Properties

Label 76.2.k.a.71.7
Level $76$
Weight $2$
Character 76.71
Analytic conductor $0.607$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 76.k (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.606863055362\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 71.7
Character \(\chi\) \(=\) 76.71
Dual form 76.2.k.a.15.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.927206 + 1.06784i) q^{2} +(0.306623 - 1.73895i) q^{3} +(-0.280577 + 1.98022i) q^{4} +(-0.220151 - 0.184728i) q^{5} +(2.14122 - 1.28494i) q^{6} +(-0.588321 + 0.339668i) q^{7} +(-2.37472 + 1.53646i) q^{8} +(-0.110838 - 0.0403418i) q^{9} +O(q^{10})\) \(q+(0.927206 + 1.06784i) q^{2} +(0.306623 - 1.73895i) q^{3} +(-0.280577 + 1.98022i) q^{4} +(-0.220151 - 0.184728i) q^{5} +(2.14122 - 1.28494i) q^{6} +(-0.588321 + 0.339668i) q^{7} +(-2.37472 + 1.53646i) q^{8} +(-0.110838 - 0.0403418i) q^{9} +(-0.00686428 - 0.406368i) q^{10} +(-3.85060 - 2.22314i) q^{11} +(3.35747 + 1.09509i) q^{12} +(-3.41466 + 0.602096i) q^{13} +(-0.908207 - 0.313293i) q^{14} +(-0.388736 + 0.326188i) q^{15} +(-3.84255 - 1.11121i) q^{16} +(4.15159 - 1.51105i) q^{17} +(-0.0596912 - 0.155763i) q^{18} +(1.76165 + 3.98705i) q^{19} +(0.427572 - 0.384117i) q^{20} +(0.410271 + 1.12721i) q^{21} +(-1.19633 - 6.17315i) q^{22} +(0.347253 + 0.413840i) q^{23} +(1.94368 + 4.60062i) q^{24} +(-0.853899 - 4.84270i) q^{25} +(-3.80904 - 3.08805i) q^{26} +(2.54452 - 4.40724i) q^{27} +(-0.507548 - 1.26031i) q^{28} +(1.03930 - 2.85545i) q^{29} +(-0.708757 - 0.112665i) q^{30} +(5.24551 + 9.08550i) q^{31} +(-2.37625 - 5.13356i) q^{32} +(-5.04661 + 6.01432i) q^{33} +(5.46295 + 3.03218i) q^{34} +(0.192266 + 0.0339016i) q^{35} +(0.110984 - 0.208165i) q^{36} +8.82897i q^{37} +(-2.62413 + 5.57799i) q^{38} +6.12252i q^{39} +(0.806624 + 0.100424i) q^{40} +(1.85222 + 0.326596i) q^{41} +(-0.823277 + 1.48326i) q^{42} +(3.49849 - 4.16933i) q^{43} +(5.48271 - 7.00128i) q^{44} +(0.0169489 + 0.0293563i) q^{45} +(-0.119941 + 0.754527i) q^{46} +(0.419777 - 1.15333i) q^{47} +(-3.11055 + 6.34127i) q^{48} +(-3.26925 + 5.66251i) q^{49} +(4.37950 - 5.40201i) q^{50} +(-1.35467 - 7.68271i) q^{51} +(-0.234211 - 6.93071i) q^{52} +(-6.41208 - 7.64162i) q^{53} +(7.06553 - 1.36927i) q^{54} +(0.437034 + 1.20074i) q^{55} +(0.875211 - 1.71055i) q^{56} +(7.47343 - 1.84089i) q^{57} +(4.01281 - 1.53778i) q^{58} +(-4.20510 + 1.53053i) q^{59} +(-0.536855 - 0.861304i) q^{60} +(6.04529 - 5.07260i) q^{61} +(-4.83821 + 14.0255i) q^{62} +(0.0789113 - 0.0139142i) q^{63} +(3.27857 - 7.29733i) q^{64} +(0.862964 + 0.498232i) q^{65} +(-11.1016 + 0.187526i) q^{66} +(-4.66099 - 1.69646i) q^{67} +(1.82738 + 8.64503i) q^{68} +(0.826122 - 0.476961i) q^{69} +(0.142068 + 0.236743i) q^{70} +(-6.81908 - 5.72189i) q^{71} +(0.325193 - 0.0744984i) q^{72} +(0.591231 - 3.35304i) q^{73} +(-9.42796 + 8.18628i) q^{74} -8.68302 q^{75} +(-8.38953 + 2.36978i) q^{76} +3.02052 q^{77} +(-6.53789 + 5.67684i) q^{78} +(-1.43865 + 8.15896i) q^{79} +(0.640670 + 0.954462i) q^{80} +(-7.15481 - 6.00360i) q^{81} +(1.36864 + 2.28070i) q^{82} +(8.64879 - 4.99338i) q^{83} +(-2.34724 + 0.496158i) q^{84} +(-1.19311 - 0.434257i) q^{85} +(7.69601 - 0.129999i) q^{86} +(-4.64680 - 2.68283i) q^{87} +(12.5599 - 0.636961i) q^{88} +(-10.6299 + 1.87434i) q^{89} +(-0.0156328 + 0.0453180i) q^{90} +(1.80440 - 1.51407i) q^{91} +(-0.916926 + 0.571524i) q^{92} +(17.4076 - 6.33584i) q^{93} +(1.62079 - 0.621117i) q^{94} +(0.348694 - 1.20318i) q^{95} +(-9.65560 + 2.55809i) q^{96} +(-1.24019 - 3.40739i) q^{97} +(-9.07794 + 1.75927i) q^{98} +(0.337108 + 0.401750i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 6q^{2} - 12q^{5} - 12q^{6} - 9q^{8} - 18q^{9} + O(q^{10}) \) \( 48q - 6q^{2} - 12q^{5} - 12q^{6} - 9q^{8} - 18q^{9} - 3q^{10} - 9q^{12} - 3q^{14} - 12q^{17} - 42q^{20} - 18q^{21} - 12q^{22} + 24q^{24} - 12q^{25} + 21q^{26} - 12q^{29} + 42q^{30} + 9q^{32} - 36q^{33} + 87q^{36} + 60q^{38} + 6q^{40} + 30q^{41} + 3q^{42} + 45q^{44} - 6q^{45} + 36q^{46} + 45q^{48} - 18q^{49} + 18q^{50} - 15q^{52} - 24q^{53} - 75q^{54} - 12q^{57} + 60q^{58} + 6q^{60} - 66q^{62} - 45q^{64} + 18q^{65} - 42q^{66} - 42q^{68} + 126q^{69} - 63q^{70} - 78q^{72} - 12q^{73} - 105q^{74} - 126q^{76} - 36q^{77} + 3q^{78} - 3q^{80} + 72q^{81} - 111q^{82} - 117q^{84} + 108q^{85} - 24q^{86} - 81q^{88} - 18q^{90} + 36q^{92} + 30q^{93} - 66q^{96} - 6q^{97} + 39q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.927206 + 1.06784i 0.655634 + 0.755079i
\(3\) 0.306623 1.73895i 0.177029 1.00398i −0.758747 0.651386i \(-0.774188\pi\)
0.935776 0.352595i \(-0.114701\pi\)
\(4\) −0.280577 + 1.98022i −0.140288 + 0.990111i
\(5\) −0.220151 0.184728i −0.0984544 0.0826131i 0.592232 0.805768i \(-0.298247\pi\)
−0.690686 + 0.723155i \(0.742691\pi\)
\(6\) 2.14122 1.28494i 0.874151 0.524573i
\(7\) −0.588321 + 0.339668i −0.222365 + 0.128382i −0.607045 0.794668i \(-0.707645\pi\)
0.384680 + 0.923050i \(0.374312\pi\)
\(8\) −2.37472 + 1.53646i −0.839589 + 0.543221i
\(9\) −0.110838 0.0403418i −0.0369461 0.0134473i
\(10\) −0.00686428 0.406368i −0.00217068 0.128505i
\(11\) −3.85060 2.22314i −1.16100 0.670303i −0.209456 0.977818i \(-0.567169\pi\)
−0.951543 + 0.307515i \(0.900503\pi\)
\(12\) 3.35747 + 1.09509i 0.969217 + 0.316125i
\(13\) −3.41466 + 0.602096i −0.947056 + 0.166991i −0.625785 0.779996i \(-0.715221\pi\)
−0.321271 + 0.946987i \(0.604110\pi\)
\(14\) −0.908207 0.313293i −0.242728 0.0837310i
\(15\) −0.388736 + 0.326188i −0.100371 + 0.0842215i
\(16\) −3.84255 1.11121i −0.960638 0.277802i
\(17\) 4.15159 1.51105i 1.00691 0.366485i 0.214663 0.976688i \(-0.431135\pi\)
0.792245 + 0.610203i \(0.208912\pi\)
\(18\) −0.0596912 0.155763i −0.0140694 0.0367137i
\(19\) 1.76165 + 3.98705i 0.404150 + 0.914693i
\(20\) 0.427572 0.384117i 0.0956081 0.0858911i
\(21\) 0.410271 + 1.12721i 0.0895284 + 0.245977i
\(22\) −1.19633 6.17315i −0.255059 1.31612i
\(23\) 0.347253 + 0.413840i 0.0724073 + 0.0862916i 0.801032 0.598621i \(-0.204285\pi\)
−0.728625 + 0.684913i \(0.759840\pi\)
\(24\) 1.94368 + 4.60062i 0.396752 + 0.939098i
\(25\) −0.853899 4.84270i −0.170780 0.968541i
\(26\) −3.80904 3.08805i −0.747014 0.605616i
\(27\) 2.54452 4.40724i 0.489693 0.848174i
\(28\) −0.507548 1.26031i −0.0959175 0.238176i
\(29\) 1.03930 2.85545i 0.192993 0.530244i −0.805020 0.593247i \(-0.797846\pi\)
0.998013 + 0.0630035i \(0.0200679\pi\)
\(30\) −0.708757 0.112665i −0.129401 0.0205698i
\(31\) 5.24551 + 9.08550i 0.942122 + 1.63180i 0.761413 + 0.648267i \(0.224506\pi\)
0.180709 + 0.983537i \(0.442161\pi\)
\(32\) −2.37625 5.13356i −0.420065 0.907494i
\(33\) −5.04661 + 6.01432i −0.878502 + 1.04696i
\(34\) 5.46295 + 3.03218i 0.936888 + 0.520015i
\(35\) 0.192266 + 0.0339016i 0.0324988 + 0.00573042i
\(36\) 0.110984 0.208165i 0.0184974 0.0346942i
\(37\) 8.82897i 1.45147i 0.687972 + 0.725737i \(0.258501\pi\)
−0.687972 + 0.725737i \(0.741499\pi\)
\(38\) −2.62413 + 5.57799i −0.425691 + 0.904869i
\(39\) 6.12252i 0.980388i
\(40\) 0.806624 + 0.100424i 0.127538 + 0.0158785i
\(41\) 1.85222 + 0.326596i 0.289268 + 0.0510058i 0.316399 0.948626i \(-0.397526\pi\)
−0.0271312 + 0.999632i \(0.508637\pi\)
\(42\) −0.823277 + 1.48326i −0.127034 + 0.228872i
\(43\) 3.49849 4.16933i 0.533514 0.635817i −0.430207 0.902730i \(-0.641559\pi\)
0.963721 + 0.266913i \(0.0860037\pi\)
\(44\) 5.48271 7.00128i 0.826549 1.05548i
\(45\) 0.0169489 + 0.0293563i 0.00252659 + 0.00437617i
\(46\) −0.119941 + 0.754527i −0.0176843 + 0.111249i
\(47\) 0.419777 1.15333i 0.0612307 0.168230i −0.905305 0.424762i \(-0.860358\pi\)
0.966536 + 0.256532i \(0.0825799\pi\)
\(48\) −3.11055 + 6.34127i −0.448969 + 0.915284i
\(49\) −3.26925 + 5.66251i −0.467036 + 0.808930i
\(50\) 4.37950 5.40201i 0.619355 0.763960i
\(51\) −1.35467 7.68271i −0.189692 1.07580i
\(52\) −0.234211 6.93071i −0.0324793 0.961117i
\(53\) −6.41208 7.64162i −0.880767 1.04966i −0.998397 0.0565997i \(-0.981974\pi\)
0.117630 0.993057i \(-0.462470\pi\)
\(54\) 7.06553 1.36927i 0.961497 0.186334i
\(55\) 0.437034 + 1.20074i 0.0589297 + 0.161908i
\(56\) 0.875211 1.71055i 0.116955 0.228582i
\(57\) 7.47343 1.84089i 0.989880 0.243832i
\(58\) 4.01281 1.53778i 0.526908 0.201921i
\(59\) −4.20510 + 1.53053i −0.547457 + 0.199258i −0.600916 0.799312i \(-0.705197\pi\)
0.0534593 + 0.998570i \(0.482975\pi\)
\(60\) −0.536855 0.861304i −0.0693077 0.111194i
\(61\) 6.04529 5.07260i 0.774020 0.649480i −0.167715 0.985836i \(-0.553639\pi\)
0.941735 + 0.336356i \(0.109194\pi\)
\(62\) −4.83821 + 14.0255i −0.614453 + 1.78124i
\(63\) 0.0789113 0.0139142i 0.00994189 0.00175302i
\(64\) 3.27857 7.29733i 0.409821 0.912166i
\(65\) 0.862964 + 0.498232i 0.107037 + 0.0617981i
\(66\) −11.1016 + 0.187526i −1.36651 + 0.0230828i
\(67\) −4.66099 1.69646i −0.569430 0.207256i 0.0412282 0.999150i \(-0.486873\pi\)
−0.610658 + 0.791894i \(0.709095\pi\)
\(68\) 1.82738 + 8.64503i 0.221603 + 1.04836i
\(69\) 0.826122 0.476961i 0.0994533 0.0574194i
\(70\) 0.142068 + 0.236743i 0.0169804 + 0.0282962i
\(71\) −6.81908 5.72189i −0.809276 0.679064i 0.141159 0.989987i \(-0.454917\pi\)
−0.950435 + 0.310923i \(0.899362\pi\)
\(72\) 0.325193 0.0744984i 0.0383244 0.00877972i
\(73\) 0.591231 3.35304i 0.0691984 0.392444i −0.930462 0.366388i \(-0.880594\pi\)
0.999661 0.0260554i \(-0.00829463\pi\)
\(74\) −9.42796 + 8.18628i −1.09598 + 0.951636i
\(75\) −8.68302 −1.00263
\(76\) −8.38953 + 2.36978i −0.962345 + 0.271833i
\(77\) 3.02052 0.344220
\(78\) −6.53789 + 5.67684i −0.740270 + 0.642776i
\(79\) −1.43865 + 8.15896i −0.161860 + 0.917955i 0.790383 + 0.612614i \(0.209882\pi\)
−0.952243 + 0.305342i \(0.901229\pi\)
\(80\) 0.640670 + 0.954462i 0.0716290 + 0.106712i
\(81\) −7.15481 6.00360i −0.794979 0.667067i
\(82\) 1.36864 + 2.28070i 0.151141 + 0.251861i
\(83\) 8.64879 4.99338i 0.949328 0.548095i 0.0564561 0.998405i \(-0.482020\pi\)
0.892872 + 0.450310i \(0.148687\pi\)
\(84\) −2.34724 + 0.496158i −0.256104 + 0.0541353i
\(85\) −1.19311 0.434257i −0.129411 0.0471018i
\(86\) 7.69601 0.129999i 0.829882 0.0140182i
\(87\) −4.64680 2.68283i −0.498189 0.287630i
\(88\) 12.5599 0.636961i 1.33889 0.0679002i
\(89\) −10.6299 + 1.87434i −1.12677 + 0.198680i −0.705811 0.708401i \(-0.749417\pi\)
−0.420958 + 0.907080i \(0.638306\pi\)
\(90\) −0.0156328 + 0.0453180i −0.00164784 + 0.00477694i
\(91\) 1.80440 1.51407i 0.189153 0.158718i
\(92\) −0.916926 + 0.571524i −0.0955962 + 0.0595855i
\(93\) 17.4076 6.33584i 1.80508 0.656996i
\(94\) 1.62079 0.621117i 0.167172 0.0640633i
\(95\) 0.348694 1.20318i 0.0357752 0.123444i
\(96\) −9.65560 + 2.55809i −0.985471 + 0.261084i
\(97\) −1.24019 3.40739i −0.125922 0.345968i 0.860672 0.509159i \(-0.170044\pi\)
−0.986595 + 0.163191i \(0.947821\pi\)
\(98\) −9.07794 + 1.75927i −0.917011 + 0.177713i
\(99\) 0.337108 + 0.401750i 0.0338806 + 0.0403774i
\(100\) 9.82921 0.332161i 0.982921 0.0332161i
\(101\) 1.93027 + 10.9471i 0.192069 + 1.08928i 0.916531 + 0.399965i \(0.130978\pi\)
−0.724461 + 0.689316i \(0.757911\pi\)
\(102\) 6.94787 8.57004i 0.687942 0.848560i
\(103\) 1.44865 2.50913i 0.142740 0.247232i −0.785788 0.618496i \(-0.787742\pi\)
0.928527 + 0.371264i \(0.121076\pi\)
\(104\) 7.18375 6.67630i 0.704425 0.654665i
\(105\) 0.117906 0.323945i 0.0115065 0.0316138i
\(106\) 2.21473 13.9325i 0.215113 1.35324i
\(107\) −4.67836 8.10316i −0.452274 0.783362i 0.546253 0.837620i \(-0.316054\pi\)
−0.998527 + 0.0542585i \(0.982720\pi\)
\(108\) 8.01338 + 6.27528i 0.771087 + 0.603839i
\(109\) −5.97096 + 7.11592i −0.571915 + 0.681581i −0.972023 0.234887i \(-0.924528\pi\)
0.400108 + 0.916468i \(0.368973\pi\)
\(110\) −0.876983 + 1.58002i −0.0836170 + 0.150649i
\(111\) 15.3531 + 2.70717i 1.45725 + 0.256953i
\(112\) 2.63810 0.651444i 0.249277 0.0615556i
\(113\) 13.7103i 1.28976i 0.764285 + 0.644879i \(0.223092\pi\)
−0.764285 + 0.644879i \(0.776908\pi\)
\(114\) 8.89520 + 6.27357i 0.833112 + 0.587573i
\(115\) 0.155255i 0.0144776i
\(116\) 5.36282 + 2.85921i 0.497925 + 0.265471i
\(117\) 0.402764 + 0.0710182i 0.0372356 + 0.00656564i
\(118\) −5.53336 3.07127i −0.509387 0.282733i
\(119\) −1.92921 + 2.29915i −0.176851 + 0.210762i
\(120\) 0.421962 1.37188i 0.0385197 0.125235i
\(121\) 4.38474 + 7.59459i 0.398613 + 0.690417i
\(122\) 11.0220 + 1.75207i 0.997882 + 0.158625i
\(123\) 1.13587 3.12077i 0.102418 0.281390i
\(124\) −19.4631 + 7.83810i −1.74783 + 0.703882i
\(125\) −1.42506 + 2.46828i −0.127462 + 0.220770i
\(126\) 0.0880253 + 0.0713636i 0.00784191 + 0.00635757i
\(127\) 0.878075 + 4.97981i 0.0779165 + 0.441887i 0.998662 + 0.0517217i \(0.0164709\pi\)
−0.920745 + 0.390165i \(0.872418\pi\)
\(128\) 10.8323 3.26514i 0.957450 0.288600i
\(129\) −6.17753 7.36209i −0.543901 0.648196i
\(130\) 0.268112 + 1.38347i 0.0235150 + 0.121339i
\(131\) 5.78998 + 15.9078i 0.505873 + 1.38987i 0.885459 + 0.464718i \(0.153844\pi\)
−0.379586 + 0.925156i \(0.623934\pi\)
\(132\) −10.4937 11.6809i −0.913361 1.01669i
\(133\) −2.39069 1.74729i −0.207299 0.151510i
\(134\) −2.51014 6.55017i −0.216843 0.565849i
\(135\) −1.37432 + 0.500212i −0.118283 + 0.0430514i
\(136\) −7.53717 + 9.96709i −0.646307 + 0.854671i
\(137\) 8.65585 7.26312i 0.739519 0.620530i −0.193189 0.981161i \(-0.561883\pi\)
0.932708 + 0.360631i \(0.117439\pi\)
\(138\) 1.27531 + 0.439926i 0.108561 + 0.0374490i
\(139\) −1.86185 + 0.328295i −0.157920 + 0.0278456i −0.252049 0.967714i \(-0.581105\pi\)
0.0941290 + 0.995560i \(0.469993\pi\)
\(140\) −0.121078 + 0.371217i −0.0102330 + 0.0313735i
\(141\) −1.87686 1.08361i −0.158060 0.0912561i
\(142\) −0.212619 12.5871i −0.0178425 1.05628i
\(143\) 14.4870 + 5.27284i 1.21147 + 0.440937i
\(144\) 0.381074 + 0.278180i 0.0317562 + 0.0231817i
\(145\) −0.756285 + 0.436641i −0.0628061 + 0.0362611i
\(146\) 4.12871 2.47762i 0.341695 0.205049i
\(147\) 8.84437 + 7.42131i 0.729472 + 0.612099i
\(148\) −17.4833 2.47720i −1.43712 0.203625i
\(149\) 0.468913 2.65934i 0.0384148 0.217861i −0.959557 0.281513i \(-0.909164\pi\)
0.997972 + 0.0636520i \(0.0202748\pi\)
\(150\) −8.05096 9.27211i −0.657358 0.757064i
\(151\) −12.9100 −1.05060 −0.525302 0.850916i \(-0.676048\pi\)
−0.525302 + 0.850916i \(0.676048\pi\)
\(152\) −10.3094 6.76142i −0.836201 0.548423i
\(153\) −0.521114 −0.0421295
\(154\) 2.80064 + 3.22544i 0.225682 + 0.259913i
\(155\) 0.523546 2.96917i 0.0420522 0.238490i
\(156\) −12.1240 1.71784i −0.970693 0.137537i
\(157\) −18.3881 15.4295i −1.46753 1.23140i −0.918391 0.395674i \(-0.870511\pi\)
−0.549140 0.835730i \(-0.685045\pi\)
\(158\) −10.0464 + 6.02880i −0.799250 + 0.479625i
\(159\) −15.2545 + 8.80717i −1.20976 + 0.698454i
\(160\) −0.425182 + 1.56912i −0.0336136 + 0.124050i
\(161\) −0.344864 0.125520i −0.0271791 0.00989239i
\(162\) −0.223086 13.2068i −0.0175273 1.03762i
\(163\) 9.16976 + 5.29416i 0.718231 + 0.414671i 0.814101 0.580723i \(-0.197230\pi\)
−0.0958702 + 0.995394i \(0.530563\pi\)
\(164\) −1.16642 + 3.57617i −0.0910823 + 0.279252i
\(165\) 2.22203 0.391804i 0.172985 0.0305019i
\(166\) 13.3514 + 4.60565i 1.03627 + 0.357468i
\(167\) 12.2979 10.3192i 0.951640 0.798521i −0.0279326 0.999610i \(-0.508892\pi\)
0.979573 + 0.201089i \(0.0644479\pi\)
\(168\) −2.70619 2.04644i −0.208787 0.157886i
\(169\) −0.918638 + 0.334357i −0.0706644 + 0.0257198i
\(170\) −0.642542 1.67670i −0.0492807 0.128597i
\(171\) −0.0344131 0.512986i −0.00263164 0.0392290i
\(172\) 7.27461 + 8.09759i 0.554684 + 0.617436i
\(173\) 1.98898 + 5.46467i 0.151219 + 0.415471i 0.992053 0.125823i \(-0.0401570\pi\)
−0.840834 + 0.541294i \(0.817935\pi\)
\(174\) −1.44370 7.44959i −0.109447 0.564752i
\(175\) 2.14728 + 2.55902i 0.162319 + 0.193444i
\(176\) 12.3258 + 12.8214i 0.929089 + 0.966447i
\(177\) 1.37213 + 7.78173i 0.103136 + 0.584911i
\(178\) −11.8576 9.61318i −0.888767 0.720538i
\(179\) −11.9517 + 20.7009i −0.893312 + 1.54726i −0.0574313 + 0.998349i \(0.518291\pi\)
−0.835880 + 0.548912i \(0.815042\pi\)
\(180\) −0.0628874 + 0.0253258i −0.00468735 + 0.00188767i
\(181\) 1.86363 5.12028i 0.138522 0.380587i −0.850962 0.525227i \(-0.823980\pi\)
0.989484 + 0.144640i \(0.0462024\pi\)
\(182\) 3.28985 + 0.522960i 0.243860 + 0.0387644i
\(183\) −6.96735 12.0678i −0.515042 0.892078i
\(184\) −1.46048 0.449212i −0.107668 0.0331164i
\(185\) 1.63096 1.94371i 0.119911 0.142904i
\(186\) 22.9061 + 12.7139i 1.67956 + 0.932231i
\(187\) −19.3454 3.41112i −1.41468 0.249445i
\(188\) 2.16606 + 1.15485i 0.157976 + 0.0842259i
\(189\) 3.45716i 0.251472i
\(190\) 1.60812 0.743246i 0.116665 0.0539207i
\(191\) 22.7901i 1.64904i −0.565835 0.824518i \(-0.691446\pi\)
0.565835 0.824518i \(-0.308554\pi\)
\(192\) −11.6844 7.93878i −0.843247 0.572932i
\(193\) 20.1265 + 3.54884i 1.44873 + 0.255451i 0.842010 0.539462i \(-0.181372\pi\)
0.606724 + 0.794913i \(0.292483\pi\)
\(194\) 2.48865 4.48369i 0.178675 0.321910i
\(195\) 1.13100 1.34788i 0.0809929 0.0965236i
\(196\) −10.2957 8.06261i −0.735411 0.575901i
\(197\) 2.38584 + 4.13240i 0.169984 + 0.294422i 0.938414 0.345513i \(-0.112295\pi\)
−0.768430 + 0.639934i \(0.778962\pi\)
\(198\) −0.116437 + 0.732483i −0.00827480 + 0.0520553i
\(199\) 2.00612 5.51177i 0.142210 0.390719i −0.848056 0.529907i \(-0.822227\pi\)
0.990266 + 0.139188i \(0.0444491\pi\)
\(200\) 9.46840 + 10.1881i 0.669517 + 0.720405i
\(201\) −4.37922 + 7.58503i −0.308886 + 0.535007i
\(202\) −9.90005 + 12.2115i −0.696565 + 0.859197i
\(203\) 0.358462 + 2.03294i 0.0251591 + 0.142684i
\(204\) 15.5936 0.526957i 1.09177 0.0368944i
\(205\) −0.347436 0.414058i −0.0242660 0.0289191i
\(206\) 4.02255 0.779555i 0.280265 0.0543142i
\(207\) −0.0217939 0.0598782i −0.00151478 0.00416182i
\(208\) 13.7901 + 1.48080i 0.956169 + 0.102675i
\(209\) 2.08039 19.2689i 0.143904 1.33286i
\(210\) 0.455245 0.174458i 0.0314149 0.0120388i
\(211\) 15.9787 5.81576i 1.10002 0.400374i 0.272695 0.962101i \(-0.412085\pi\)
0.827323 + 0.561727i \(0.189863\pi\)
\(212\) 16.9312 10.5533i 1.16284 0.724802i
\(213\) −12.0410 + 10.1036i −0.825032 + 0.692284i
\(214\) 4.31509 12.5091i 0.294974 0.855101i
\(215\) −1.54039 + 0.271612i −0.105054 + 0.0185238i
\(216\) 0.729039 + 14.3755i 0.0496048 + 0.978129i
\(217\) −6.17210 3.56346i −0.418989 0.241904i
\(218\) −13.1350 + 0.221874i −0.889614 + 0.0150272i
\(219\) −5.64947 2.05624i −0.381756 0.138948i
\(220\) −2.50036 + 0.528525i −0.168574 + 0.0356331i
\(221\) −13.2665 + 7.65939i −0.892398 + 0.515226i
\(222\) 11.3447 + 18.9048i 0.761405 + 1.26881i
\(223\) −10.5804 8.87801i −0.708516 0.594515i 0.215667 0.976467i \(-0.430808\pi\)
−0.924182 + 0.381952i \(0.875252\pi\)
\(224\) 3.14170 + 2.21305i 0.209914 + 0.147866i
\(225\) −0.100719 + 0.571205i −0.00671459 + 0.0380803i
\(226\) −14.6405 + 12.7123i −0.973869 + 0.845609i
\(227\) 11.2959 0.749734 0.374867 0.927079i \(-0.377688\pi\)
0.374867 + 0.927079i \(0.377688\pi\)
\(228\) 1.54850 + 15.3156i 0.102552 + 1.01430i
\(229\) 5.17443 0.341936 0.170968 0.985277i \(-0.445311\pi\)
0.170968 + 0.985277i \(0.445311\pi\)
\(230\) 0.165788 0.143953i 0.0109317 0.00949199i
\(231\) 0.926161 5.25252i 0.0609369 0.345590i
\(232\) 1.91925 + 8.37773i 0.126005 + 0.550025i
\(233\) 4.73339 + 3.97179i 0.310095 + 0.260200i 0.784531 0.620089i \(-0.212904\pi\)
−0.474436 + 0.880290i \(0.657348\pi\)
\(234\) 0.297609 + 0.495938i 0.0194553 + 0.0324205i
\(235\) −0.305467 + 0.176361i −0.0199264 + 0.0115045i
\(236\) −1.85094 8.75645i −0.120486 0.569997i
\(237\) 13.7469 + 5.00345i 0.892956 + 0.325009i
\(238\) −4.24390 + 0.0716872i −0.275091 + 0.00464679i
\(239\) 6.82870 + 3.94255i 0.441712 + 0.255023i 0.704324 0.709879i \(-0.251250\pi\)
−0.262612 + 0.964902i \(0.584584\pi\)
\(240\) 1.85620 0.821430i 0.119817 0.0530231i
\(241\) 15.2267 2.68488i 0.980839 0.172948i 0.339834 0.940485i \(-0.389629\pi\)
0.641005 + 0.767537i \(0.278518\pi\)
\(242\) −4.04427 + 11.7240i −0.259976 + 0.753645i
\(243\) −0.938472 + 0.787471i −0.0602030 + 0.0505163i
\(244\) 8.34871 + 13.3943i 0.534471 + 0.857480i
\(245\) 1.76576 0.642682i 0.112810 0.0410595i
\(246\) 4.38567 1.68067i 0.279620 0.107156i
\(247\) −8.41602 12.5537i −0.535498 0.798775i
\(248\) −26.4161 13.5160i −1.67743 0.858264i
\(249\) −6.03130 16.5709i −0.382218 1.05014i
\(250\) −3.95707 + 0.766864i −0.250267 + 0.0485007i
\(251\) 5.32272 + 6.34338i 0.335967 + 0.400390i 0.907406 0.420254i \(-0.138059\pi\)
−0.571439 + 0.820644i \(0.693615\pi\)
\(252\) 0.00541253 + 0.160166i 0.000340957 + 0.0100895i
\(253\) −0.417106 2.36553i −0.0262232 0.148719i
\(254\) −4.50350 + 5.55496i −0.282575 + 0.348549i
\(255\) −1.12098 + 1.94160i −0.0701988 + 0.121588i
\(256\) 13.5304 + 8.53975i 0.845652 + 0.533734i
\(257\) 1.98542 5.45489i 0.123847 0.340267i −0.862239 0.506501i \(-0.830939\pi\)
0.986086 + 0.166234i \(0.0531608\pi\)
\(258\) 2.13371 13.4228i 0.132839 0.835668i
\(259\) −2.99892 5.19427i −0.186344 0.322756i
\(260\) −1.22874 + 1.56907i −0.0762031 + 0.0973094i
\(261\) −0.230388 + 0.274566i −0.0142607 + 0.0169952i
\(262\) −11.6186 + 20.9326i −0.717797 + 1.29322i
\(263\) −18.2994 3.22667i −1.12839 0.198965i −0.421867 0.906658i \(-0.638625\pi\)
−0.706520 + 0.707693i \(0.749736\pi\)
\(264\) 2.74350 22.0362i 0.168851 1.35624i
\(265\) 2.86680i 0.176106i
\(266\) −0.350827 4.17298i −0.0215106 0.255862i
\(267\) 19.0596i 1.16643i
\(268\) 4.66713 8.75380i 0.285090 0.534723i
\(269\) −1.60642 0.283255i −0.0979449 0.0172703i 0.124461 0.992225i \(-0.460280\pi\)
−0.222406 + 0.974954i \(0.571391\pi\)
\(270\) −1.80843 1.00376i −0.110057 0.0610868i
\(271\) 13.9309 16.6022i 0.846242 1.00851i −0.153551 0.988141i \(-0.549071\pi\)
0.999792 0.0203711i \(-0.00648477\pi\)
\(272\) −17.6318 + 1.19303i −1.06908 + 0.0723383i
\(273\) −2.07962 3.60201i −0.125864 0.218004i
\(274\) 15.7816 + 2.50867i 0.953403 + 0.151555i
\(275\) −7.47800 + 20.5456i −0.450941 + 1.23895i
\(276\) 0.712699 + 1.76973i 0.0428994 + 0.106525i
\(277\) 8.32066 14.4118i 0.499940 0.865922i −0.500060 0.865991i \(-0.666689\pi\)
1.00000 6.89371e-5i \(2.19434e-5\pi\)
\(278\) −2.07689 1.68377i −0.124564 0.100986i
\(279\) −0.214878 1.21863i −0.0128644 0.0729577i
\(280\) −0.508665 + 0.214902i −0.0303986 + 0.0128429i
\(281\) 9.70045 + 11.5605i 0.578681 + 0.689645i 0.973388 0.229162i \(-0.0735986\pi\)
−0.394708 + 0.918807i \(0.629154\pi\)
\(282\) −0.583116 3.00892i −0.0347241 0.179178i
\(283\) −2.29727 6.31170i −0.136559 0.375192i 0.852498 0.522731i \(-0.175087\pi\)
−0.989056 + 0.147540i \(0.952865\pi\)
\(284\) 13.2439 11.8979i 0.785880 0.706009i
\(285\) −1.98535 0.975282i −0.117602 0.0577707i
\(286\) 7.80189 + 20.3589i 0.461335 + 1.20385i
\(287\) −1.20063 + 0.436995i −0.0708712 + 0.0257950i
\(288\) 0.0562817 + 0.664857i 0.00331643 + 0.0391771i
\(289\) 1.92965 1.61917i 0.113509 0.0952452i
\(290\) −1.16750 0.402737i −0.0685578 0.0236495i
\(291\) −6.30555 + 1.11184i −0.369638 + 0.0651771i
\(292\) 6.47387 + 2.11155i 0.378855 + 0.123569i
\(293\) −2.35175 1.35778i −0.137391 0.0793225i 0.429729 0.902958i \(-0.358609\pi\)
−0.567120 + 0.823635i \(0.691942\pi\)
\(294\) 0.275767 + 16.3255i 0.0160830 + 0.952122i
\(295\) 1.20849 + 0.439854i 0.0703609 + 0.0256093i
\(296\) −13.5654 20.9663i −0.788472 1.21864i
\(297\) −19.5959 + 11.3137i −1.13707 + 0.656486i
\(298\) 3.27453 1.96503i 0.189688 0.113831i
\(299\) −1.43492 1.20404i −0.0829837 0.0696316i
\(300\) 2.43625 17.1943i 0.140657 0.992714i
\(301\) −0.642047 + 3.64123i −0.0370070 + 0.209877i
\(302\) −11.9703 13.7859i −0.688811 0.793289i
\(303\) 19.6283 1.12762
\(304\) −2.33879 17.2780i −0.134139 0.990963i
\(305\) −2.26793 −0.129861
\(306\) −0.483180 0.556468i −0.0276216 0.0318111i
\(307\) −0.847455 + 4.80616i −0.0483668 + 0.274302i −0.999394 0.0348050i \(-0.988919\pi\)
0.951027 + 0.309107i \(0.100030\pi\)
\(308\) −0.847487 + 5.98130i −0.0482900 + 0.340816i
\(309\) −3.91906 3.28848i −0.222947 0.187075i
\(310\) 3.65605 2.19397i 0.207650 0.124609i
\(311\) −7.86197 + 4.53911i −0.445811 + 0.257389i −0.706060 0.708153i \(-0.749529\pi\)
0.260248 + 0.965542i \(0.416196\pi\)
\(312\) −9.40703 14.5393i −0.532568 0.823124i
\(313\) −0.820588 0.298670i −0.0463824 0.0168818i 0.318725 0.947847i \(-0.396745\pi\)
−0.365107 + 0.930966i \(0.618968\pi\)
\(314\) −0.573340 33.9419i −0.0323554 1.91545i
\(315\) −0.0199427 0.0115139i −0.00112365 0.000648737i
\(316\) −15.7529 5.13805i −0.886170 0.289038i
\(317\) −24.2100 + 4.26887i −1.35977 + 0.239764i −0.805510 0.592582i \(-0.798109\pi\)
−0.554257 + 0.832345i \(0.686998\pi\)
\(318\) −23.5487 8.12330i −1.32055 0.455532i
\(319\) −10.3500 + 8.68468i −0.579489 + 0.486249i
\(320\) −2.06980 + 1.00087i −0.115706 + 0.0559502i
\(321\) −15.5254 + 5.65080i −0.866546 + 0.315397i
\(322\) −0.185724 0.484644i −0.0103500 0.0270082i
\(323\) 13.3383 + 13.8907i 0.742163 + 0.772897i
\(324\) 13.8959 12.4836i 0.771996 0.693536i
\(325\) 5.83155 + 16.0220i 0.323476 + 0.888743i
\(326\) 2.84893 + 14.7006i 0.157787 + 0.814194i
\(327\) 10.5434 + 12.5651i 0.583049 + 0.694851i
\(328\) −4.90030 + 2.07029i −0.270574 + 0.114313i
\(329\) 0.144784 + 0.821111i 0.00798221 + 0.0452693i
\(330\) 2.47867 + 2.00950i 0.136446 + 0.110619i
\(331\) 3.60843 6.24998i 0.198337 0.343530i −0.749652 0.661832i \(-0.769779\pi\)
0.947989 + 0.318302i \(0.103113\pi\)
\(332\) 7.46135 + 18.5275i 0.409495 + 1.01683i
\(333\) 0.356177 0.978588i 0.0195184 0.0536263i
\(334\) 22.4219 + 3.56423i 1.22687 + 0.195026i
\(335\) 0.712736 + 1.23449i 0.0389409 + 0.0674476i
\(336\) −0.323924 4.78726i −0.0176715 0.261166i
\(337\) 1.87196 2.23091i 0.101972 0.121526i −0.712645 0.701525i \(-0.752503\pi\)
0.814617 + 0.580000i \(0.196947\pi\)
\(338\) −1.20881 0.670943i −0.0657504 0.0364945i
\(339\) 23.8415 + 4.20390i 1.29489 + 0.228325i
\(340\) 1.19468 2.24078i 0.0647908 0.121523i
\(341\) 46.6461i 2.52603i
\(342\) 0.515881 0.512392i 0.0278956 0.0277070i
\(343\) 9.19718i 0.496601i
\(344\) −1.90189 + 15.2763i −0.102543 + 0.823642i
\(345\) −0.269980 0.0476047i −0.0145352 0.00256295i
\(346\) −3.99121 + 7.19079i −0.214569 + 0.386579i
\(347\) −19.7749 + 23.5668i −1.06157 + 1.26513i −0.0987161 + 0.995116i \(0.531474\pi\)
−0.962856 + 0.270016i \(0.912971\pi\)
\(348\) 6.61638 8.44895i 0.354675 0.452911i
\(349\) 15.6867 + 27.1702i 0.839692 + 1.45439i 0.890152 + 0.455663i \(0.150598\pi\)
−0.0504605 + 0.998726i \(0.516069\pi\)
\(350\) −0.741667 + 4.66570i −0.0396438 + 0.249392i
\(351\) −6.03508 + 16.5813i −0.322129 + 0.885042i
\(352\) −2.26268 + 25.0500i −0.120601 + 1.33517i
\(353\) −4.87676 + 8.44680i −0.259564 + 0.449578i −0.966125 0.258074i \(-0.916912\pi\)
0.706561 + 0.707652i \(0.250245\pi\)
\(354\) −7.03742 + 8.68049i −0.374035 + 0.461363i
\(355\) 0.444231 + 2.51936i 0.0235773 + 0.133714i
\(356\) −0.729105 21.5755i −0.0386425 1.14350i
\(357\) 3.40655 + 4.05977i 0.180294 + 0.214866i
\(358\) −33.1870 + 6.43152i −1.75399 + 0.339916i
\(359\) −11.1764 30.7070i −0.589870 1.62066i −0.770741 0.637148i \(-0.780114\pi\)
0.180871 0.983507i \(-0.442108\pi\)
\(360\) −0.0853535 0.0436716i −0.00449853 0.00230169i
\(361\) −12.7932 + 14.0476i −0.673325 + 0.739346i
\(362\) 7.19562 2.75749i 0.378194 0.144931i
\(363\) 14.5510 5.29615i 0.763732 0.277976i
\(364\) 2.49193 + 3.99793i 0.130613 + 0.209549i
\(365\) −0.749562 + 0.628957i −0.0392339 + 0.0329211i
\(366\) 6.42635 18.6294i 0.335911 0.973774i
\(367\) 25.0700 4.42052i 1.30864 0.230749i 0.524544 0.851384i \(-0.324236\pi\)
0.784100 + 0.620634i \(0.213125\pi\)
\(368\) −0.874477 1.97607i −0.0455852 0.103010i
\(369\) −0.192121 0.110921i −0.0100014 0.00577433i
\(370\) 3.58781 0.0606046i 0.186521 0.00315068i
\(371\) 6.36797 + 2.31775i 0.330609 + 0.120332i
\(372\) 7.66221 + 36.2486i 0.397267 + 1.87940i
\(373\) 22.6501 13.0771i 1.17278 0.677104i 0.218446 0.975849i \(-0.429901\pi\)
0.954333 + 0.298745i \(0.0965680\pi\)
\(374\) −14.2946 23.8206i −0.739158 1.23174i
\(375\) 3.85526 + 3.23494i 0.199085 + 0.167052i
\(376\) 0.775193 + 3.38380i 0.0399775 + 0.174506i
\(377\) −1.82959 + 10.3761i −0.0942288 + 0.534398i
\(378\) −3.69171 + 3.20550i −0.189881 + 0.164873i
\(379\) 11.3746 0.584276 0.292138 0.956376i \(-0.405633\pi\)
0.292138 + 0.956376i \(0.405633\pi\)
\(380\) 2.28473 + 1.02807i 0.117204 + 0.0527391i
\(381\) 8.92886 0.457439
\(382\) 24.3363 21.1312i 1.24515 1.08116i
\(383\) −2.72109 + 15.4321i −0.139041 + 0.788543i 0.832918 + 0.553396i \(0.186668\pi\)
−0.971960 + 0.235147i \(0.924443\pi\)
\(384\) −2.35646 19.8380i −0.120253 1.01235i
\(385\) −0.664970 0.557976i −0.0338900 0.0284371i
\(386\) 14.8718 + 24.7824i 0.756954 + 1.26139i
\(387\) −0.555965 + 0.320986i −0.0282613 + 0.0163167i
\(388\) 7.09536 1.49982i 0.360212 0.0761416i
\(389\) 15.0858 + 5.49077i 0.764878 + 0.278393i 0.694852 0.719152i \(-0.255470\pi\)
0.0700257 + 0.997545i \(0.477692\pi\)
\(390\) 2.48800 0.0420267i 0.125985 0.00212811i
\(391\) 2.06699 + 1.19338i 0.104532 + 0.0603516i
\(392\) −0.936685 18.4699i −0.0473097 0.932873i
\(393\) 29.4382 5.19075i 1.48496 0.261839i
\(394\) −2.20059 + 6.37930i −0.110864 + 0.321384i
\(395\) 1.82391 1.53044i 0.0917710 0.0770050i
\(396\) −0.890138 + 0.554827i −0.0447311 + 0.0278811i
\(397\) −8.89582 + 3.23781i −0.446468 + 0.162501i −0.555463 0.831541i \(-0.687459\pi\)
0.108995 + 0.994042i \(0.465237\pi\)
\(398\) 7.74580 2.96833i 0.388262 0.148789i
\(399\) −3.77149 + 3.62152i −0.188811 + 0.181303i
\(400\) −2.10009 + 19.5572i −0.105005 + 0.977860i
\(401\) −6.61831 18.1836i −0.330502 0.908048i −0.987981 0.154575i \(-0.950599\pi\)
0.657479 0.753473i \(-0.271623\pi\)
\(402\) −12.1601 + 2.35657i −0.606489 + 0.117535i
\(403\) −23.3820 27.8656i −1.16474 1.38808i
\(404\) −22.2193 + 0.750863i −1.10545 + 0.0373568i
\(405\) 0.466102 + 2.64339i 0.0231608 + 0.131351i
\(406\) −1.83849 + 2.26773i −0.0912427 + 0.112546i
\(407\) 19.6281 33.9968i 0.972928 1.68516i
\(408\) 15.0212 + 16.1629i 0.743658 + 0.800182i
\(409\) −2.99514 + 8.22908i −0.148100 + 0.406902i −0.991454 0.130457i \(-0.958356\pi\)
0.843354 + 0.537359i \(0.180578\pi\)
\(410\) 0.120004 0.754924i 0.00592658 0.0372831i
\(411\) −9.97609 17.2791i −0.492084 0.852315i
\(412\) 4.56218 + 3.57265i 0.224762 + 0.176012i
\(413\) 1.95408 2.32878i 0.0961538 0.114592i
\(414\) 0.0437330 0.0787918i 0.00214936 0.00387241i
\(415\) −2.82646 0.498381i −0.138745 0.0244646i
\(416\) 11.2050 + 16.0986i 0.549369 + 0.789300i
\(417\) 3.33832i 0.163478i
\(418\) 22.5052 15.6448i 1.10076 0.765210i
\(419\) 15.7998i 0.771873i 0.922525 + 0.385936i \(0.126122\pi\)
−0.922525 + 0.385936i \(0.873878\pi\)
\(420\) 0.608400 + 0.324372i 0.0296869 + 0.0158277i
\(421\) −25.0513 4.41722i −1.22092 0.215282i −0.474201 0.880416i \(-0.657263\pi\)
−0.746724 + 0.665135i \(0.768374\pi\)
\(422\) 21.0259 + 11.6703i 1.02352 + 0.568102i
\(423\) −0.0930547 + 0.110898i −0.00452447 + 0.00539206i
\(424\) 26.9679 + 8.29477i 1.30968 + 0.402830i
\(425\) −10.8626 18.8146i −0.526915 0.912643i
\(426\) −21.9535 3.48976i −1.06365 0.169079i
\(427\) −1.83358 + 5.03771i −0.0887329 + 0.243792i
\(428\) 17.3587 6.99063i 0.839064 0.337905i
\(429\) 13.6112 23.5754i 0.657157 1.13823i
\(430\) −1.71830 1.39305i −0.0828637 0.0671790i
\(431\) −1.17478 6.66249i −0.0565870 0.320921i 0.943354 0.331788i \(-0.107652\pi\)
−0.999941 + 0.0108673i \(0.996541\pi\)
\(432\) −14.6748 + 14.1076i −0.706042 + 0.678750i
\(433\) 5.90017 + 7.03155i 0.283544 + 0.337915i 0.888952 0.458001i \(-0.151434\pi\)
−0.605408 + 0.795916i \(0.706990\pi\)
\(434\) −1.91759 9.89489i −0.0920473 0.474970i
\(435\) 0.527401 + 1.44902i 0.0252870 + 0.0694754i
\(436\) −12.4158 13.8204i −0.594608 0.661877i
\(437\) −1.03826 + 2.11356i −0.0496669 + 0.101105i
\(438\) −3.04248 7.93930i −0.145376 0.379355i
\(439\) −32.3355 + 11.7692i −1.54329 + 0.561712i −0.966832 0.255414i \(-0.917788\pi\)
−0.576459 + 0.817126i \(0.695566\pi\)
\(440\) −2.88273 2.17994i −0.137429 0.103924i
\(441\) 0.590794 0.495735i 0.0281331 0.0236064i
\(442\) −20.4798 7.06465i −0.974123 0.336031i
\(443\) −23.1576 + 4.08330i −1.10025 + 0.194004i −0.694154 0.719827i \(-0.744221\pi\)
−0.406096 + 0.913831i \(0.633110\pi\)
\(444\) −9.66851 + 29.6430i −0.458847 + 1.40679i
\(445\) 2.68643 + 1.55101i 0.127349 + 0.0735249i
\(446\) −0.329896 19.5299i −0.0156210 0.924770i
\(447\) −4.48066 1.63083i −0.211928 0.0771355i
\(448\) 0.549815 + 5.40680i 0.0259763 + 0.255447i
\(449\) −2.56296 + 1.47973i −0.120954 + 0.0698325i −0.559256 0.828995i \(-0.688913\pi\)
0.438303 + 0.898827i \(0.355580\pi\)
\(450\) −0.703344 + 0.422073i −0.0331559 + 0.0198967i
\(451\) −6.40608 5.37534i −0.301651 0.253115i
\(452\) −27.1495 3.84679i −1.27700 0.180938i
\(453\) −3.95851 + 22.4499i −0.185987 + 1.05479i
\(454\) 10.4736 + 12.0622i 0.491551 + 0.566109i
\(455\) −0.676933 −0.0317351
\(456\) −14.9188 + 15.8542i −0.698638 + 0.742443i
\(457\) −27.5794 −1.29011 −0.645054 0.764137i \(-0.723165\pi\)
−0.645054 + 0.764137i \(0.723165\pi\)
\(458\) 4.79776 + 5.52547i 0.224185 + 0.258188i
\(459\) 3.90422 22.1420i 0.182234 1.03350i
\(460\) 0.307439 + 0.0435608i 0.0143344 + 0.00203103i
\(461\) 23.9754 + 20.1177i 1.11664 + 0.936976i 0.998430 0.0560127i \(-0.0178387\pi\)
0.118214 + 0.992988i \(0.462283\pi\)
\(462\) 6.46761 3.88118i 0.300900 0.180569i
\(463\) 1.35838 0.784262i 0.0631294 0.0364478i −0.468103 0.883674i \(-0.655062\pi\)
0.531232 + 0.847226i \(0.321729\pi\)
\(464\) −7.16656 + 9.81734i −0.332699 + 0.455759i
\(465\) −5.00270 1.82084i −0.231995 0.0844392i
\(466\) 0.147587 + 8.73718i 0.00683682 + 0.404742i
\(467\) −16.4940 9.52284i −0.763253 0.440664i 0.0672096 0.997739i \(-0.478590\pi\)
−0.830462 + 0.557075i \(0.811924\pi\)
\(468\) −0.253638 + 0.777637i −0.0117244 + 0.0359463i
\(469\) 3.31839 0.585122i 0.153229 0.0270184i
\(470\) −0.471557 0.162667i −0.0217513 0.00750327i
\(471\) −32.4692 + 27.2449i −1.49610 + 1.25538i
\(472\) 7.63432 10.0956i 0.351398 0.464685i
\(473\) −22.7403 + 8.27679i −1.04560 + 0.380567i
\(474\) 7.40329 + 19.3187i 0.340044 + 0.887339i
\(475\) 17.8038 11.9357i 0.816896 0.547647i
\(476\) −4.01153 4.46535i −0.183868 0.204669i
\(477\) 0.402427 + 1.10566i 0.0184259 + 0.0506246i
\(478\) 2.12159 + 10.9475i 0.0970392 + 0.500729i
\(479\) −14.9412 17.8062i −0.682680 0.813586i 0.307770 0.951461i \(-0.400417\pi\)
−0.990450 + 0.137874i \(0.955973\pi\)
\(480\) 2.59824 + 1.22050i 0.118593 + 0.0557078i
\(481\) −5.31589 30.1479i −0.242384 1.37463i
\(482\) 16.9853 + 13.7703i 0.773661 + 0.627220i
\(483\) −0.324017 + 0.561213i −0.0147433 + 0.0255361i
\(484\) −16.2692 + 6.55189i −0.739510 + 0.297813i
\(485\) −0.356414 + 0.979239i −0.0161839 + 0.0444649i
\(486\) −1.71105 0.271992i −0.0776149 0.0123378i
\(487\) 18.8848 + 32.7094i 0.855752 + 1.48221i 0.875945 + 0.482410i \(0.160239\pi\)
−0.0201932 + 0.999796i \(0.506428\pi\)
\(488\) −6.56200 + 21.3344i −0.297048 + 0.965761i
\(489\) 12.0179 14.3224i 0.543469 0.647682i
\(490\) 2.32350 + 1.28965i 0.104965 + 0.0582604i
\(491\) −10.7823 1.90120i −0.486596 0.0858001i −0.0750327 0.997181i \(-0.523906\pi\)
−0.411564 + 0.911381i \(0.635017\pi\)
\(492\) 5.86111 + 3.12488i 0.264239 + 0.140881i
\(493\) 13.4251i 0.604636i
\(494\) 5.60203 20.6269i 0.252047 0.928048i
\(495\) 0.150719i 0.00677431i
\(496\) −10.0603 40.7404i −0.451721 1.82930i
\(497\) 5.95535 + 1.05009i 0.267134 + 0.0471030i
\(498\) 12.1028 21.8051i 0.542340 0.977110i
\(499\) 12.5333 14.9366i 0.561067 0.668654i −0.408705 0.912667i \(-0.634020\pi\)
0.969772 + 0.244013i \(0.0784640\pi\)
\(500\) −4.48791 3.51449i −0.200705 0.157173i
\(501\) −14.1737 24.5495i −0.633232 1.09679i
\(502\) −1.83846 + 11.5655i −0.0820547 + 0.516191i
\(503\) 6.17225 16.9581i 0.275207 0.756125i −0.722682 0.691181i \(-0.757091\pi\)
0.997889 0.0649441i \(-0.0206869\pi\)
\(504\) −0.166013 + 0.154287i −0.00739483 + 0.00687247i
\(505\) 1.59730 2.76660i 0.0710787 0.123112i
\(506\) 2.13927 2.63873i 0.0951020 0.117306i
\(507\) 0.299753 + 1.69998i 0.0133125 + 0.0754989i
\(508\) −10.1075 + 0.341565i −0.448447 + 0.0151545i
\(509\) −4.23195 5.04344i −0.187578 0.223546i 0.664057 0.747682i \(-0.268833\pi\)
−0.851635 + 0.524135i \(0.824389\pi\)
\(510\) −3.11271 + 0.603231i −0.137833 + 0.0267115i
\(511\) 0.791084 + 2.17349i 0.0349955 + 0.0961494i
\(512\) 3.42640 + 22.3665i 0.151427 + 0.988468i
\(513\) 22.0544 + 2.38113i 0.973728 + 0.105129i
\(514\) 7.66586 2.93770i 0.338126 0.129576i
\(515\) −0.782429 + 0.284781i −0.0344779 + 0.0125489i
\(516\) 16.3118 10.1672i 0.718089 0.447588i
\(517\) −4.18040 + 3.50778i −0.183854 + 0.154272i
\(518\) 2.76605 8.01853i 0.121533 0.352314i
\(519\) 10.1126 1.78313i 0.443895 0.0782707i
\(520\) −2.81481 + 0.142750i −0.123438 + 0.00626001i
\(521\) 33.3964 + 19.2814i 1.46312 + 0.844735i 0.999154 0.0411164i \(-0.0130915\pi\)
0.463969 + 0.885851i \(0.346425\pi\)
\(522\) −0.506810 + 0.00856094i −0.0221825 + 0.000374702i
\(523\) −14.7646 5.37386i −0.645609 0.234982i −0.00159809 0.999999i \(-0.500509\pi\)
−0.644011 + 0.765016i \(0.722731\pi\)
\(524\) −33.1256 + 7.00207i −1.44710 + 0.305887i
\(525\) 5.10841 2.94934i 0.222949 0.128720i
\(526\) −13.5217 22.5326i −0.589575 0.982470i
\(527\) 35.5059 + 29.7930i 1.54666 + 1.29780i
\(528\) 26.0750 17.5025i 1.13477 0.761699i
\(529\) 3.94323 22.3632i 0.171445 0.972311i
\(530\) −3.06129 + 2.65812i −0.132974 + 0.115461i
\(531\) 0.527830 0.0229059
\(532\) 4.13080 4.24384i 0.179093 0.183994i
\(533\) −6.52134 −0.282470
\(534\) −20.3526 + 17.6721i −0.880744 + 0.764749i
\(535\) −0.466939 + 2.64814i −0.0201875 + 0.114489i
\(536\) 13.6751 3.13282i 0.590673 0.135317i
\(537\) 32.3332 + 27.1307i 1.39528 + 1.17078i
\(538\) −1.18701 1.97804i −0.0511756 0.0852792i
\(539\) 25.1772 14.5360i 1.08446 0.626111i
\(540\) −0.604928 2.86181i −0.0260320 0.123153i
\(541\) −8.56708 3.11816i −0.368328 0.134060i 0.151224 0.988500i \(-0.451679\pi\)
−0.519551 + 0.854439i \(0.673901\pi\)
\(542\) 30.6454 0.517655i 1.31633 0.0222352i
\(543\) −8.33246 4.81075i −0.357580 0.206449i
\(544\) −17.6223 17.7218i −0.755549 0.759816i
\(545\) 2.62902 0.463568i 0.112615 0.0198571i
\(546\) 1.91814 5.56052i 0.0820889 0.237968i
\(547\) 0.345374 0.289803i 0.0147671 0.0123911i −0.635374 0.772204i \(-0.719154\pi\)
0.650141 + 0.759813i \(0.274710\pi\)
\(548\) 11.9540 + 19.1784i 0.510648 + 0.819259i
\(549\) −0.874688 + 0.318360i −0.0373308 + 0.0135873i
\(550\) −28.8732 + 11.0647i −1.23116 + 0.471801i
\(551\) 13.2157 0.886562i 0.563008 0.0377688i
\(552\) −1.22897 + 2.40195i −0.0523085 + 0.102234i
\(553\) −1.92495 5.28875i −0.0818572 0.224901i
\(554\) 23.1045 4.47756i 0.981617 0.190233i
\(555\) −2.87991 3.43214i −0.122245 0.145686i
\(556\) −0.127704 3.77899i −0.00541587 0.160265i
\(557\) 3.59725 + 20.4010i 0.152420 + 0.864419i 0.961106 + 0.276179i \(0.0890682\pi\)
−0.808686 + 0.588241i \(0.799821\pi\)
\(558\) 1.10207 1.35938i 0.0466545 0.0575472i
\(559\) −9.43579 + 16.3433i −0.399091 + 0.691247i
\(560\) −0.701119 0.343916i −0.0296277 0.0145331i
\(561\) −11.8635 + 32.5947i −0.500877 + 1.37615i
\(562\) −3.35053 + 21.0776i −0.141333 + 0.889104i
\(563\) 17.7749 + 30.7871i 0.749125 + 1.29752i 0.948243 + 0.317546i \(0.102859\pi\)
−0.199118 + 0.979976i \(0.563808\pi\)
\(564\) 2.67238 3.41256i 0.112528 0.143695i
\(565\) 2.53269 3.01834i 0.106551 0.126982i
\(566\) 4.60986 8.30537i 0.193767 0.349101i
\(567\) 6.24856 + 1.10179i 0.262415 + 0.0462708i
\(568\) 24.9849 + 3.11061i 1.04834 + 0.130518i
\(569\) 1.64769i 0.0690748i −0.999403 0.0345374i \(-0.989004\pi\)
0.999403 0.0345374i \(-0.0109958\pi\)
\(570\) −0.799379 3.02433i −0.0334823 0.126675i
\(571\) 13.5132i 0.565511i 0.959192 + 0.282755i \(0.0912484\pi\)
−0.959192 + 0.282755i \(0.908752\pi\)
\(572\) −14.5061 + 27.2081i −0.606531 + 1.13763i
\(573\) −39.6308 6.98798i −1.65560 0.291927i
\(574\) −1.57988 0.876904i −0.0659428 0.0366013i
\(575\) 1.70759 2.03502i 0.0712112 0.0848662i
\(576\) −0.657778 + 0.676560i −0.0274074 + 0.0281900i
\(577\) 9.20209 + 15.9385i 0.383088 + 0.663528i 0.991502 0.130092i \(-0.0415272\pi\)
−0.608414 + 0.793620i \(0.708194\pi\)
\(578\) 3.51820 + 0.559259i 0.146338 + 0.0232621i
\(579\) 12.3425 33.9107i 0.512936 1.40928i
\(580\) −0.652451 1.62012i −0.0270915 0.0672720i
\(581\) −3.39218 + 5.87543i −0.140731 + 0.243754i
\(582\) −7.03381 5.70243i −0.291561 0.236373i
\(583\) 7.70193 + 43.6798i 0.318981 + 1.80903i
\(584\) 3.74781 + 8.87092i 0.155086 + 0.367081i
\(585\) −0.0755498 0.0900368i −0.00312360 0.00372256i
\(586\) −0.730658 3.77024i −0.0301832 0.155747i
\(587\) −0.260988 0.717059i −0.0107721 0.0295962i 0.934190 0.356776i \(-0.116124\pi\)
−0.944962 + 0.327180i \(0.893902\pi\)
\(588\) −17.1774 + 15.4316i −0.708382 + 0.636387i
\(589\) −26.9836 + 36.9196i −1.11184 + 1.52125i
\(590\) 0.650823 + 1.69831i 0.0267940 + 0.0699183i
\(591\) 7.91758 2.88176i 0.325686 0.118540i
\(592\) 9.81082 33.9258i 0.403222 1.39434i
\(593\) −5.75424 + 4.82838i −0.236298 + 0.198278i −0.753245 0.657740i \(-0.771513\pi\)
0.516947 + 0.856017i \(0.327068\pi\)
\(594\) −30.2506 10.4352i −1.24120 0.428161i
\(595\) 0.849435 0.149778i 0.0348235 0.00614031i
\(596\) 5.13451 + 1.67470i 0.210318 + 0.0685983i
\(597\) −8.96956 5.17858i −0.367100 0.211945i
\(598\) −0.0447408 2.64867i −0.00182959 0.108312i
\(599\) 3.55846 + 1.29517i 0.145395 + 0.0529194i 0.413693 0.910417i \(-0.364239\pi\)
−0.268298 + 0.963336i \(0.586461\pi\)
\(600\) 20.6197 13.3411i 0.841797 0.544650i
\(601\) 12.4051 7.16208i 0.506014 0.292147i −0.225180 0.974317i \(-0.572297\pi\)
0.731194 + 0.682170i \(0.238964\pi\)
\(602\) −4.48357 + 2.69057i −0.182737 + 0.109659i
\(603\) 0.448177 + 0.376066i 0.0182512 + 0.0153146i
\(604\) 3.62225 25.5647i 0.147387 1.04021i
\(605\) 0.437633 2.48194i 0.0177923 0.100905i
\(606\) 18.1995 + 20.9600i 0.739305 + 0.851441i
\(607\) −17.3937 −0.705987 −0.352993 0.935626i \(-0.614836\pi\)
−0.352993 + 0.935626i \(0.614836\pi\)
\(608\) 16.2817 18.5178i 0.660309 0.750994i
\(609\) 3.64508 0.147706
\(610\) −2.10284 2.42179i −0.0851414 0.0980555i
\(611\) −0.738980 + 4.19096i −0.0298959 + 0.169548i
\(612\) 0.146212 1.03192i 0.00591028 0.0417129i
\(613\) 0.260867 + 0.218894i 0.0105363 + 0.00884103i 0.648041 0.761606i \(-0.275589\pi\)
−0.637504 + 0.770447i \(0.720033\pi\)
\(614\) −5.91799 + 3.55135i −0.238831 + 0.143321i
\(615\) −0.826557 + 0.477213i −0.0333300 + 0.0192431i
\(616\) −7.17288 + 4.64091i −0.289004 + 0.186988i
\(617\) −38.7470 14.1028i −1.55990 0.567755i −0.589183 0.808000i \(-0.700550\pi\)
−0.970712 + 0.240244i \(0.922772\pi\)
\(618\) −0.122196 7.23403i −0.00491544 0.290996i
\(619\) 16.6044 + 9.58653i 0.667386 + 0.385315i 0.795085 0.606498i \(-0.207426\pi\)
−0.127700 + 0.991813i \(0.540759\pi\)
\(620\) 5.73273 + 1.86982i 0.230232 + 0.0750937i
\(621\) 2.70748 0.477403i 0.108648 0.0191575i
\(622\) −12.1367 4.18665i −0.486638 0.167870i
\(623\) 5.61715 4.71335i 0.225046 0.188836i
\(624\) 6.80339 23.5261i 0.272354 0.941799i
\(625\) −22.3346 + 8.12912i −0.893383 + 0.325165i
\(626\) −0.441922 1.15319i −0.0176628 0.0460906i
\(627\) −32.8698 9.52599i −1.31269 0.380431i
\(628\) 35.7130 32.0834i 1.42510 1.28027i
\(629\) 13.3411 + 36.6543i 0.531943 + 1.46150i
\(630\) −0.00619595 0.0319715i −0.000246853 0.00127378i
\(631\) 22.7701 + 27.1363i 0.906462 + 1.08028i 0.996437 + 0.0843359i \(0.0268769\pi\)
−0.0899749 + 0.995944i \(0.528679\pi\)
\(632\) −9.11956 21.5857i −0.362757 0.858631i
\(633\) −5.21387 29.5693i −0.207233 1.17527i
\(634\) −27.0061 21.8943i −1.07255 0.869535i
\(635\) 0.726604 1.25851i 0.0288344 0.0499426i
\(636\) −13.1601 32.6783i −0.521832 1.29578i
\(637\) 7.75400 21.3039i 0.307225 0.844093i
\(638\) −18.8705 2.99968i −0.747088 0.118758i
\(639\) 0.524984 + 0.909299i 0.0207680 + 0.0359713i
\(640\) −2.98790 1.28221i −0.118107 0.0506839i
\(641\) 16.5658 19.7424i 0.654310 0.779777i −0.332247 0.943192i \(-0.607807\pi\)
0.986557 + 0.163416i \(0.0522512\pi\)
\(642\) −20.4295 11.3393i −0.806287 0.447526i
\(643\) 2.51226 + 0.442980i 0.0990740 + 0.0174694i 0.222965 0.974826i \(-0.428426\pi\)
−0.123891 + 0.992296i \(0.539537\pi\)
\(644\) 0.345319 0.647690i 0.0136075 0.0255226i
\(645\) 2.76194i 0.108751i
\(646\) −2.46568 + 27.1227i −0.0970109 + 1.06713i
\(647\) 16.5839i 0.651979i −0.945373 0.325989i \(-0.894303\pi\)
0.945373 0.325989i \(-0.105697\pi\)
\(648\) 26.2150 + 3.26375i 1.02982 + 0.128212i
\(649\) 19.5947 + 3.45508i 0.769160 + 0.135624i
\(650\) −11.7020 + 21.0829i −0.458989 + 0.826940i
\(651\) −8.08917 + 9.64030i −0.317040 + 0.377833i
\(652\) −13.0564 + 16.6727i −0.511330 + 0.652955i
\(653\) −21.6722 37.5373i −0.848098 1.46895i −0.882904 0.469554i \(-0.844415\pi\)
0.0348059 0.999394i \(-0.488919\pi\)
\(654\) −3.64167 + 22.9091i −0.142400 + 0.895816i
\(655\) 1.66396 4.57170i 0.0650164 0.178631i
\(656\) −6.75434 3.31316i −0.263713 0.129357i
\(657\) −0.200799 + 0.347794i −0.00783391 + 0.0135687i
\(658\) −0.742573 + 0.915946i −0.0289485 + 0.0357073i
\(659\) −5.07827 28.8003i −0.197821 1.12190i −0.908344 0.418225i \(-0.862652\pi\)
0.710522 0.703675i \(-0.248459\pi\)
\(660\) 0.152409 + 4.51004i 0.00593251 + 0.175553i
\(661\) 22.9313 + 27.3285i 0.891926 + 1.06296i 0.997647 + 0.0685600i \(0.0218405\pi\)
−0.105721 + 0.994396i \(0.533715\pi\)
\(662\) 10.0198 1.94179i 0.389429 0.0754697i
\(663\) 9.25147 + 25.4182i 0.359297 + 0.987161i
\(664\) −12.8663 + 25.1464i −0.499309 + 0.975870i
\(665\) 0.203537 + 0.826296i 0.00789283 + 0.0320424i
\(666\) 1.37523 0.527012i 0.0532890 0.0204213i
\(667\) 1.54260 0.561460i 0.0597297 0.0217398i
\(668\) 16.9837 + 27.2479i 0.657120 + 1.05425i
\(669\) −18.6826 + 15.6765i −0.722310 + 0.606090i
\(670\) −0.657393 + 1.90572i −0.0253973 + 0.0736244i
\(671\) −34.5551 + 6.09300i −1.33399 + 0.235218i
\(672\) 4.81169 4.78468i 0.185615 0.184573i
\(673\) −18.4104 10.6293i −0.709669 0.409727i 0.101270 0.994859i \(-0.467710\pi\)
−0.810938 + 0.585132i \(0.801043\pi\)
\(674\) 4.11795 0.0695597i 0.158618 0.00267934i
\(675\) −23.5157 8.55902i −0.905120 0.329437i
\(676\) −0.404352 1.91292i −0.0155520 0.0735738i
\(677\) 19.3161 11.1522i 0.742379 0.428613i −0.0805548 0.996750i \(-0.525669\pi\)
0.822934 + 0.568138i \(0.192336\pi\)
\(678\) 17.6169 + 29.3569i 0.676573 + 1.12744i
\(679\) 1.88701 + 1.58339i 0.0724168 + 0.0607649i
\(680\) 3.50052 0.801932i 0.134239 0.0307527i
\(681\) 3.46358 19.6429i 0.132725 0.752719i
\(682\) 49.8107 43.2506i 1.90735 1.65615i
\(683\) −4.25657 −0.162873 −0.0814366 0.996679i \(-0.525951\pi\)
−0.0814366 + 0.996679i \(0.525951\pi\)
\(684\) 1.02548 + 0.0757862i 0.0392103 + 0.00289776i
\(685\) −3.24730 −0.124073
\(686\) 9.82114 8.52768i 0.374973 0.325588i
\(687\) 1.58660 8.99805i 0.0605325 0.343297i
\(688\) −18.0761 + 12.1333i −0.689145 + 0.462579i
\(689\) 26.4960 + 22.2328i 1.00942 + 0.847003i
\(690\) −0.199493 0.332435i −0.00759455 0.0126556i
\(691\) 4.43757 2.56203i 0.168813 0.0974643i −0.413213 0.910634i \(-0.635593\pi\)
0.582026 + 0.813170i \(0.302260\pi\)
\(692\) −11.3793 + 2.40536i −0.432577 + 0.0914379i
\(693\) −0.334789 0.121853i −0.0127176 0.00462882i
\(694\) −43.5010 + 0.734811i −1.65128 + 0.0278930i
\(695\) 0.470534 + 0.271663i 0.0178484 + 0.0103048i
\(696\) 15.1569 0.768667i 0.574521 0.0291362i
\(697\) 8.18316 1.44291i 0.309959 0.0546542i
\(698\) −14.4687 + 41.9434i −0.547648 + 1.58758i
\(699\) 8.35809 7.01327i 0.316132 0.265266i
\(700\) −5.66991 + 3.53408i −0.214302 + 0.133576i
\(701\) 39.1100 14.2349i 1.47717 0.537644i 0.527130 0.849785i \(-0.323268\pi\)
0.950036 + 0.312140i \(0.101046\pi\)
\(702\) −23.3019 + 8.92973i −0.879475 + 0.337031i
\(703\) −35.2016 + 15.5536i −1.32765 + 0.586613i
\(704\) −28.8475 + 20.8104i −1.08723 + 0.784320i
\(705\) 0.213019 + 0.585266i 0.00802278 + 0.0220424i
\(706\) −13.5416 + 2.62431i −0.509646 + 0.0987673i
\(707\) −4.85401 5.78478i −0.182554 0.217559i
\(708\) −15.7945 + 0.533749i −0.593595 + 0.0200595i
\(709\) −1.17231 6.64851i −0.0440271 0.249690i 0.954849 0.297092i \(-0.0960169\pi\)
−0.998876 + 0.0474022i \(0.984906\pi\)
\(710\) −2.27838 + 2.81033i −0.0855062 + 0.105470i
\(711\) 0.488605 0.846288i 0.0183241 0.0317383i
\(712\) 22.3632 20.7835i 0.838096 0.778894i
\(713\) −1.93842 + 5.32577i −0.0725945 + 0.199452i
\(714\) −1.17662 + 7.40190i −0.0440339 + 0.277009i
\(715\) −2.21528 3.83699i −0.0828470 0.143495i
\(716\) −37.6391 29.4752i −1.40664 1.10154i
\(717\) 8.94972 10.6659i 0.334234 0.398324i
\(718\) 22.4274 40.4064i 0.836984 1.50796i
\(719\) 28.0650 + 4.94861i 1.04665 + 0.184552i 0.670425 0.741977i \(-0.266112\pi\)
0.376222 + 0.926529i \(0.377223\pi\)
\(720\) −0.0325060 0.131637i −0.00121143 0.00490581i
\(721\) 1.96823i 0.0733009i
\(722\) −26.8625 0.636104i −0.999720 0.0236734i
\(723\) 27.3017i 1.01536i
\(724\) 9.61640 + 5.12703i 0.357391 + 0.190545i
\(725\) −14.7155 2.59475i −0.546522 0.0963665i
\(726\) 19.1473 + 10.6276i 0.710622 + 0.394428i
\(727\) −23.5241 + 28.0349i −0.872461 + 1.03976i 0.126397 + 0.991980i \(0.459659\pi\)
−0.998858 + 0.0477786i \(0.984786\pi\)
\(728\) −1.95863 + 6.36790i −0.0725917 + 0.236010i
\(729\) −12.9283 22.3925i −0.478826 0.829351i
\(730\) −1.36663 0.217241i −0.0505811 0.00804046i
\(731\) 8.22418 22.5958i 0.304182 0.835734i
\(732\) 25.8518 10.4110i 0.955510 0.384800i
\(733\) 15.7141 27.2176i 0.580413 1.00531i −0.415017 0.909814i \(-0.636224\pi\)
0.995430 0.0954919i \(-0.0304424\pi\)
\(734\) 27.9655 + 22.6721i 1.03222 + 0.836842i
\(735\) −0.576169 3.26761i −0.0212523 0.120528i
\(736\) 1.29932 2.76603i 0.0478934 0.101957i
\(737\) 14.1761 + 16.8944i 0.522184 + 0.622315i
\(738\) −0.0596896 0.308002i −0.00219721 0.0113377i
\(739\) −12.5256 34.4138i −0.460762 1.26593i −0.924914 0.380177i \(-0.875863\pi\)
0.464152 0.885756i \(-0.346359\pi\)
\(740\) 3.39136 + 3.77503i 0.124669 + 0.138773i
\(741\) −24.4108 + 10.7857i −0.896754 + 0.396224i
\(742\) 3.42943 + 8.94903i 0.125898 + 0.328529i
\(743\) −18.4966 + 6.73220i −0.678573 + 0.246980i −0.658235 0.752813i \(-0.728697\pi\)
−0.0203384 + 0.999793i \(0.506474\pi\)
\(744\) −31.6033 + 41.7919i −1.15863 + 1.53217i
\(745\) −0.594486 + 0.498833i −0.0217803 + 0.0182758i
\(746\) 34.9656 + 12.0616i 1.28018 + 0.441608i
\(747\) −1.16006 + 0.204550i −0.0424444 + 0.00748408i
\(748\) 12.1826 37.3511i 0.445441 1.36569i
\(749\) 5.50476 + 3.17817i 0.201140 + 0.116128i
\(750\) 0.120207 + 7.11627i 0.00438932 + 0.259849i
\(751\) 10.9116 + 3.97149i 0.398169 + 0.144922i 0.533341 0.845900i \(-0.320936\pi\)
−0.135171 + 0.990822i \(0.543159\pi\)
\(752\) −2.89460 + 3.96526i −0.105555 + 0.144598i
\(753\) 12.6629 7.31090i 0.461460 0.266424i
\(754\) −12.7765 + 7.66710i −0.465293 + 0.279219i
\(755\) 2.84215 + 2.38485i 0.103437 + 0.0867936i
\(756\) −6.84595 0.969999i −0.248985 0.0352785i
\(757\) 2.76506 15.6814i 0.100498 0.569952i −0.892426 0.451195i \(-0.850998\pi\)
0.992923 0.118757i \(-0.0378909\pi\)
\(758\) 10.5466 + 12.1463i 0.383071 + 0.441175i
\(759\) −4.24142 −0.153954
\(760\) 1.02059 + 3.39297i 0.0370207 + 0.123076i
\(761\) −7.73239 −0.280299 −0.140149 0.990130i \(-0.544758\pi\)
−0.140149 + 0.990130i \(0.544758\pi\)
\(762\) 8.27890 + 9.53462i 0.299913 + 0.345403i
\(763\) 1.09580 6.21459i 0.0396706 0.224983i
\(764\) 45.1295 + 6.39438i 1.63273 + 0.231340i
\(765\) 0.114724 + 0.0962645i 0.00414784 + 0.00348045i
\(766\) −19.0021 + 11.4030i −0.686572 + 0.412008i
\(767\) 13.4374 7.75811i 0.485198 0.280129i
\(768\) 18.9989 20.9102i 0.685564 0.754533i
\(769\) −24.5001 8.91731i −0.883496 0.321566i −0.139877 0.990169i \(-0.544671\pi\)
−0.743620 + 0.668603i \(0.766893\pi\)
\(770\) −0.0207337 1.22744i −0.000747191 0.0442339i
\(771\) −8.87699 5.12513i −0.319697 0.184577i
\(772\) −12.6745 + 38.8591i −0.456165 + 1.39857