Properties

Label 76.3.b
Level $76$
Weight $3$
Character orbit 76.b
Rep. character $\chi_{76}(39,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $2$
Sturm bound $30$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(30\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(76, [\chi])\).

Total New Old
Modular forms 22 18 4
Cusp forms 18 18 0
Eisenstein series 4 0 4

Trace form

\( 18 q - 2 q^{2} - 6 q^{4} - 4 q^{5} - 6 q^{6} - 8 q^{8} - 54 q^{9} - 8 q^{10} + 16 q^{12} + 12 q^{13} + 36 q^{14} + 26 q^{16} + 20 q^{17} + 22 q^{18} + 40 q^{20} - 16 q^{21} - 24 q^{22} - 98 q^{24} + 46 q^{25}+ \cdots - 106 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(76, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
76.3.b.a 76.b 4.b $4$ $2.071$ \(\Q(\sqrt{-3}, \sqrt{-19})\) None 76.3.b.a \(-4\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{1})q^{2}+(-\beta _{1}-\beta _{3})q^{3}+(-2+\cdots)q^{4}+\cdots\)
76.3.b.b 76.b 4.b $14$ $2.071$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 76.3.b.b \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}-\beta _{7}q^{3}+\beta _{5}q^{4}+\beta _{12}q^{5}+\cdots\)