
−0.552268 + 0.833666i \(0.686238\pi\)
\(602\) −126.609 + 186.035i −0.210313 + 0.309028i
\(603\) −473.887 273.599i −0.785882 0.453729i
\(604\) 113.906 764.389i 0.188586 1.26554i
\(605\) −302.577 + 524.079i −0.500128 + 0.866246i
\(606\) −16.0127 + 216.100i −0.0264236 + 0.356600i
\(607\) 336.087i 0.553686i 0.960915 + 0.276843i \(0.0892882\pi\)
−0.960915 + 0.276843i \(0.910712\pi\)
\(608\) −403.656 + 454.671i −0.663908 + 0.747814i
\(609\) 464.310 0.762414
\(610\) 888.425 + 65.8311i 1.45643 + 0.107920i
\(611\) 1.01078 + 0.583573i 0.00165430 + 0.000955112i
\(612\) 684.905 + 102.061i 1.11913 + 0.166767i
\(613\) −20.7526 + 35.9445i −0.0338541 + 0.0586371i −0.882456 0.470395i \(-0.844111\pi\)
0.848602 + 0.529032i \(0.177445\pi\)
\(614\) 706.374 + 480.733i 1.15045 + 0.782953i
\(615\) 1127.62i 1.83353i
\(616\) −151.212 34.1143i −0.245475 0.0553803i
\(617\) 93.9887 + 162.793i 0.152332 + 0.263846i 0.932084 0.362242i \(-0.117988\pi\)
−0.779753 + 0.626088i \(0.784655\pi\)
\(618\) 606.525 891.209i 0.981432 1.44209i
\(619\) 727.258i 1.17489i −0.809263 0.587446i \(-0.800133\pi\)
0.809263 0.587446i \(-0.199867\pi\)
\(620\) 1247.06 + 991.088i 2.01139 + 1.59853i
\(621\) 11.0793 + 19.1898i 0.0178410 + 0.0309015i
\(622\) 4.87942 65.8504i 0.00784473 0.105869i
\(623\) 194.173 112.106i 0.311674 0.179945i
\(624\) −337.523 + 1107.36i −0.540902 + 1.77462i
\(625\) 226.014 391.468i 0.361622 0.626348i
\(626\) 235.848 + 488.698i 0.376754 + 0.780667i
\(627\) 316.253 + 382.416i 0.504391 + 0.609914i
\(628\) −196.836 + 247.674i −0.313434 + 0.394385i
\(629\) −418.562 + 724.971i −0.665440 + 1.15258i
\(630\) 27.4265 370.135i 0.0435341 0.587516i
\(631\) −482.381 + 278.503i −0.764471 + 0.441368i −0.830899 0.556424i \(-0.812173\pi\)
0.0664276 + 0.997791i \(0.478840\pi\)
\(632\) 441.276 + 407.389i 0.698221 + 0.644602i
\(633\) −57.3895 99.4016i −0.0906628 0.157033i
\(634\) 148.454 + 307.610i 0.234155 + 0.485189i
\(635\) 1179.73i 1.85785i
\(636\) 154.405 1036.17i 0.242776 1.62920i
\(637\) 346.227 + 599.683i 0.543528 + 0.941418i
\(638\) 416.105 200.815i 0.652202 0.314756i
\(639\) 281.244i 0.440131i
\(640\) 824.088 482.243i 1.28764 0.753504i
\(641\) 18.5837 32.1880i 0.0289918 0.0502153i −0.851165 0.524897i \(-0.824104\pi\)
0.880157 + 0.474682i \(0.157437\pi\)
\(642\) −719.857 + 1057.74i −1.12127 + 1.64756i
\(643\) −500.281 288.837i −0.778042 0.449203i 0.0576938 0.998334i \(-0.481625\pi\)
−0.835736 + 0.549131i \(0.814959\pi\)
\(644\) 27.0281 + 68.5291i 0.0419690 + 0.106412i
\(645\) −1131.32 −1.75399
\(646\) 469.489 + 661.795i 0.726763 + 1.02445i
\(647\) 870.052i 1.34475i −0.740212 0.672374i \(-0.765275\pi\)
0.740212 0.672374i \(-0.234725\pi\)
\(648\) −478.830 + 518.660i −0.738936 + 0.800402i
\(649\) 152.563 264.247i 0.235074 0.407161i
\(650\) −603.216 + 886.348i −0.928025 + 1.36361i
\(651\) −586.779 338.777i −0.901351 0.520395i
\(652\) −95.1725 + 638.676i −0.145970 + 0.979564i
\(653\) −519.791 −0.796004 −0.398002 0.917384i \(-0.630296\pi\)
−0.398002 + 0.917384i \(0.630296\pi\)
\(654\) −666.006 + 321.418i −1.01836 + 0.491465i
\(655\) 73.7801 42.5969i 0.112641 0.0650335i
\(656\) 427.329 399.172i 0.651416 0.608494i
\(657\) −288.195 −0.438653
\(658\) 0.177968 + 0.368764i 0.000270468 + 0.000560432i
\(659\) −481.474 + 277.979i −0.730613 + 0.421820i −0.818647 0.574298i \(-0.805275\pi\)
0.0880331 + 0.996118i \(0.471942\pi\)
\(660\) −285.929 724.966i −0.433225 1.09843i
\(661\) 145.588 + 252.166i 0.220254 + 0.381492i 0.954885 0.296975i \(-0.0959779\pi\)
−0.734631 + 0.678467i \(0.762645\pi\)
\(662\) 79.3541 1070.93i 0.119870 1.61771i
\(663\) 1337.98 + 772.484i 2.01807 + 1.16513i
\(664\) 94.3366 418.149i 0.142073 0.629743i
\(665\) 335.145 277.161i 0.503978 0.416784i
\(666\) 276.292 + 572.500i 0.414853 + 0.859610i
\(667\) −190.152 109.784i −0.285086 0.164594i
\(668\) −88.7700 + 35.0111i −0.132889 + 0.0524119i
\(669\) −543.502 941.373i −0.812410 1.40714i
\(670\) −74.4090 + 1004.19i −0.111058 + 1.49879i
\(671\) −326.550 + 188.534i −0.486661 + 0.280974i
\(672\) −316.467 + 254.546i −0.470933 + 0.378789i
\(673\) 130.170 0.193418 0.0967089 0.995313i \(-0.469168\pi\)
0.0967089 + 0.995313i \(0.469168\pi\)
\(674\) 31.8965 46.8677i 0.0473241 0.0695366i
\(675\) −97.9809 + 56.5693i −0.145157 + 0.0838063i
\(676\) −340.984 + 429.051i −0.504414 + 0.634691i
\(677\) −910.964 −1.34559 −0.672795 0.739829i \(-0.734906\pi\)
−0.672795 + 0.739829i \(0.734906\pi\)
\(678\) 640.591 + 435.963i 0.944825 + 0.643014i
\(679\) 317.645 + 183.393i 0.467813 + 0.270092i
\(680\) −378.651 1216.71i −0.556839 1.78928i
\(681\) 224.941 389.610i 0.330310 0.572114i
\(682\) −672.381 49.8225i −0.985896 0.0730535i
\(683\) 764.129i 1.11878i 0.828904 + 0.559391i \(0.188965\pi\)
−0.828904 + 0.559391i \(0.811035\pi\)
\(684\) 616.044 11.9874i 0.900649 0.0175254i
\(685\) 43.2889 0.0631955
\(686\) −40.1731 + 542.157i −0.0585613 + 0.790317i
\(687\) −867.087 500.613i −1.26213 0.728694i
\(688\) 400.482 + 428.731i 0.582096 + 0.623156i
\(689\) 553.844 959.286i 0.803838 1.39229i
\(690\) −208.371 + 306.174i −0.301987 + 0.443730i
\(691\) 1342.83i 1.94331i −0.236405 0.971655i \(-0.575969\pi\)
0.236405 0.971655i \(-0.424031\pi\)
\(692\) 327.224 411.737i 0.472867 0.594996i
\(693\) 78.5468 + 136.047i 0.113343 + 0.196316i
\(694\) −537.877 366.060i −0.775039 0.527463i
\(695\) 539.065i 0.775633i
\(696\) 266.403 1180.84i 0.382763 1.69660i
\(697\) −390.202 675.849i −0.559830 0.969654i
\(698\) −416.650 30.8732i −0.596919 0.0442309i
\(699\) 958.405 553.335i 1.37111 0.791610i
\(700\) −349.901 + 138.002i −0.499858 + 0.197146i
\(701\) 229.346 397.239i 0.327170 0.566675i −0.654779 0.755820i \(-0.727238\pi\)
0.981949 + 0.189145i \(0.0605717\pi\)
\(702\) −116.330 + 56.1415i −0.165712 + 0.0799737i
\(703\) −259.761 + 698.116i −0.369503 + 0.993052i
\(704\) −173.520 + 364.991i −0.246477 + 0.518454i
\(705\) −1.02927 + 1.78275i −0.00145996 + 0.00252872i
\(706\) 349.005 + 25.8607i 0.494341 + 0.0366300i
\(707\) −69.6113 + 40.1901i −0.0984602 + 0.0568460i
\(708\) −293.310 743.681i −0.414280 1.05040i
\(709\) −162.265 281.052i −0.228865 0.396406i 0.728607 0.684932i \(-0.240168\pi\)
−0.957472 + 0.288526i \(0.906835\pi\)
\(710\) 466.099 224.942i 0.656478 0.316820i
\(711\) 608.636i 0.856028i
\(712\) −173.700 558.145i −0.243960 0.783911i
\(713\) 160.205 + 277.484i 0.224692 + 0.389177i
\(714\) 235.578 + 488.139i 0.329942 + 0.683668i
\(715\) 824.005i 1.15245i
\(716\) 109.886 737.415i 0.153472 1.02991i
\(717\) 112.679 195.165i 0.157153 0.272197i
\(718\) 671.432 + 456.952i 0.935142 + 0.636424i
\(719\) −227.681 131.451i −0.316663 0.182825i 0.333241 0.942842i \(-0.391858\pi\)
−0.649904 + 0.760016i \(0.725191\pi\)
\(720\) −925.595 282.120i −1.28555 0.391834i
\(721\) 399.883 0.554622
\(722\) 510.022 + 511.040i 0.706402 + 0.707811i
\(723\) 906.174i 1.25335i
\(724\) −372.225 943.768i −0.514123 1.30355i
\(725\) 560.545 970.893i 0.773166 1.33916i
\(726\) −554.792 377.571i −0.764176 0.520070i
\(727\) 1005.65 + 580.614i 1.38329 + 0.798643i 0.992548 0.121856i \(-0.0388847\pi\)
0.390743 + 0.920500i \(0.372218\pi\)
\(728\) −410.027 + 127.604i −0.563224 + 0.175281i
\(729\) 577.936 0.792779
\(730\) 230.502 + 477.619i 0.315756 + 0.654273i
\(731\) 678.068 391.482i 0.927589 0.535544i
\(732\) −145.607 + 977.128i −0.198917 + 1.33487i
\(733\) −180.481 −0.246223 −0.123111 0.992393i \(-0.539287\pi\)
−0.123111 + 0.992393i \(0.539287\pi\)
\(734\) 128.128 61.8351i 0.174561 0.0842441i
\(735\) −1057.68 + 610.654i −1.43902 + 0.830821i
\(736\) 189.791 29.4187i 0.257869 0.0399711i
\(737\) −213.100 369.100i −0.289145 0.500814i
\(738\) −590.992 43.7917i −0.800802 0.0593383i
\(739\) 983.067 + 567.574i 1.33027 + 0.768030i 0.985340 0.170600i \(-0.0545706\pi\)
0.344926 + 0.938630i \(0.387904\pi\)
\(740\) 727.811 915.784i 0.983528 1.23755i
\(741\) 1288.42 + 479.406i 1.73876 + 0.646972i
\(742\) 349.978 168.901i 0.471669 0.227630i
\(743\) −562.354 324.675i −0.756869 0.436979i 0.0713013 0.997455i \(-0.477285\pi\)
−0.828171 + 0.560476i \(0.810618\pi\)
\(744\) −1198.25 + 1297.92i −1.61055 + 1.74452i
\(745\) 318.887 + 552.329i 0.428037 + 0.741382i
\(746\) −773.899 57.3448i −1.03740 0.0768698i
\(747\) −376.212 + 217.206i −0.503631 + 0.290771i
\(748\) 422.241 + 335.572i 0.564494 + 0.448626i
\(749\) −474.603 −0.633648
\(750\) −287.945 195.965i −0.383926 0.261286i
\(751\) −183.343 + 105.853i −0.244131 + 0.140949i −0.617074 0.786905i \(-0.711682\pi\)
0.372943 + 0.927854i \(0.378349\pi\)
\(752\) 1.03996 0.241026i 0.00138292 0.000320514i
\(753\) −1303.61 −1.73122
\(754\) 720.127 1058.13i 0.955076 1.40336i
\(755\) 1248.14 + 720.617i 1.65317 + 0.954459i
\(756\) −44.8205 6.67895i −0.0592864 0.00883459i
\(757\) −490.214 + 849.076i −0.647575 + 1.12163i 0.336126 + 0.941817i \(0.390883\pi\)
−0.983700 + 0.179815i \(0.942450\pi\)
\(758\) 38.3558 517.632i 0.0506013 0.682892i
\(759\) 156.756i 0.206529i
\(760\) −512.585 1011.37i −0.674454 1.33075i
\(761\) 350.204 0.460189 0.230094 0.973168i \(-0.426096\pi\)
0.230094 + 0.973168i \(0.426096\pi\)
\(762\) 1304.68 + 96.6752i 1.71218 + 0.126870i
\(763\) −237.564 137.157i −0.311355 0.179761i
\(764\) 10.1730 68.2682i 0.0133155 0.0893563i
\(765\) −645.685 + 1118.36i −0.844033 + 1.46191i
\(766\) −1069.28 727.714i −1.39593 0.950018i
\(767\) 845.277i 1.10206i
\(768\) 465.788 + 950.890i 0.606495 + 1.23814i
\(769\) 4.11629 + 7.12963i 0.00535279 + 0.00927130i 0.868689 0.495357i \(-0.164963\pi\)
−0.863337 + 0.504628i \(0.831629\pi\)
\(770\) 162.645 238.986i 0.211227 0.310371i
\(771\) 507.919i 0.658779i
\(772\) −260.489 + 327.766i −0.337420 + 0.424567i
\(773\) −55.0972 95.4312i −0.0712772 0.123456i 0.828184 0.560456i \(-0.189374\pi\)