Properties

Label 76.3.b.a
Level $76$
Weight $3$
Character orbit 76.b
Analytic conductor $2.071$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Defining polynomial: \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \beta_{1} ) q^{2} + ( -\beta_{1} - \beta_{3} ) q^{3} + ( -2 + 2 \beta_{1} ) q^{4} + ( -2 + 2 \beta_{2} ) q^{5} + ( -2 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{6} + ( \beta_{1} + \beta_{3} ) q^{7} + 8 q^{8} + ( 3 + \beta_{2} ) q^{9} +O(q^{10})\) \( q + ( -1 - \beta_{1} ) q^{2} + ( -\beta_{1} - \beta_{3} ) q^{3} + ( -2 + 2 \beta_{1} ) q^{4} + ( -2 + 2 \beta_{2} ) q^{5} + ( -2 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{6} + ( \beta_{1} + \beta_{3} ) q^{7} + 8 q^{8} + ( 3 + \beta_{2} ) q^{9} + ( 2 + 4 \beta_{1} - 2 \beta_{2} + 6 \beta_{3} ) q^{10} + ( -6 \beta_{1} - 2 \beta_{3} ) q^{11} + ( 4 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{12} + ( -12 + 3 \beta_{2} ) q^{13} + ( 2 - \beta_{1} - \beta_{2} - \beta_{3} ) q^{14} + ( 12 \beta_{1} + 4 \beta_{3} ) q^{15} + ( -8 - 8 \beta_{1} ) q^{16} + ( -4 + \beta_{2} ) q^{17} + ( -3 - 2 \beta_{1} - \beta_{2} + 3 \beta_{3} ) q^{18} + ( -\beta_{1} - 2 \beta_{3} ) q^{19} + ( 4 - 8 \beta_{1} - 4 \beta_{2} - 12 \beta_{3} ) q^{20} + ( 6 - \beta_{2} ) q^{21} + ( -16 + 6 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{22} + ( -7 \beta_{1} - 15 \beta_{3} ) q^{23} + ( -8 \beta_{1} - 8 \beta_{3} ) q^{24} + ( 35 - 4 \beta_{2} ) q^{25} + ( 12 + 15 \beta_{1} - 3 \beta_{2} + 9 \beta_{3} ) q^{26} + ( -7 \beta_{1} - 11 \beta_{3} ) q^{27} + ( -4 - 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{28} + ( -12 - 5 \beta_{2} ) q^{29} + ( 32 - 12 \beta_{1} - 4 \beta_{2} - 4 \beta_{3} ) q^{30} + 16 \beta_{3} q^{31} + ( -16 + 16 \beta_{1} ) q^{32} + ( -20 + 6 \beta_{2} ) q^{33} + ( 4 + 5 \beta_{1} - \beta_{2} + 3 \beta_{3} ) q^{34} + ( -12 \beta_{1} - 4 \beta_{3} ) q^{35} + ( -6 + 4 \beta_{1} - 2 \beta_{2} - 6 \beta_{3} ) q^{36} + ( -2 - 8 \beta_{2} ) q^{37} + ( -1 + \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{38} + ( 27 \beta_{1} + 15 \beta_{3} ) q^{39} + ( -16 + 16 \beta_{2} ) q^{40} + ( -26 - 10 \beta_{2} ) q^{41} + ( -6 - 7 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{42} + ( -4 \beta_{1} + 16 \beta_{3} ) q^{43} + ( 32 + 12 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} ) q^{44} + ( 22 + 6 \beta_{2} ) q^{45} + ( -6 + 7 \beta_{1} + 15 \beta_{2} + 15 \beta_{3} ) q^{46} + ( -28 \beta_{1} - 8 \beta_{3} ) q^{47} + ( -16 + 8 \beta_{1} + 8 \beta_{2} + 8 \beta_{3} ) q^{48} + ( 43 + \beta_{2} ) q^{49} + ( -35 - 39 \beta_{1} + 4 \beta_{2} - 12 \beta_{3} ) q^{50} + ( 9 \beta_{1} + 5 \beta_{3} ) q^{51} + ( 24 - 30 \beta_{1} - 6 \beta_{2} - 18 \beta_{3} ) q^{52} + ( -4 + 7 \beta_{2} ) q^{53} + ( -10 + 7 \beta_{1} + 11 \beta_{2} + 11 \beta_{3} ) q^{54} + ( 40 \beta_{1} + 32 \beta_{3} ) q^{55} + ( 8 \beta_{1} + 8 \beta_{3} ) q^{56} + ( -10 + \beta_{2} ) q^{57} + ( 12 + 7 \beta_{1} + 5 \beta_{2} - 15 \beta_{3} ) q^{58} + ( 39 \beta_{1} + 7 \beta_{3} ) q^{59} + ( -64 - 24 \beta_{1} + 8 \beta_{2} - 8 \beta_{3} ) q^{60} + ( -30 - 4 \beta_{2} ) q^{61} + ( -16 - 16 \beta_{2} - 16 \beta_{3} ) q^{62} + ( -2 \beta_{1} + 2 \beta_{3} ) q^{63} + 64 q^{64} + ( 108 - 24 \beta_{2} ) q^{65} + ( 20 + 26 \beta_{1} - 6 \beta_{2} + 18 \beta_{3} ) q^{66} + ( 7 \beta_{1} - 33 \beta_{3} ) q^{67} + ( 8 - 10 \beta_{1} - 2 \beta_{2} - 6 \beta_{3} ) q^{68} + ( -74 + 7 \beta_{2} ) q^{69} + ( -32 + 12 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} ) q^{70} + ( -2 \beta_{1} + 22 \beta_{3} ) q^{71} + ( 24 + 8 \beta_{2} ) q^{72} + ( -88 + 7 \beta_{2} ) q^{73} + ( 2 - 6 \beta_{1} + 8 \beta_{2} - 24 \beta_{3} ) q^{74} + ( -55 \beta_{1} - 39 \beta_{3} ) q^{75} + ( 2 + 2 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} ) q^{76} + ( 20 - 6 \beta_{2} ) q^{77} + ( 66 - 27 \beta_{1} - 15 \beta_{2} - 15 \beta_{3} ) q^{78} + ( -62 \beta_{1} + 2 \beta_{3} ) q^{79} + ( 16 + 32 \beta_{1} - 16 \beta_{2} + 48 \beta_{3} ) q^{80} + ( -31 + 16 \beta_{2} ) q^{81} + ( 26 + 16 \beta_{1} + 10 \beta_{2} - 30 \beta_{3} ) q^{82} + ( 26 \beta_{1} - 34 \beta_{3} ) q^{83} + ( -12 + 14 \beta_{1} + 2 \beta_{2} + 6 \beta_{3} ) q^{84} + ( 36 - 8 \beta_{2} ) q^{85} + ( -28 + 4 \beta_{1} - 16 \beta_{2} - 16 \beta_{3} ) q^{86} + ( -13 \beta_{1} + 7 \beta_{3} ) q^{87} + ( -48 \beta_{1} - 16 \beta_{3} ) q^{88} + ( -2 + 14 \beta_{2} ) q^{89} + ( -22 - 16 \beta_{1} - 6 \beta_{2} + 18 \beta_{3} ) q^{90} + ( -27 \beta_{1} - 15 \beta_{3} ) q^{91} + ( 12 + 14 \beta_{1} - 30 \beta_{2} + 30 \beta_{3} ) q^{92} + 64 q^{93} + ( -76 + 28 \beta_{1} + 8 \beta_{2} + 8 \beta_{3} ) q^{94} + ( 20 \beta_{1} + 2 \beta_{3} ) q^{95} + ( 32 + 16 \beta_{1} - 16 \beta_{2} + 16 \beta_{3} ) q^{96} + ( 2 - 28 \beta_{2} ) q^{97} + ( -43 - 42 \beta_{1} - \beta_{2} + 3 \beta_{3} ) q^{98} + ( -4 \beta_{1} + 8 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{2} - 8q^{4} - 4q^{5} - 6q^{6} + 32q^{8} + 14q^{9} + O(q^{10}) \) \( 4q - 4q^{2} - 8q^{4} - 4q^{5} - 6q^{6} + 32q^{8} + 14q^{9} + 4q^{10} + 12q^{12} - 42q^{13} + 6q^{14} - 32q^{16} - 14q^{17} - 14q^{18} + 8q^{20} + 22q^{21} - 60q^{22} + 132q^{25} + 42q^{26} - 12q^{28} - 58q^{29} + 120q^{30} - 64q^{32} - 68q^{33} + 14q^{34} - 28q^{36} - 24q^{37} - 32q^{40} - 124q^{41} - 22q^{42} + 120q^{44} + 100q^{45} + 6q^{46} - 48q^{48} + 174q^{49} - 132q^{50} + 84q^{52} - 2q^{53} - 18q^{54} - 38q^{57} + 58q^{58} - 240q^{60} - 128q^{61} - 96q^{62} + 256q^{64} + 384q^{65} + 68q^{66} + 28q^{68} - 282q^{69} - 120q^{70} + 112q^{72} - 338q^{73} + 24q^{74} + 68q^{77} + 234q^{78} + 32q^{80} - 92q^{81} + 124q^{82} - 44q^{84} + 128q^{85} - 144q^{86} + 20q^{89} - 100q^{90} - 12q^{92} + 256q^{93} - 288q^{94} + 96q^{96} - 48q^{97} - 174q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - 4 x^{2} - 5 x + 25\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 4 \nu^{2} - 4 \nu - 15 \)\()/10\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{3} + \nu^{2} + 9 \nu + 5 \)\()/5\)
\(\beta_{3}\)\(=\)\((\)\( -3 \nu^{3} - 2 \nu^{2} + 2 \nu + 25 \)\()/10\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{3} + \beta_{2} - \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} + \beta_{2} + 5 \beta_{1} + 4\)\()/2\)
\(\nu^{3}\)\(=\)\(-4 \beta_{3} - 2 \beta_{1} + 7\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
39.1
−1.63746 1.52274i
2.13746 + 0.656712i
2.13746 0.656712i
−1.63746 + 1.52274i
−1.00000 1.73205i 3.04547i −2.00000 + 3.46410i −8.54983 −5.27492 + 3.04547i 3.04547i 8.00000 −0.274917 8.54983 + 14.8087i
39.2 −1.00000 1.73205i 1.31342i −2.00000 + 3.46410i 6.54983 2.27492 1.31342i 1.31342i 8.00000 7.27492 −6.54983 11.3446i
39.3 −1.00000 + 1.73205i 1.31342i −2.00000 3.46410i 6.54983 2.27492 + 1.31342i 1.31342i 8.00000 7.27492 −6.54983 + 11.3446i
39.4 −1.00000 + 1.73205i 3.04547i −2.00000 3.46410i −8.54983 −5.27492 3.04547i 3.04547i 8.00000 −0.274917 8.54983 14.8087i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 76.3.b.a 4
3.b odd 2 1 684.3.g.a 4
4.b odd 2 1 inner 76.3.b.a 4
8.b even 2 1 1216.3.d.a 4
8.d odd 2 1 1216.3.d.a 4
12.b even 2 1 684.3.g.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.3.b.a 4 1.a even 1 1 trivial
76.3.b.a 4 4.b odd 2 1 inner
684.3.g.a 4 3.b odd 2 1
684.3.g.a 4 12.b even 2 1
1216.3.d.a 4 8.b even 2 1
1216.3.d.a 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 11 T_{3}^{2} + 16 \) acting on \(S_{3}^{\mathrm{new}}(76, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 4 + 2 T + T^{2} )^{2} \)
$3$ \( 16 + 11 T^{2} + T^{4} \)
$5$ \( ( -56 + 2 T + T^{2} )^{2} \)
$7$ \( 16 + 11 T^{2} + T^{4} \)
$11$ \( 3136 + 188 T^{2} + T^{4} \)
$13$ \( ( -18 + 21 T + T^{2} )^{2} \)
$17$ \( ( -2 + 7 T + T^{2} )^{2} \)
$19$ \( ( 19 + T^{2} )^{2} \)
$23$ \( 1140624 + 2139 T^{2} + T^{4} \)
$29$ \( ( -146 + 29 T + T^{2} )^{2} \)
$31$ \( 1048576 + 2816 T^{2} + T^{4} \)
$37$ \( ( -876 + 12 T + T^{2} )^{2} \)
$41$ \( ( -464 + 62 T + T^{2} )^{2} \)
$43$ \( 614656 + 3296 T^{2} + T^{4} \)
$47$ \( 2027776 + 4064 T^{2} + T^{4} \)
$53$ \( ( -698 + T + T^{2} )^{2} \)
$59$ \( 12588304 + 8027 T^{2} + T^{4} \)
$61$ \( ( 796 + 64 T + T^{2} )^{2} \)
$67$ \( 12362256 + 13659 T^{2} + T^{4} \)
$71$ \( 3211264 + 5612 T^{2} + T^{4} \)
$73$ \( ( 6442 + 169 T + T^{2} )^{2} \)
$79$ \( 141324544 + 23852 T^{2} + T^{4} \)
$83$ \( 3136 + 22076 T^{2} + T^{4} \)
$89$ \( ( -2768 - 10 T + T^{2} )^{2} \)
$97$ \( ( -11028 + 24 T + T^{2} )^{2} \)
show more
show less