Properties

Label 76.2.k.a.71.5
Level $76$
Weight $2$
Character 76.71
Analytic conductor $0.607$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 76.k (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.606863055362\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 71.5
Character \(\chi\) \(=\) 76.71
Dual form 76.2.k.a.15.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0238852 + 1.41401i) q^{2} +(-0.306623 + 1.73895i) q^{3} +(-1.99886 - 0.0675479i) q^{4} +(-0.220151 - 0.184728i) q^{5} +(-2.45157 - 0.475104i) q^{6} +(0.588321 - 0.339668i) q^{7} +(0.143257 - 2.82480i) q^{8} +(-0.110838 - 0.0403418i) q^{9} +O(q^{10})\) \(q+(-0.0238852 + 1.41401i) q^{2} +(-0.306623 + 1.73895i) q^{3} +(-1.99886 - 0.0675479i) q^{4} +(-0.220151 - 0.184728i) q^{5} +(-2.45157 - 0.475104i) q^{6} +(0.588321 - 0.339668i) q^{7} +(0.143257 - 2.82480i) q^{8} +(-0.110838 - 0.0403418i) q^{9} +(0.266467 - 0.306884i) q^{10} +(3.85060 + 2.22314i) q^{11} +(0.730359 - 3.45520i) q^{12} +(-3.41466 + 0.602096i) q^{13} +(0.466242 + 0.840006i) q^{14} +(0.388736 - 0.326188i) q^{15} +(3.99087 + 0.270038i) q^{16} +(4.15159 - 1.51105i) q^{17} +(0.0596912 - 0.155763i) q^{18} +(-1.76165 - 3.98705i) q^{19} +(0.427572 + 0.384117i) q^{20} +(0.410271 + 1.12721i) q^{21} +(-3.23552 + 5.39169i) q^{22} +(-0.347253 - 0.413840i) q^{23} +(4.86824 + 1.11526i) q^{24} +(-0.853899 - 4.84270i) q^{25} +(-0.769811 - 4.84275i) q^{26} +(-2.54452 + 4.40724i) q^{27} +(-1.19892 + 0.639208i) q^{28} +(1.03930 - 2.85545i) q^{29} +(0.451949 + 0.557469i) q^{30} +(-5.24551 - 9.08550i) q^{31} +(-0.477159 + 5.63669i) q^{32} +(-5.04661 + 6.01432i) q^{33} +(2.03749 + 5.90649i) q^{34} +(-0.192266 - 0.0339016i) q^{35} +(0.218825 + 0.0881245i) q^{36} +8.82897i q^{37} +(5.67982 - 2.39576i) q^{38} -6.12252i q^{39} +(-0.553358 + 0.595418i) q^{40} +(1.85222 + 0.326596i) q^{41} +(-1.60369 + 0.553204i) q^{42} +(-3.49849 + 4.16933i) q^{43} +(-7.54663 - 4.70385i) q^{44} +(0.0169489 + 0.0293563i) q^{45} +(0.593469 - 0.481135i) q^{46} +(-0.419777 + 1.15333i) q^{47} +(-1.69328 + 6.85712i) q^{48} +(-3.26925 + 5.66251i) q^{49} +(6.86803 - 1.09175i) q^{50} +(1.35467 + 7.68271i) q^{51} +(6.86609 - 0.972852i) q^{52} +(-6.41208 - 7.64162i) q^{53} +(-6.17111 - 3.70325i) q^{54} +(-0.437034 - 1.20074i) q^{55} +(-0.875211 - 1.71055i) q^{56} +(7.47343 - 1.84089i) q^{57} +(4.01281 + 1.53778i) q^{58} +(4.20510 - 1.53053i) q^{59} +(-0.799062 + 0.625746i) q^{60} +(6.04529 - 5.07260i) q^{61} +(12.9723 - 7.20021i) q^{62} +(-0.0789113 + 0.0139142i) q^{63} +(-7.95896 - 0.809342i) q^{64} +(0.862964 + 0.498232i) q^{65} +(-8.38378 - 7.27962i) q^{66} +(4.66099 + 1.69646i) q^{67} +(-8.40051 + 2.73995i) q^{68} +(0.826122 - 0.476961i) q^{69} +(0.0525296 - 0.271056i) q^{70} +(6.81908 + 5.72189i) q^{71} +(-0.129836 + 0.307316i) q^{72} +(0.591231 - 3.35304i) q^{73} +(-12.4843 - 0.210882i) q^{74} +8.68302 q^{75} +(3.25197 + 8.08855i) q^{76} +3.02052 q^{77} +(8.65732 + 0.146238i) q^{78} +(1.43865 - 8.15896i) q^{79} +(-0.828711 - 0.796677i) q^{80} +(-7.15481 - 6.00360i) q^{81} +(-0.506052 + 2.61126i) q^{82} +(-8.64879 + 4.99338i) q^{83} +(-0.743932 - 2.28085i) q^{84} +(-1.19311 - 0.434257i) q^{85} +(-5.81192 - 5.04649i) q^{86} +(4.64680 + 2.68283i) q^{87} +(6.83155 - 10.5587i) q^{88} +(-10.6299 + 1.87434i) q^{89} +(-0.0419149 + 0.0232647i) q^{90} +(-1.80440 + 1.51407i) q^{91} +(0.666156 + 0.850664i) q^{92} +(17.4076 - 6.33584i) q^{93} +(-1.62079 - 0.621117i) q^{94} +(-0.348694 + 1.20318i) q^{95} +(-9.65560 - 2.55809i) q^{96} +(-1.24019 - 3.40739i) q^{97} +(-7.92877 - 4.75801i) q^{98} +(-0.337108 - 0.401750i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 6q^{2} - 12q^{5} - 12q^{6} - 9q^{8} - 18q^{9} + O(q^{10}) \) \( 48q - 6q^{2} - 12q^{5} - 12q^{6} - 9q^{8} - 18q^{9} - 3q^{10} - 9q^{12} - 3q^{14} - 12q^{17} - 42q^{20} - 18q^{21} - 12q^{22} + 24q^{24} - 12q^{25} + 21q^{26} - 12q^{29} + 42q^{30} + 9q^{32} - 36q^{33} + 87q^{36} + 60q^{38} + 6q^{40} + 30q^{41} + 3q^{42} + 45q^{44} - 6q^{45} + 36q^{46} + 45q^{48} - 18q^{49} + 18q^{50} - 15q^{52} - 24q^{53} - 75q^{54} - 12q^{57} + 60q^{58} + 6q^{60} - 66q^{62} - 45q^{64} + 18q^{65} - 42q^{66} - 42q^{68} + 126q^{69} - 63q^{70} - 78q^{72} - 12q^{73} - 105q^{74} - 126q^{76} - 36q^{77} + 3q^{78} - 3q^{80} + 72q^{81} - 111q^{82} - 117q^{84} + 108q^{85} - 24q^{86} - 81q^{88} - 18q^{90} + 36q^{92} + 30q^{93} - 66q^{96} - 6q^{97} + 39q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0238852 + 1.41401i −0.0168894 + 0.999857i
\(3\) −0.306623 + 1.73895i −0.177029 + 1.00398i 0.758747 + 0.651386i \(0.225812\pi\)
−0.935776 + 0.352595i \(0.885299\pi\)
\(4\) −1.99886 0.0675479i −0.999429 0.0337740i
\(5\) −0.220151 0.184728i −0.0984544 0.0826131i 0.592232 0.805768i \(-0.298247\pi\)
−0.690686 + 0.723155i \(0.742691\pi\)
\(6\) −2.45157 0.475104i −1.00085 0.193960i
\(7\) 0.588321 0.339668i 0.222365 0.128382i −0.384680 0.923050i \(-0.625688\pi\)
0.607045 + 0.794668i \(0.292355\pi\)
\(8\) 0.143257 2.82480i 0.0506489 0.998717i
\(9\) −0.110838 0.0403418i −0.0369461 0.0134473i
\(10\) 0.266467 0.306884i 0.0842641 0.0970451i
\(11\) 3.85060 + 2.22314i 1.16100 + 0.670303i 0.951543 0.307515i \(-0.0994974\pi\)
0.209456 + 0.977818i \(0.432831\pi\)
\(12\) 0.730359 3.45520i 0.210836 0.997429i
\(13\) −3.41466 + 0.602096i −0.947056 + 0.166991i −0.625785 0.779996i \(-0.715221\pi\)
−0.321271 + 0.946987i \(0.604110\pi\)
\(14\) 0.466242 + 0.840006i 0.124608 + 0.224501i
\(15\) 0.388736 0.326188i 0.100371 0.0842215i
\(16\) 3.99087 + 0.270038i 0.997719 + 0.0675094i
\(17\) 4.15159 1.51105i 1.00691 0.366485i 0.214663 0.976688i \(-0.431135\pi\)
0.792245 + 0.610203i \(0.208912\pi\)
\(18\) 0.0596912 0.155763i 0.0140694 0.0367137i
\(19\) −1.76165 3.98705i −0.404150 0.914693i
\(20\) 0.427572 + 0.384117i 0.0956081 + 0.0858911i
\(21\) 0.410271 + 1.12721i 0.0895284 + 0.245977i
\(22\) −3.23552 + 5.39169i −0.689816 + 1.14951i
\(23\) −0.347253 0.413840i −0.0724073 0.0862916i 0.728625 0.684913i \(-0.240160\pi\)
−0.801032 + 0.598621i \(0.795715\pi\)
\(24\) 4.86824 + 1.11526i 0.993726 + 0.227652i
\(25\) −0.853899 4.84270i −0.170780 0.968541i
\(26\) −0.769811 4.84275i −0.150972 0.949741i
\(27\) −2.54452 + 4.40724i −0.489693 + 0.848174i
\(28\) −1.19892 + 0.639208i −0.226574 + 0.120799i
\(29\) 1.03930 2.85545i 0.192993 0.530244i −0.805020 0.593247i \(-0.797846\pi\)
0.998013 + 0.0630035i \(0.0200679\pi\)
\(30\) 0.451949 + 0.557469i 0.0825143 + 0.101779i
\(31\) −5.24551 9.08550i −0.942122 1.63180i −0.761413 0.648267i \(-0.775494\pi\)
−0.180709 0.983537i \(-0.557839\pi\)
\(32\) −0.477159 + 5.63669i −0.0843506 + 0.996436i
\(33\) −5.04661 + 6.01432i −0.878502 + 1.04696i
\(34\) 2.03749 + 5.90649i 0.349426 + 1.01295i
\(35\) −0.192266 0.0339016i −0.0324988 0.00573042i
\(36\) 0.218825 + 0.0881245i 0.0364708 + 0.0146874i
\(37\) 8.82897i 1.45147i 0.687972 + 0.725737i \(0.258501\pi\)
−0.687972 + 0.725737i \(0.741499\pi\)
\(38\) 5.67982 2.39576i 0.921388 0.388644i
\(39\) 6.12252i 0.980388i
\(40\) −0.553358 + 0.595418i −0.0874937 + 0.0941438i
\(41\) 1.85222 + 0.326596i 0.289268 + 0.0510058i 0.316399 0.948626i \(-0.397526\pi\)
−0.0271312 + 0.999632i \(0.508637\pi\)
\(42\) −1.60369 + 0.553204i −0.247454 + 0.0853612i
\(43\) −3.49849 + 4.16933i −0.533514 + 0.635817i −0.963721 0.266913i \(-0.913996\pi\)
0.430207 + 0.902730i \(0.358441\pi\)
\(44\) −7.54663 4.70385i −1.13770 0.709132i
\(45\) 0.0169489 + 0.0293563i 0.00252659 + 0.00437617i
\(46\) 0.593469 0.481135i 0.0875022 0.0709395i
\(47\) −0.419777 + 1.15333i −0.0612307 + 0.168230i −0.966536 0.256532i \(-0.917420\pi\)
0.905305 + 0.424762i \(0.139642\pi\)
\(48\) −1.69328 + 6.85712i −0.244403 + 0.989739i
\(49\) −3.26925 + 5.66251i −0.467036 + 0.808930i
\(50\) 6.86803 1.09175i 0.971287 0.154397i
\(51\) 1.35467 + 7.68271i 0.189692 + 1.07580i
\(52\) 6.86609 0.972852i 0.952155 0.134910i
\(53\) −6.41208 7.64162i −0.880767 1.04966i −0.998397 0.0565997i \(-0.981974\pi\)
0.117630 0.993057i \(-0.462470\pi\)
\(54\) −6.17111 3.70325i −0.839782 0.503948i
\(55\) −0.437034 1.20074i −0.0589297 0.161908i
\(56\) −0.875211 1.71055i −0.116955 0.228582i
\(57\) 7.47343 1.84089i 0.989880 0.243832i
\(58\) 4.01281 + 1.53778i 0.526908 + 0.201921i
\(59\) 4.20510 1.53053i 0.547457 0.199258i −0.0534593 0.998570i \(-0.517025\pi\)
0.600916 + 0.799312i \(0.294803\pi\)
\(60\) −0.799062 + 0.625746i −0.103158 + 0.0807835i
\(61\) 6.04529 5.07260i 0.774020 0.649480i −0.167715 0.985836i \(-0.553639\pi\)
0.941735 + 0.336356i \(0.109194\pi\)
\(62\) 12.9723 7.20021i 1.64748 0.914428i
\(63\) −0.0789113 + 0.0139142i −0.00994189 + 0.00175302i
\(64\) −7.95896 0.809342i −0.994869 0.101168i
\(65\) 0.862964 + 0.498232i 0.107037 + 0.0617981i
\(66\) −8.38378 7.27962i −1.03197 0.896059i
\(67\) 4.66099 + 1.69646i 0.569430 + 0.207256i 0.610658 0.791894i \(-0.290905\pi\)
−0.0412282 + 0.999150i \(0.513127\pi\)
\(68\) −8.40051 + 2.73995i −1.01871 + 0.332268i
\(69\) 0.826122 0.476961i 0.0994533 0.0574194i
\(70\) 0.0525296 0.271056i 0.00627849 0.0323974i
\(71\) 6.81908 + 5.72189i 0.809276 + 0.679064i 0.950435 0.310923i \(-0.100638\pi\)
−0.141159 + 0.989987i \(0.545083\pi\)
\(72\) −0.129836 + 0.307316i −0.0153013 + 0.0362176i
\(73\) 0.591231 3.35304i 0.0691984 0.392444i −0.930462 0.366388i \(-0.880594\pi\)
0.999661 0.0260554i \(-0.00829463\pi\)
\(74\) −12.4843 0.210882i −1.45127 0.0245145i
\(75\) 8.68302 1.00263
\(76\) 3.25197 + 8.08855i 0.373027 + 0.927821i
\(77\) 3.02052 0.344220
\(78\) 8.65732 + 0.146238i 0.980248 + 0.0165582i
\(79\) 1.43865 8.15896i 0.161860 0.917955i −0.790383 0.612614i \(-0.790118\pi\)
0.952243 0.305342i \(-0.0987707\pi\)
\(80\) −0.828711 0.796677i −0.0926527 0.0890712i
\(81\) −7.15481 6.00360i −0.794979 0.667067i
\(82\) −0.506052 + 2.61126i −0.0558841 + 0.288365i
\(83\) −8.64879 + 4.99338i −0.949328 + 0.548095i −0.892872 0.450310i \(-0.851313\pi\)
−0.0564561 + 0.998405i \(0.517980\pi\)
\(84\) −0.743932 2.28085i −0.0811697 0.248861i
\(85\) −1.19311 0.434257i −0.129411 0.0471018i
\(86\) −5.81192 5.04649i −0.626716 0.544177i
\(87\) 4.64680 + 2.68283i 0.498189 + 0.287630i
\(88\) 6.83155 10.5587i 0.728246 1.12556i
\(89\) −10.6299 + 1.87434i −1.12677 + 0.198680i −0.705811 0.708401i \(-0.749417\pi\)
−0.420958 + 0.907080i \(0.638306\pi\)
\(90\) −0.0419149 + 0.0232647i −0.00441822 + 0.00245231i
\(91\) −1.80440 + 1.51407i −0.189153 + 0.158718i
\(92\) 0.666156 + 0.850664i 0.0694516 + 0.0886879i
\(93\) 17.4076 6.33584i 1.80508 0.656996i
\(94\) −1.62079 0.621117i −0.167172 0.0640633i
\(95\) −0.348694 + 1.20318i −0.0357752 + 0.123444i
\(96\) −9.65560 2.55809i −0.985471 0.261084i
\(97\) −1.24019 3.40739i −0.125922 0.345968i 0.860672 0.509159i \(-0.170044\pi\)
−0.986595 + 0.163191i \(0.947821\pi\)
\(98\) −7.92877 4.75801i −0.800927 0.480632i
\(99\) −0.337108 0.401750i −0.0338806 0.0403774i
\(100\) 1.37971 + 9.73756i 0.137971 + 0.973756i
\(101\) 1.93027 + 10.9471i 0.192069 + 1.08928i 0.916531 + 0.399965i \(0.130978\pi\)
−0.724461 + 0.689316i \(0.757911\pi\)
\(102\) −10.8958 + 1.73202i −1.07885 + 0.171495i
\(103\) −1.44865 + 2.50913i −0.142740 + 0.247232i −0.928527 0.371264i \(-0.878924\pi\)
0.785788 + 0.618496i \(0.212258\pi\)
\(104\) 1.21163 + 9.73197i 0.118810 + 0.954298i
\(105\) 0.117906 0.323945i 0.0115065 0.0316138i
\(106\) 10.9585 8.88424i 1.06438 0.862913i
\(107\) 4.67836 + 8.10316i 0.452274 + 0.783362i 0.998527 0.0542585i \(-0.0172795\pi\)
−0.546253 + 0.837620i \(0.683946\pi\)
\(108\) 5.38384 8.63757i 0.518060 0.831151i
\(109\) −5.97096 + 7.11592i −0.571915 + 0.681581i −0.972023 0.234887i \(-0.924528\pi\)
0.400108 + 0.916468i \(0.368973\pi\)
\(110\) 1.70830 0.589292i 0.162880 0.0561868i
\(111\) −15.3531 2.70717i −1.45725 0.256953i
\(112\) 2.43964 1.19670i 0.230524 0.113078i
\(113\) 13.7103i 1.28976i 0.764285 + 0.644879i \(0.223092\pi\)
−0.764285 + 0.644879i \(0.776908\pi\)
\(114\) 2.42454 + 10.6115i 0.227079 + 0.993857i
\(115\) 0.155255i 0.0144776i
\(116\) −2.27029 + 5.63744i −0.210791 + 0.523423i
\(117\) 0.402764 + 0.0710182i 0.0372356 + 0.00656564i
\(118\) 2.06375 + 5.98261i 0.189983 + 0.550744i
\(119\) 1.92921 2.29915i 0.176851 0.210762i
\(120\) −0.865727 1.14483i −0.0790297 0.104508i
\(121\) 4.38474 + 7.59459i 0.398613 + 0.690417i
\(122\) 7.02832 + 8.66927i 0.636315 + 0.784879i
\(123\) −1.13587 + 3.12077i −0.102418 + 0.281390i
\(124\) 9.87134 + 18.5149i 0.886472 + 1.66269i
\(125\) −1.42506 + 2.46828i −0.127462 + 0.220770i
\(126\) −0.0177900 0.111914i −0.00158486 0.00997008i
\(127\) −0.878075 4.97981i −0.0779165 0.441887i −0.998662 0.0517217i \(-0.983529\pi\)
0.920745 0.390165i \(-0.127582\pi\)
\(128\) 1.33452 11.2347i 0.117956 0.993019i
\(129\) −6.17753 7.36209i −0.543901 0.648196i
\(130\) −0.725119 + 1.20834i −0.0635971 + 0.105978i
\(131\) −5.78998 15.9078i −0.505873 1.38987i −0.885459 0.464718i \(-0.846156\pi\)
0.379586 0.925156i \(-0.376066\pi\)
\(132\) 10.4937 11.6809i 0.913361 1.01669i
\(133\) −2.39069 1.74729i −0.207299 0.151510i
\(134\) −2.51014 + 6.55017i −0.216843 + 0.565849i
\(135\) 1.37432 0.500212i 0.118283 0.0430514i
\(136\) −3.67368 11.9439i −0.315015 1.02418i
\(137\) 8.65585 7.26312i 0.739519 0.620530i −0.193189 0.981161i \(-0.561883\pi\)
0.932708 + 0.360631i \(0.117439\pi\)
\(138\) 0.654697 + 1.17954i 0.0557315 + 0.100409i
\(139\) 1.86185 0.328295i 0.157920 0.0278456i −0.0941290 0.995560i \(-0.530007\pi\)
0.252049 + 0.967714i \(0.418895\pi\)
\(140\) 0.382022 + 0.0807517i 0.0322868 + 0.00682477i
\(141\) −1.87686 1.08361i −0.158060 0.0912561i
\(142\) −8.25370 + 9.50560i −0.692635 + 0.797692i
\(143\) −14.4870 5.27284i −1.21147 0.440937i
\(144\) −0.431448 0.190930i −0.0359540 0.0159108i
\(145\) −0.756285 + 0.436641i −0.0628061 + 0.0362611i
\(146\) 4.72711 + 0.916096i 0.391219 + 0.0758166i
\(147\) −8.84437 7.42131i −0.729472 0.612099i
\(148\) 0.596379 17.6479i 0.0490220 1.45065i
\(149\) 0.468913 2.65934i 0.0384148 0.217861i −0.959557 0.281513i \(-0.909164\pi\)
0.997972 + 0.0636520i \(0.0202748\pi\)
\(150\) −0.207396 + 12.2779i −0.0169338 + 1.00249i
\(151\) 12.9100 1.05060 0.525302 0.850916i \(-0.323952\pi\)
0.525302 + 0.850916i \(0.323952\pi\)
\(152\) −11.5150 + 4.40513i −0.933988 + 0.357303i
\(153\) −0.521114 −0.0421295
\(154\) −0.0721457 + 4.27105i −0.00581367 + 0.344171i
\(155\) −0.523546 + 2.96917i −0.0420522 + 0.238490i
\(156\) −0.413564 + 12.2381i −0.0331116 + 0.979829i
\(157\) −18.3881 15.4295i −1.46753 1.23140i −0.918391 0.395674i \(-0.870511\pi\)
−0.549140 0.835730i \(-0.685045\pi\)
\(158\) 11.5025 + 2.22914i 0.915090 + 0.177341i
\(159\) 15.2545 8.80717i 1.20976 0.698454i
\(160\) 1.14630 1.15278i 0.0906233 0.0911351i
\(161\) −0.344864 0.125520i −0.0271791 0.00989239i
\(162\) 8.66005 9.97359i 0.680398 0.783599i
\(163\) −9.16976 5.29416i −0.718231 0.414671i 0.0958702 0.995394i \(-0.469437\pi\)
−0.814101 + 0.580723i \(0.802770\pi\)
\(164\) −3.68026 0.777933i −0.287380 0.0607464i
\(165\) 2.22203 0.391804i 0.172985 0.0305019i
\(166\) −6.85412 12.3488i −0.531983 0.958450i
\(167\) −12.2979 + 10.3192i −0.951640 + 0.798521i −0.979573 0.201089i \(-0.935552\pi\)
0.0279326 + 0.999610i \(0.491108\pi\)
\(168\) 3.24291 0.997451i 0.250196 0.0769550i
\(169\) −0.918638 + 0.334357i −0.0706644 + 0.0257198i
\(170\) 0.642542 1.67670i 0.0492807 0.128597i
\(171\) 0.0344131 + 0.512986i 0.00263164 + 0.0392290i
\(172\) 7.27461 8.09759i 0.554684 0.617436i
\(173\) 1.98898 + 5.46467i 0.151219 + 0.415471i 0.992053 0.125823i \(-0.0401570\pi\)
−0.840834 + 0.541294i \(0.817935\pi\)
\(174\) −3.90454 + 6.50655i −0.296003 + 0.493260i
\(175\) −2.14728 2.55902i −0.162319 0.193444i
\(176\) 14.7669 + 9.91210i 1.11310 + 0.747152i
\(177\) 1.37213 + 7.78173i 0.103136 + 0.584911i
\(178\) −2.39644 15.0756i −0.179621 1.12996i
\(179\) 11.9517 20.7009i 0.893312 1.54726i 0.0574313 0.998349i \(-0.481709\pi\)
0.835880 0.548912i \(-0.184958\pi\)
\(180\) −0.0318954 0.0598239i −0.00237734 0.00445901i
\(181\) 1.86363 5.12028i 0.138522 0.380587i −0.850962 0.525227i \(-0.823980\pi\)
0.989484 + 0.144640i \(0.0462024\pi\)
\(182\) −2.09782 2.58761i −0.155501 0.191807i
\(183\) 6.96735 + 12.0678i 0.515042 + 0.892078i
\(184\) −1.21876 + 0.921634i −0.0898482 + 0.0679438i
\(185\) 1.63096 1.94371i 0.119911 0.142904i
\(186\) 8.54317 + 24.7659i 0.626416 + 1.81592i
\(187\) 19.3454 + 3.41112i 1.41468 + 0.249445i
\(188\) 0.916979 2.27698i 0.0668776 0.166066i
\(189\) 3.45716i 0.251472i
\(190\) −1.69298 0.521795i −0.122822 0.0378550i
\(191\) 22.7901i 1.64904i 0.565835 + 0.824518i \(0.308554\pi\)
−0.565835 + 0.824518i \(0.691446\pi\)
\(192\) 3.84780 13.5920i 0.277691 0.980920i
\(193\) 20.1265 + 3.54884i 1.44873 + 0.255451i 0.842010 0.539462i \(-0.181372\pi\)
0.606724 + 0.794913i \(0.292483\pi\)
\(194\) 4.84772 1.67226i 0.348046 0.120061i
\(195\) −1.13100 + 1.34788i −0.0809929 + 0.0965236i
\(196\) 6.91726 11.0977i 0.494090 0.792695i
\(197\) 2.38584 + 4.13240i 0.169984 + 0.294422i 0.938414 0.345513i \(-0.112295\pi\)
−0.768430 + 0.639934i \(0.778962\pi\)
\(198\) 0.576131 0.467079i 0.0409438 0.0331938i
\(199\) −2.00612 + 5.51177i −0.142210 + 0.390719i −0.990266 0.139188i \(-0.955551\pi\)
0.848056 + 0.529907i \(0.177773\pi\)
\(200\) −13.8020 + 1.71834i −0.975947 + 0.121505i
\(201\) −4.37922 + 7.58503i −0.308886 + 0.535007i
\(202\) −15.5255 + 2.46796i −1.09237 + 0.173645i
\(203\) −0.358462 2.03294i −0.0251591 0.142684i
\(204\) −2.18884 15.4482i −0.153250 1.08159i
\(205\) −0.347436 0.414058i −0.0242660 0.0289191i
\(206\) −3.51334 2.10834i −0.244786 0.146895i
\(207\) 0.0217939 + 0.0598782i 0.00151478 + 0.00416182i
\(208\) −13.7901 + 1.48080i −0.956169 + 0.102675i
\(209\) 2.08039 19.2689i 0.143904 1.33286i
\(210\) 0.455245 + 0.174458i 0.0314149 + 0.0120388i
\(211\) −15.9787 + 5.81576i −1.10002 + 0.400374i −0.827323 0.561727i \(-0.810137\pi\)
−0.272695 + 0.962101i \(0.587915\pi\)
\(212\) 12.3007 + 15.7076i 0.844813 + 1.07881i
\(213\) −12.0410 + 10.1036i −0.825032 + 0.692284i
\(214\) −11.5697 + 6.42171i −0.790889 + 0.438979i
\(215\) 1.54039 0.271612i 0.105054 0.0185238i
\(216\) 12.0850 + 7.81912i 0.822282 + 0.532024i
\(217\) −6.17210 3.56346i −0.418989 0.241904i
\(218\) −9.91937 8.61298i −0.671825 0.583344i
\(219\) 5.64947 + 2.05624i 0.381756 + 0.138948i
\(220\) 0.792462 + 2.42963i 0.0534278 + 0.163806i
\(221\) −13.2665 + 7.65939i −0.892398 + 0.515226i
\(222\) 4.19468 21.6448i 0.281528 1.45271i
\(223\) 10.5804 + 8.87801i 0.708516 + 0.594515i 0.924182 0.381952i \(-0.124748\pi\)
−0.215667 + 0.976467i \(0.569192\pi\)
\(224\) 1.63388 + 3.47826i 0.109168 + 0.232401i
\(225\) −0.100719 + 0.571205i −0.00671459 + 0.0380803i
\(226\) −19.3866 0.327474i −1.28957 0.0217832i
\(227\) −11.2959 −0.749734 −0.374867 0.927079i \(-0.622312\pi\)
−0.374867 + 0.927079i \(0.622312\pi\)
\(228\) −15.0627 + 3.17487i −0.997551 + 0.210261i
\(229\) 5.17443 0.341936 0.170968 0.985277i \(-0.445311\pi\)
0.170968 + 0.985277i \(0.445311\pi\)
\(230\) −0.219532 0.00370829i −0.0144755 0.000244518i
\(231\) −0.926161 + 5.25252i −0.0609369 + 0.345590i
\(232\) −7.91718 3.34487i −0.519788 0.219601i
\(233\) 4.73339 + 3.97179i 0.310095 + 0.260200i 0.784531 0.620089i \(-0.212904\pi\)
−0.474436 + 0.880290i \(0.657348\pi\)
\(234\) −0.110041 + 0.567817i −0.00719359 + 0.0371194i
\(235\) 0.305467 0.176361i 0.0199264 0.0115045i
\(236\) −8.50878 + 2.77527i −0.553874 + 0.180655i
\(237\) 13.7469 + 5.00345i 0.892956 + 0.325009i
\(238\) 3.20494 + 2.78284i 0.207745 + 0.180385i
\(239\) −6.82870 3.94255i −0.441712 0.255023i 0.262612 0.964902i \(-0.415416\pi\)
−0.704324 + 0.709879i \(0.748750\pi\)
\(240\) 1.63948 1.19680i 0.105828 0.0772533i
\(241\) 15.2267 2.68488i 0.980839 0.172948i 0.339834 0.940485i \(-0.389629\pi\)
0.641005 + 0.767537i \(0.278518\pi\)
\(242\) −10.8436 + 6.01868i −0.697051 + 0.386895i
\(243\) 0.938472 0.787471i 0.0602030 0.0505163i
\(244\) −12.4263 + 9.73107i −0.795514 + 0.622968i
\(245\) 1.76576 0.642682i 0.112810 0.0410595i
\(246\) −4.38567 1.68067i −0.279620 0.107156i
\(247\) 8.41602 + 12.5537i 0.535498 + 0.798775i
\(248\) −26.4161 + 13.5160i −1.67743 + 0.858264i
\(249\) −6.03130 16.5709i −0.382218 1.05014i
\(250\) −3.45615 2.07401i −0.218586 0.131172i
\(251\) −5.32272 6.34338i −0.335967 0.400390i 0.571439 0.820644i \(-0.306385\pi\)
−0.907406 + 0.420254i \(0.861941\pi\)
\(252\) 0.158673 0.0224822i 0.00999543 0.00141625i
\(253\) −0.417106 2.36553i −0.0262232 0.148719i
\(254\) 7.06248 1.12266i 0.443140 0.0704422i
\(255\) 1.12098 1.94160i 0.0701988 0.121588i
\(256\) 15.8542 + 2.15537i 0.990885 + 0.134711i
\(257\) 1.98542 5.45489i 0.123847 0.340267i −0.862239 0.506501i \(-0.830939\pi\)
0.986086 + 0.166234i \(0.0531608\pi\)
\(258\) 10.5576 8.55925i 0.657290 0.532876i
\(259\) 2.99892 + 5.19427i 0.186344 + 0.322756i
\(260\) −1.69129 1.05419i −0.104889 0.0653780i
\(261\) −0.230388 + 0.274566i −0.0142607 + 0.0169952i
\(262\) 22.6322 7.80714i 1.39822 0.482327i
\(263\) 18.2994 + 3.22667i 1.12839 + 0.198965i 0.706520 0.707693i \(-0.250264\pi\)
0.421867 + 0.906658i \(0.361375\pi\)
\(264\) 16.2663 + 15.1172i 1.00112 + 0.930402i
\(265\) 2.86680i 0.176106i
\(266\) 2.52780 3.33873i 0.154989 0.204710i
\(267\) 19.0596i 1.16643i
\(268\) −9.20206 3.70583i −0.562106 0.226369i
\(269\) −1.60642 0.283255i −0.0979449 0.0172703i 0.124461 0.992225i \(-0.460280\pi\)
−0.222406 + 0.974954i \(0.571391\pi\)
\(270\) 0.674479 + 1.95525i 0.0410475 + 0.118993i
\(271\) −13.9309 + 16.6022i −0.846242 + 1.00851i 0.153551 + 0.988141i \(0.450929\pi\)
−0.999792 + 0.0203711i \(0.993515\pi\)
\(272\) 16.9765 4.90935i 1.02935 0.297673i
\(273\) −2.07962 3.60201i −0.125864 0.218004i
\(274\) 10.0634 + 12.4130i 0.607952 + 0.749894i
\(275\) 7.47800 20.5456i 0.450941 1.23895i
\(276\) −1.68352 + 0.897576i −0.101336 + 0.0540277i
\(277\) 8.32066 14.4118i 0.499940 0.865922i −0.500060 0.865991i \(-0.666689\pi\)
1.00000 6.89371e-5i \(2.19434e-5\pi\)
\(278\) 0.419742 + 2.64052i 0.0251745 + 0.158368i
\(279\) 0.214878 + 1.21863i 0.0128644 + 0.0729577i
\(280\) −0.123309 + 0.538255i −0.00736910 + 0.0321669i
\(281\) 9.70045 + 11.5605i 0.578681 + 0.689645i 0.973388 0.229162i \(-0.0735986\pi\)
−0.394708 + 0.918807i \(0.629154\pi\)
\(282\) 1.57706 2.62802i 0.0939126 0.156496i
\(283\) 2.29727 + 6.31170i 0.136559 + 0.375192i 0.989056 0.147540i \(-0.0471354\pi\)
−0.852498 + 0.522731i \(0.824913\pi\)
\(284\) −13.2439 11.8979i −0.785880 0.706009i
\(285\) −1.98535 0.975282i −0.117602 0.0577707i
\(286\) 7.80189 20.3589i 0.461335 1.20385i
\(287\) 1.20063 0.436995i 0.0708712 0.0257950i
\(288\) 0.280282 0.605512i 0.0165158 0.0356801i
\(289\) 1.92965 1.61917i 0.113509 0.0952452i
\(290\) −0.599352 1.07983i −0.0351952 0.0634095i
\(291\) 6.30555 1.11184i 0.369638 0.0651771i
\(292\) −1.40828 + 6.66232i −0.0824133 + 0.389883i
\(293\) −2.35175 1.35778i −0.137391 0.0793225i 0.429729 0.902958i \(-0.358609\pi\)
−0.567120 + 0.823635i \(0.691942\pi\)
\(294\) 10.7051 12.3288i 0.624332 0.719030i
\(295\) −1.20849 0.439854i −0.0703609 0.0256093i
\(296\) 24.9401 + 1.26481i 1.44961 + 0.0735156i
\(297\) −19.5959 + 11.3137i −1.13707 + 0.656486i
\(298\) 3.74913 + 0.726567i 0.217181 + 0.0420889i
\(299\) 1.43492 + 1.20404i 0.0829837 + 0.0696316i
\(300\) −17.3561 0.586520i −1.00206 0.0338628i
\(301\) −0.642047 + 3.64123i −0.0370070 + 0.209877i
\(302\) −0.308359 + 18.2549i −0.0177441 + 1.05045i
\(303\) −19.6283 −1.12762
\(304\) −5.95387 16.3875i −0.341478 0.939890i
\(305\) −2.26793 −0.129861
\(306\) 0.0124469 0.736861i 0.000711542 0.0421235i
\(307\) 0.847455 4.80616i 0.0483668 0.274302i −0.951027 0.309107i \(-0.899970\pi\)
0.999394 + 0.0348050i \(0.0110810\pi\)
\(308\) −6.03759 0.204030i −0.344024 0.0116257i
\(309\) −3.91906 3.28848i −0.222947 0.187075i
\(310\) −4.18594 0.811219i −0.237746 0.0460741i
\(311\) 7.86197 4.53911i 0.445811 0.257389i −0.260248 0.965542i \(-0.583804\pi\)
0.706060 + 0.708153i \(0.250471\pi\)
\(312\) −17.2949 0.877092i −0.979130 0.0496556i
\(313\) −0.820588 0.298670i −0.0463824 0.0168818i 0.318725 0.947847i \(-0.396745\pi\)
−0.365107 + 0.930966i \(0.618968\pi\)
\(314\) 22.2566 25.6325i 1.25601 1.44652i
\(315\) 0.0199427 + 0.0115139i 0.00112365 + 0.000648737i
\(316\) −3.42677 + 16.2114i −0.192771 + 0.911965i
\(317\) −24.2100 + 4.26887i −1.35977 + 0.239764i −0.805510 0.592582i \(-0.798109\pi\)
−0.554257 + 0.832345i \(0.686998\pi\)
\(318\) 12.0891 + 21.7803i 0.677922 + 1.22138i
\(319\) 10.3500 8.68468i 0.579489 0.486249i
\(320\) 1.60266 + 1.64842i 0.0895915 + 0.0921496i
\(321\) −15.5254 + 5.65080i −0.866546 + 0.315397i
\(322\) 0.185724 0.484644i 0.0103500 0.0270082i
\(323\) −13.3383 13.8907i −0.742163 0.772897i
\(324\) 13.8959 + 12.4836i 0.771996 + 0.693536i
\(325\) 5.83155 + 16.0220i 0.323476 + 0.888743i
\(326\) 7.70503 12.8397i 0.426742 0.711125i
\(327\) −10.5434 12.5651i −0.583049 0.694851i
\(328\) 1.18791 5.18536i 0.0655914 0.286313i
\(329\) 0.144784 + 0.821111i 0.00798221 + 0.0452693i
\(330\) 0.500942 + 3.15134i 0.0275759 + 0.173475i
\(331\) −3.60843 + 6.24998i −0.198337 + 0.343530i −0.947989 0.318302i \(-0.896887\pi\)
0.749652 + 0.661832i \(0.230221\pi\)
\(332\) 17.6250 9.39686i 0.967298 0.515720i
\(333\) 0.356177 0.978588i 0.0195184 0.0536263i
\(334\) −14.2977 17.6359i −0.782335 0.964991i
\(335\) −0.712736 1.23449i −0.0389409 0.0674476i
\(336\) 1.33295 + 4.60934i 0.0727184 + 0.251460i
\(337\) 1.87196 2.23091i 0.101972 0.121526i −0.712645 0.701525i \(-0.752503\pi\)
0.814617 + 0.580000i \(0.196947\pi\)
\(338\) −0.450843 1.30695i −0.0245226 0.0710887i
\(339\) −23.8415 4.20390i −1.29489 0.228325i
\(340\) 2.35553 + 0.948610i 0.127746 + 0.0514456i
\(341\) 46.6461i 2.52603i
\(342\) −0.726191 + 0.0364078i −0.0392679 + 0.00196871i
\(343\) 9.19718i 0.496601i
\(344\) 11.2763 + 10.4798i 0.607979 + 0.565033i
\(345\) −0.269980 0.0476047i −0.0145352 0.00256295i
\(346\) −7.77461 + 2.68191i −0.417966 + 0.144180i
\(347\) 19.7749 23.5668i 1.06157 1.26513i 0.0987161 0.995116i \(-0.468526\pi\)
0.962856 0.270016i \(-0.0870291\pi\)
\(348\) −9.10708 5.67648i −0.488191 0.304291i
\(349\) 15.6867 + 27.1702i 0.839692 + 1.45439i 0.890152 + 0.455663i \(0.150598\pi\)
−0.0504605 + 0.998726i \(0.516069\pi\)
\(350\) 3.66978 2.97515i 0.196158 0.159028i
\(351\) 6.03508 16.5813i 0.322129 0.885042i
\(352\) −14.3685 + 20.6439i −0.765845 + 1.10032i
\(353\) −4.87676 + 8.44680i −0.259564 + 0.449578i −0.966125 0.258074i \(-0.916912\pi\)
0.706561 + 0.707652i \(0.250245\pi\)
\(354\) −11.0362 + 1.75434i −0.586569 + 0.0932421i
\(355\) −0.444231 2.51936i −0.0235773 0.133714i
\(356\) 21.3743 3.02851i 1.13284 0.160511i
\(357\) 3.40655 + 4.05977i 0.180294 + 0.214866i
\(358\) 28.9859 + 17.3943i 1.53195 + 0.919317i
\(359\) 11.1764 + 30.7070i 0.589870 + 1.62066i 0.770741 + 0.637148i \(0.219886\pi\)
−0.180871 + 0.983507i \(0.557892\pi\)
\(360\) 0.0853535 0.0436716i 0.00449853 0.00230169i
\(361\) −12.7932 + 14.0476i −0.673325 + 0.739346i
\(362\) 7.19562 + 2.75749i 0.378194 + 0.144931i
\(363\) −14.5510 + 5.29615i −0.763732 + 0.277976i
\(364\) 3.70902 2.90454i 0.194406 0.152239i
\(365\) −0.749562 + 0.628957i −0.0392339 + 0.0329211i
\(366\) −17.2304 + 9.56368i −0.900650 + 0.499901i
\(367\) −25.0700 + 4.42052i −1.30864 + 0.230749i −0.784100 0.620634i \(-0.786875\pi\)
−0.524544 + 0.851384i \(0.675764\pi\)
\(368\) −1.27409 1.74536i −0.0664166 0.0909829i
\(369\) −0.192121 0.110921i −0.0100014 0.00577433i
\(370\) 2.70947 + 2.35263i 0.140858 + 0.122307i
\(371\) −6.36797 2.31775i −0.330609 0.120332i
\(372\) −35.2233 + 11.4886i −1.82624 + 0.595657i
\(373\) 22.6501 13.0771i 1.17278 0.677104i 0.218446 0.975849i \(-0.429901\pi\)
0.954333 + 0.298745i \(0.0965680\pi\)
\(374\) −5.28543 + 27.2731i −0.273303 + 1.41026i
\(375\) −3.85526 3.23494i −0.199085 0.167052i
\(376\) 3.19778 + 1.35101i 0.164913 + 0.0696728i
\(377\) −1.82959 + 10.3761i −0.0942288 + 0.534398i
\(378\) −4.88847 0.0825751i −0.251436 0.00424720i
\(379\) −11.3746 −0.584276 −0.292138 0.956376i \(-0.594367\pi\)
−0.292138 + 0.956376i \(0.594367\pi\)
\(380\) 0.778262 2.38143i 0.0399240 0.122165i
\(381\) 8.92886 0.457439
\(382\) −32.2255 0.544347i −1.64880 0.0278512i
\(383\) 2.72109 15.4321i 0.139041 0.788543i −0.832918 0.553396i \(-0.813332\pi\)
0.971960 0.235147i \(-0.0755572\pi\)
\(384\) 19.1274 + 5.76549i 0.976090 + 0.294219i
\(385\) −0.664970 0.557976i −0.0338900 0.0284371i
\(386\) −5.49882 + 28.3743i −0.279883 + 1.44421i
\(387\) 0.555965 0.320986i 0.0282613 0.0163167i
\(388\) 2.24880 + 6.89467i 0.114166 + 0.350024i
\(389\) 15.0858 + 5.49077i 0.764878 + 0.278393i 0.694852 0.719152i \(-0.255470\pi\)
0.0700257 + 0.997545i \(0.477692\pi\)
\(390\) −1.87890 1.63145i −0.0951419 0.0826116i
\(391\) −2.06699 1.19338i −0.104532 0.0603516i
\(392\) 15.5271 + 10.0462i 0.784237 + 0.507408i
\(393\) 29.4382 5.19075i 1.48496 0.261839i
\(394\) −5.90025 + 3.27491i −0.297251 + 0.164988i
\(395\) −1.82391 + 1.53044i −0.0917710 + 0.0770050i
\(396\) 0.646694 + 0.825812i 0.0324976 + 0.0414986i
\(397\) −8.89582 + 3.23781i −0.446468 + 0.162501i −0.555463 0.831541i \(-0.687459\pi\)
0.108995 + 0.994042i \(0.465237\pi\)
\(398\) −7.74580 2.96833i −0.388262 0.148789i
\(399\) 3.77149 3.62152i 0.188811 0.181303i
\(400\) −2.10009 19.5572i −0.105005 0.977860i
\(401\) −6.61831 18.1836i −0.330502 0.908048i −0.987981 0.154575i \(-0.950599\pi\)
0.657479 0.753473i \(-0.271623\pi\)
\(402\) −10.6207 6.37344i −0.529714 0.317878i
\(403\) 23.3820 + 27.8656i 1.16474 + 1.38808i
\(404\) −3.11889 22.0122i −0.155171 1.09515i
\(405\) 0.466102 + 2.64339i 0.0231608 + 0.131351i
\(406\) 2.88316 0.458312i 0.143089 0.0227456i
\(407\) −19.6281 + 33.9968i −0.972928 + 1.68516i
\(408\) 21.8962 2.72607i 1.08402 0.134960i
\(409\) −2.99514 + 8.22908i −0.148100 + 0.406902i −0.991454 0.130457i \(-0.958356\pi\)
0.843354 + 0.537359i \(0.180578\pi\)
\(410\) 0.593782 0.481389i 0.0293248 0.0237741i
\(411\) 9.97609 + 17.2791i 0.492084 + 0.852315i
\(412\) 3.06513 4.91755i 0.151008 0.242270i
\(413\) 1.95408 2.32878i 0.0961538 0.114592i
\(414\) −0.0851890 + 0.0293866i −0.00418681 + 0.00144427i
\(415\) 2.82646 + 0.498381i 0.138745 + 0.0244646i
\(416\) −1.76450 19.5347i −0.0865116 0.957766i
\(417\) 3.33832i 0.163478i
\(418\) 27.1968 + 3.40194i 1.33024 + 0.166394i
\(419\) 15.7998i 0.771873i −0.922525 0.385936i \(-0.873878\pi\)
0.922525 0.385936i \(-0.126122\pi\)
\(420\) −0.257560 + 0.639555i −0.0125676 + 0.0312071i
\(421\) −25.0513 4.41722i −1.22092 0.215282i −0.474201 0.880416i \(-0.657263\pi\)
−0.746724 + 0.665135i \(0.768374\pi\)
\(422\) −7.84191 22.7330i −0.381738 1.10662i
\(423\) 0.0930547 0.110898i 0.00452447 0.00539206i
\(424\) −22.5046 + 17.0181i −1.09292 + 0.826473i
\(425\) −10.8626 18.8146i −0.526915 0.912643i
\(426\) −13.9989 17.2674i −0.678251 0.836607i
\(427\) 1.83358 5.03771i 0.0887329 0.243792i
\(428\) −8.80403 16.5131i −0.425559 0.798190i
\(429\) 13.6112 23.5754i 0.657157 1.13823i
\(430\) 0.347270 + 2.18462i 0.0167469 + 0.105352i
\(431\) 1.17478 + 6.66249i 0.0565870 + 0.320921i 0.999941 0.0108673i \(-0.00345924\pi\)
−0.943354 + 0.331788i \(0.892348\pi\)
\(432\) −11.3450 + 16.9016i −0.545836 + 0.813180i
\(433\) 5.90017 + 7.03155i 0.283544 + 0.337915i 0.888952 0.458001i \(-0.151434\pi\)
−0.605408 + 0.795916i \(0.706990\pi\)
\(434\) 5.18620 8.64230i 0.248945 0.414844i
\(435\) −0.527401 1.44902i −0.0252870 0.0694754i
\(436\) 12.4158 13.8204i 0.594608 0.661877i
\(437\) −1.03826 + 2.11356i −0.0496669 + 0.101105i
\(438\) −3.04248 + 7.93930i −0.145376 + 0.379355i
\(439\) 32.3355 11.7692i 1.54329 0.561712i 0.576459 0.817126i \(-0.304434\pi\)
0.966832 + 0.255414i \(0.0822119\pi\)
\(440\) −3.45446 + 1.06252i −0.164685 + 0.0506536i
\(441\) 0.590794 0.495735i 0.0281331 0.0236064i
\(442\) −10.5136 18.9419i −0.500081 0.900973i
\(443\) 23.1576 4.08330i 1.10025 0.194004i 0.406096 0.913831i \(-0.366890\pi\)
0.694154 + 0.719827i \(0.255779\pi\)
\(444\) 30.5058 + 6.44832i 1.44774 + 0.306024i
\(445\) 2.68643 + 1.55101i 0.127349 + 0.0735249i
\(446\) −12.8063 + 14.7488i −0.606397 + 0.698374i
\(447\) 4.48066 + 1.63083i 0.211928 + 0.0771355i
\(448\) −4.95733 + 2.22725i −0.234212 + 0.105227i
\(449\) −2.56296 + 1.47973i −0.120954 + 0.0698325i −0.559256 0.828995i \(-0.688913\pi\)
0.438303 + 0.898827i \(0.355580\pi\)
\(450\) −0.805284 0.156061i −0.0379615 0.00735678i
\(451\) 6.40608 + 5.37534i 0.301651 + 0.253115i
\(452\) 0.926103 27.4050i 0.0435602 1.28902i
\(453\) −3.95851 + 22.4499i −0.185987 + 1.05479i
\(454\) 0.269805 15.9725i 0.0126626 0.749627i
\(455\) 0.676933 0.0317351
\(456\) −4.12952 21.3747i −0.193383 1.00096i
\(457\) −27.5794 −1.29011 −0.645054 0.764137i \(-0.723165\pi\)
−0.645054 + 0.764137i \(0.723165\pi\)
\(458\) −0.123592 + 7.31670i −0.00577509 + 0.341887i
\(459\) −3.90422 + 22.1420i −0.182234 + 1.03350i
\(460\) 0.0104871 0.310332i 0.000488965 0.0144693i
\(461\) 23.9754 + 20.1177i 1.11664 + 0.936976i 0.998430 0.0560127i \(-0.0178387\pi\)
0.118214 + 0.992988i \(0.462283\pi\)
\(462\) −7.40500 1.43506i −0.344512 0.0667650i
\(463\) −1.35838 + 0.784262i −0.0631294 + 0.0364478i −0.531232 0.847226i \(-0.678271\pi\)
0.468103 + 0.883674i \(0.344938\pi\)
\(464\) 4.91879 11.1151i 0.228349 0.516005i
\(465\) −5.00270 1.82084i −0.231995 0.0844392i
\(466\) −5.72921 + 6.59820i −0.265400 + 0.305656i
\(467\) 16.4940 + 9.52284i 0.763253 + 0.440664i 0.830462 0.557075i \(-0.188076\pi\)
−0.0672096 + 0.997739i \(0.521410\pi\)
\(468\) −0.800272 0.169161i −0.0369926 0.00781949i
\(469\) 3.31839 0.585122i 0.153229 0.0270184i
\(470\) 0.242081 + 0.436146i 0.0111663 + 0.0201179i
\(471\) 32.4692 27.2449i 1.49610 1.25538i
\(472\) −3.72103 12.0978i −0.171274 0.556847i
\(473\) −22.7403 + 8.27679i −1.04560 + 0.380567i
\(474\) −7.40329 + 19.3187i −0.340044 + 0.887339i
\(475\) −17.8038 + 11.9357i −0.816896 + 0.547647i
\(476\) −4.01153 + 4.46535i −0.183868 + 0.204669i
\(477\) 0.402427 + 1.10566i 0.0184259 + 0.0506246i
\(478\) 5.73792 9.56170i 0.262446 0.437342i
\(479\) 14.9412 + 17.8062i 0.682680 + 0.813586i 0.990450 0.137874i \(-0.0440270\pi\)
−0.307770 + 0.951461i \(0.599583\pi\)
\(480\) 1.65314 + 2.34683i 0.0754549 + 0.107118i
\(481\) −5.31589 30.1479i −0.242384 1.37463i
\(482\) 3.43276 + 21.5949i 0.156358 + 0.983620i
\(483\) 0.324017 0.561213i 0.0147433 0.0255361i
\(484\) −8.25148 15.4767i −0.375067 0.703486i
\(485\) −0.356414 + 0.979239i −0.0161839 + 0.0444649i
\(486\) 1.09108 + 1.34582i 0.0494923 + 0.0610476i
\(487\) −18.8848 32.7094i −0.855752 1.48221i −0.875945 0.482410i \(-0.839761\pi\)
0.0201932 0.999796i \(-0.493572\pi\)
\(488\) −13.4630 17.8034i −0.609443 0.805922i
\(489\) 12.0179 14.3224i 0.543469 0.647682i
\(490\) 0.866585 + 2.51215i 0.0391483 + 0.113487i
\(491\) 10.7823 + 1.90120i 0.486596 + 0.0858001i 0.411564 0.911381i \(-0.364983\pi\)
0.0750327 + 0.997181i \(0.476094\pi\)
\(492\) 2.48124 6.16125i 0.111863 0.277771i
\(493\) 13.4251i 0.604636i
\(494\) −17.9522 + 11.6005i −0.807706 + 0.521931i
\(495\) 0.150719i 0.00677431i
\(496\) −18.4808 37.6756i −0.829811 1.69168i
\(497\) 5.95535 + 1.05009i 0.267134 + 0.0471030i
\(498\) 23.5755 8.13254i 1.05644 0.364428i
\(499\) −12.5333 + 14.9366i −0.561067 + 0.668654i −0.969772 0.244013i \(-0.921536\pi\)
0.408705 + 0.912667i \(0.365980\pi\)
\(500\) 3.01523 4.83749i 0.134845 0.216339i
\(501\) −14.1737 24.5495i −0.633232 1.09679i
\(502\) 9.09674 7.37488i 0.406007 0.329157i
\(503\) −6.17225 + 16.9581i −0.275207 + 0.756125i 0.722682 + 0.691181i \(0.242909\pi\)
−0.997889 + 0.0649441i \(0.979313\pi\)
\(504\) 0.0280002 + 0.224902i 0.00124723 + 0.0100179i
\(505\) 1.59730 2.76660i 0.0710787 0.123112i
\(506\) 3.35484 0.533292i 0.149141 0.0237077i
\(507\) −0.299753 1.69998i −0.0133125 0.0754989i
\(508\) 1.41877 + 10.0132i 0.0629478 + 0.444266i
\(509\) −4.23195 5.04344i −0.187578 0.223546i 0.664057 0.747682i \(-0.268833\pi\)
−0.851635 + 0.524135i \(0.824389\pi\)
\(510\) 2.71867 + 1.63146i 0.120385 + 0.0722423i
\(511\) −0.791084 2.17349i −0.0349955 0.0961494i
\(512\) −3.42640 + 22.3665i −0.151427 + 0.988468i
\(513\) 22.0544 + 2.38113i 0.973728 + 0.105129i
\(514\) 7.66586 + 2.93770i 0.338126 + 0.129576i
\(515\) 0.782429 0.284781i 0.0344779 0.0125489i
\(516\) 11.8507 + 15.1331i 0.521699 + 0.666196i
\(517\) −4.18040 + 3.50778i −0.183854 + 0.154272i
\(518\) −7.41639 + 4.11644i −0.325858 + 0.180866i
\(519\) −10.1126 + 1.78313i −0.443895 + 0.0782707i
\(520\) 1.53103 2.36632i 0.0671401 0.103770i
\(521\) 33.3964 + 19.2814i 1.46312 + 0.844735i 0.999154 0.0411164i \(-0.0130915\pi\)
0.463969 + 0.885851i \(0.346425\pi\)
\(522\) −0.382736 0.332330i −0.0167519 0.0145457i
\(523\) 14.7646 + 5.37386i 0.645609 + 0.234982i 0.644011 0.765016i \(-0.277269\pi\)
0.00159809 + 0.999999i \(0.499491\pi\)
\(524\) 10.4988 + 32.1886i 0.458643 + 1.40617i
\(525\) 5.10841 2.94934i 0.222949 0.128720i
\(526\) −4.99964 + 25.7985i −0.217995 + 1.12487i
\(527\) −35.5059 29.7930i −1.54666 1.29780i
\(528\) −21.7645 + 22.6396i −0.947177 + 0.985262i
\(529\) 3.94323 22.3632i 0.171445 0.972311i
\(530\) −4.05369 0.0684742i −0.176081 0.00297433i
\(531\) −0.527830 −0.0229059
\(532\) 4.66062 + 3.65408i 0.202064 + 0.158424i
\(533\) −6.52134 −0.282470
\(534\) 26.9504 + 0.455242i 1.16626 + 0.0197002i
\(535\) 0.466939 2.64814i 0.0201875 0.114489i
\(536\) 5.45987 12.9233i 0.235831 0.558202i
\(537\) 32.3332 + 27.1307i 1.39528 + 1.17078i
\(538\) 0.438895 2.26473i 0.0189221 0.0976393i
\(539\) −25.1772 + 14.5360i −1.08446 + 0.626111i
\(540\) −2.78086 + 0.907020i −0.119669 + 0.0390319i
\(541\) −8.56708 3.11816i −0.368328 0.134060i 0.151224 0.988500i \(-0.451679\pi\)
−0.519551 + 0.854439i \(0.673901\pi\)
\(542\) −23.1430 20.0950i −0.994076 0.863154i
\(543\) 8.33246 + 4.81075i 0.357580 + 0.206449i
\(544\) 6.53638 + 24.1223i 0.280245 + 1.03423i
\(545\) 2.62902 0.463568i 0.112615 0.0198571i
\(546\) 5.14296 2.85458i 0.220098 0.122165i
\(547\) −0.345374 + 0.289803i −0.0147671 + 0.0123911i −0.650141 0.759813i \(-0.725290\pi\)
0.635374 + 0.772204i \(0.280846\pi\)
\(548\) −17.7924 + 13.9333i −0.760055 + 0.595200i
\(549\) −0.874688 + 0.318360i −0.0373308 + 0.0135873i
\(550\) 28.8732 + 11.0647i 1.23116 + 0.471801i
\(551\) −13.2157 + 0.886562i −0.563008 + 0.0377688i
\(552\) −1.22897 2.40195i −0.0523085 0.102234i
\(553\) −1.92495 5.28875i −0.0818572 0.224901i
\(554\) 20.1797 + 12.1097i 0.857355 + 0.514494i
\(555\) 2.87991 + 3.43214i 0.122245 + 0.145686i
\(556\) −3.74376 + 0.530451i −0.158771 + 0.0224961i
\(557\) 3.59725 + 20.4010i 0.152420 + 0.864419i 0.961106 + 0.276179i \(0.0890682\pi\)
−0.808686 + 0.588241i \(0.799821\pi\)
\(558\) −1.72830 + 0.274733i −0.0731646 + 0.0116304i
\(559\) 9.43579 16.3433i 0.399091 0.691247i
\(560\) −0.758153 0.187216i −0.0320378 0.00791132i
\(561\) −11.8635 + 32.5947i −0.500877 + 1.37615i
\(562\) −16.5785 + 13.4404i −0.699320 + 0.566950i
\(563\) −17.7749 30.7871i −0.749125 1.29752i −0.948243 0.317546i \(-0.897141\pi\)
0.199118 0.979976i \(-0.436192\pi\)
\(564\) 3.67838 + 2.29275i 0.154888 + 0.0965423i
\(565\) 2.53269 3.01834i 0.106551 0.126982i
\(566\) −8.97969 + 3.09761i −0.377445 + 0.130202i
\(567\) −6.24856 1.10179i −0.262415 0.0462708i
\(568\) 17.1401 18.4428i 0.719181 0.773844i
\(569\) 1.64769i 0.0690748i −0.999403 0.0345374i \(-0.989004\pi\)
0.999403 0.0345374i \(-0.0109958\pi\)
\(570\) 1.42648 2.78401i 0.0597487 0.116609i
\(571\) 13.5132i 0.565511i −0.959192 0.282755i \(-0.908752\pi\)
0.959192 0.282755i \(-0.0912484\pi\)
\(572\) 28.6013 + 11.5182i 1.19588 + 0.481602i
\(573\) −39.6308 6.98798i −1.65560 0.291927i
\(574\) 0.589239 + 1.70815i 0.0245944 + 0.0712968i
\(575\) −1.70759 + 2.03502i −0.0712112 + 0.0848662i
\(576\) 0.849507 + 0.410785i 0.0353961 + 0.0171160i
\(577\) 9.20209 + 15.9385i 0.383088 + 0.663528i 0.991502 0.130092i \(-0.0415272\pi\)
−0.608414 + 0.793620i \(0.708194\pi\)
\(578\) 2.24343 + 2.76722i 0.0933145 + 0.115101i
\(579\) −12.3425 + 33.9107i −0.512936 + 1.40928i
\(580\) 1.54120 0.821699i 0.0639949 0.0341192i
\(581\) −3.39218 + 5.87543i −0.140731 + 0.243754i
\(582\) 1.42154 + 8.94267i 0.0589248 + 0.370686i
\(583\) −7.70193 43.6798i −0.318981 1.80903i
\(584\) −9.38696 2.15045i −0.388435 0.0889864i
\(585\) −0.0755498 0.0900368i −0.00312360 0.00372256i
\(586\) 1.97609 3.29297i 0.0816317 0.136031i
\(587\) 0.260988 + 0.717059i 0.0107721 + 0.0295962i 0.944962 0.327180i \(-0.106098\pi\)
−0.934190 + 0.356776i \(0.883876\pi\)
\(588\) 17.1774 + 15.4316i 0.708382 + 0.636387i
\(589\) −26.9836 + 36.9196i −1.11184 + 1.52125i
\(590\) 0.650823 1.69831i 0.0267940 0.0699183i
\(591\) −7.91758 + 2.88176i −0.325686 + 0.118540i
\(592\) −2.38415 + 35.2353i −0.0979881 + 1.44816i
\(593\) −5.75424 + 4.82838i −0.236298 + 0.198278i −0.753245 0.657740i \(-0.771513\pi\)
0.516947 + 0.856017i \(0.327068\pi\)
\(594\) −15.5296 27.9790i −0.637188 1.14799i
\(595\) −0.849435 + 0.149778i −0.0348235 + 0.00614031i
\(596\) −1.11692 + 5.28396i −0.0457509 + 0.216440i
\(597\) −8.96956 5.17858i −0.367100 0.211945i
\(598\) −1.73680 + 2.00024i −0.0710232 + 0.0817958i
\(599\) −3.55846 1.29517i −0.145395 0.0529194i 0.268298 0.963336i \(-0.413539\pi\)
−0.413693 + 0.910417i \(0.635761\pi\)
\(600\) 1.24390 24.5278i 0.0507821 1.00134i
\(601\) 12.4051 7.16208i 0.506014 0.292147i −0.225180 0.974317i \(-0.572297\pi\)
0.731194 + 0.682170i \(0.238964\pi\)
\(602\) −5.13341 0.994834i −0.209222 0.0405464i
\(603\) −0.448177 0.376066i −0.0182512 0.0153146i
\(604\) −25.8053 0.872046i −1.05000 0.0354830i
\(605\) 0.437633 2.48194i 0.0177923 0.100905i
\(606\) 0.468827 27.7547i 0.0190448 1.12746i
\(607\) 17.3937 0.705987 0.352993 0.935626i \(-0.385164\pi\)
0.352993 + 0.935626i \(0.385164\pi\)
\(608\) 23.3144 8.02742i 0.945523 0.325555i
\(609\) 3.64508 0.147706
\(610\) 0.0541699 3.20688i 0.00219328 0.129843i
\(611\) 0.738980 4.19096i 0.0298959 0.169548i
\(612\) 1.04163 + 0.0352001i 0.0421055 + 0.00142288i
\(613\) 0.260867 + 0.218894i 0.0105363 + 0.00884103i 0.648041 0.761606i \(-0.275589\pi\)
−0.637504 + 0.770447i \(0.720033\pi\)
\(614\) 6.77572 + 1.31311i 0.273446 + 0.0529927i
\(615\) 0.826557 0.477213i 0.0333300 0.0192431i
\(616\) 0.432710 8.53235i 0.0174344 0.343778i
\(617\) −38.7470 14.1028i −1.55990 0.567755i −0.589183 0.808000i \(-0.700550\pi\)
−0.970712 + 0.240244i \(0.922772\pi\)
\(618\) 4.74356 5.46305i 0.190814 0.219756i
\(619\) −16.6044 9.58653i −0.667386 0.385315i 0.127700 0.991813i \(-0.459241\pi\)
−0.795085 + 0.606498i \(0.792574\pi\)
\(620\) 1.24706 5.89960i 0.0500830 0.236934i
\(621\) 2.70748 0.477403i 0.108648 0.0191575i
\(622\) 6.23057 + 11.2253i 0.249823 + 0.450095i
\(623\) −5.61715 + 4.71335i −0.225046 + 0.188836i
\(624\) 1.65331 24.4342i 0.0661854 0.978152i
\(625\) −22.3346 + 8.12912i −0.893383 + 0.325165i
\(626\) 0.441922 1.15319i 0.0176628 0.0460906i
\(627\) 32.8698 + 9.52599i 1.31269 + 0.380431i
\(628\) 35.7130 + 32.0834i 1.42510 + 1.28027i
\(629\) 13.3411 + 36.6543i 0.531943 + 1.46150i
\(630\) −0.0167572 + 0.0279243i −0.000667623 + 0.00111253i
\(631\) −22.7701 27.1363i −0.906462 1.08028i −0.996437 0.0843359i \(-0.973123\pi\)
0.0899749 0.995944i \(-0.471321\pi\)
\(632\) −22.8413 5.23271i −0.908579 0.208146i
\(633\) −5.21387 29.5693i −0.207233 1.17527i
\(634\) −5.45797 34.3352i −0.216764 1.36362i
\(635\) −0.726604 + 1.25851i −0.0288344 + 0.0499426i
\(636\) −31.0864 + 16.5739i −1.23266 + 0.657197i
\(637\) 7.75400 21.3039i 0.307225 0.844093i
\(638\) 12.0330 + 14.8425i 0.476392 + 0.587618i
\(639\) −0.524984 0.909299i −0.0207680 0.0359713i
\(640\) −2.36917 + 2.22681i −0.0936496 + 0.0880224i
\(641\) 16.5658 19.7424i 0.654310 0.779777i −0.332247 0.943192i \(-0.607807\pi\)
0.986557 + 0.163416i \(0.0522512\pi\)
\(642\) −7.61947 22.0881i −0.300717 0.871749i
\(643\) −2.51226 0.442980i −0.0990740 0.0174694i 0.123891 0.992296i \(-0.460463\pi\)
−0.222965 + 0.974826i \(0.571574\pi\)
\(644\) 0.680857 + 0.274192i 0.0268295 + 0.0108047i
\(645\) 2.76194i 0.108751i
\(646\) 19.9601 18.5287i 0.785321 0.729003i
\(647\) 16.5839i 0.651979i 0.945373 + 0.325989i \(0.105697\pi\)
−0.945373 + 0.325989i \(0.894303\pi\)
\(648\) −17.9839 + 19.3508i −0.706475 + 0.760172i
\(649\) 19.5947 + 3.45508i 0.769160 + 0.135624i
\(650\) −22.7946 + 7.86319i −0.894079 + 0.308420i
\(651\) 8.08917 9.64030i 0.317040 0.377833i
\(652\) 17.9714 + 11.2017i 0.703816 + 0.438692i
\(653\) −21.6722 37.5373i −0.848098 1.46895i −0.882904 0.469554i \(-0.844415\pi\)
0.0348059 0.999394i \(-0.488919\pi\)
\(654\) 18.0190 14.6083i 0.704599 0.571230i
\(655\) −1.66396 + 4.57170i −0.0650164 + 0.178631i
\(656\) 7.30378 + 1.80357i 0.285165 + 0.0704177i
\(657\) −0.200799 + 0.347794i −0.00783391 + 0.0135687i
\(658\) −1.16452 + 0.185114i −0.0453977 + 0.00721650i
\(659\) 5.07827 + 28.8003i 0.197821 + 1.12190i 0.908344 + 0.418225i \(0.137348\pi\)
−0.710522 + 0.703675i \(0.751541\pi\)
\(660\) −4.46799 + 0.633067i −0.173916 + 0.0246421i
\(661\) 22.9313 + 27.3285i 0.891926 + 1.06296i 0.997647 + 0.0685600i \(0.0218405\pi\)
−0.105721 + 0.994396i \(0.533715\pi\)
\(662\) −8.75136 5.25164i −0.340131 0.204111i
\(663\) −9.25147 25.4182i −0.359297 0.987161i
\(664\) 12.8663 + 25.1464i 0.499309 + 0.975870i
\(665\) 0.203537 + 0.826296i 0.00789283 + 0.0320424i
\(666\) 1.37523 + 0.527012i 0.0532890 + 0.0204213i
\(667\) −1.54260 + 0.561460i −0.0597297 + 0.0217398i
\(668\) 25.2788 19.7959i 0.978067 0.765925i
\(669\) −18.6826 + 15.6765i −0.722310 + 0.606090i
\(670\) 1.76261 0.978330i 0.0680957 0.0377962i
\(671\) 34.5551 6.09300i 1.33399 0.235218i
\(672\) −6.54950 + 1.77471i −0.252652 + 0.0684610i
\(673\) −18.4104 10.6293i −0.709669 0.409727i 0.101270 0.994859i \(-0.467710\pi\)
−0.810938 + 0.585132i \(0.801043\pi\)
\(674\) 3.10982 + 2.70026i 0.119786 + 0.104010i
\(675\) 23.5157 + 8.55902i 0.905120 + 0.329437i
\(676\) 1.85881 0.606280i 0.0714928 0.0233185i
\(677\) 19.3161 11.1522i 0.742379 0.428613i −0.0805548 0.996750i \(-0.525669\pi\)
0.822934 + 0.568138i \(0.192336\pi\)
\(678\) 6.51382 33.6118i 0.250162 1.29085i
\(679\) −1.88701 1.58339i −0.0724168 0.0607649i
\(680\) −1.39761 + 3.30808i −0.0535958 + 0.126859i
\(681\) 3.46358 19.6429i 0.132725 0.752719i
\(682\) 65.9582 + 1.11415i 2.52567 + 0.0426631i
\(683\) 4.25657 0.162873 0.0814366 0.996679i \(-0.474049\pi\)
0.0814366 + 0.996679i \(0.474049\pi\)
\(684\) −0.0341359 1.02771i −0.00130522 0.0392955i
\(685\) −3.24730 −0.124073
\(686\) −13.0049 0.219677i −0.496530 0.00838729i
\(687\) −1.58660 + 8.99805i −0.0605325 + 0.343297i
\(688\) −15.0879 + 15.6946i −0.575221 + 0.598350i
\(689\) 26.4960 + 22.2328i 1.00942 + 0.847003i
\(690\) 0.0737621 0.380617i 0.00280808 0.0144899i
\(691\) −4.43757 + 2.56203i −0.168813 + 0.0974643i −0.582026 0.813170i \(-0.697740\pi\)
0.413213 + 0.910634i \(0.364407\pi\)
\(692\) −3.60656 11.0575i −0.137101 0.420341i
\(693\) −0.334789 0.121853i −0.0127176 0.00462882i
\(694\) 32.8514 + 28.5248i 1.24702 + 1.08279i
\(695\) −0.470534 0.271663i −0.0178484 0.0103048i
\(696\) 8.24414 12.7419i 0.312493 0.482982i
\(697\) 8.18316 1.44291i 0.309959 0.0546542i
\(698\) −38.7937 + 21.5323i −1.46836 + 0.815008i
\(699\) −8.35809 + 7.01327i −0.316132 + 0.265266i
\(700\) 4.11924 + 5.26017i 0.155693 + 0.198816i
\(701\) 39.1100 14.2349i 1.47717 0.537644i 0.527130 0.849785i \(-0.323268\pi\)
0.950036 + 0.312140i \(0.101046\pi\)
\(702\) 23.3019 + 8.92973i 0.879475 + 0.337031i
\(703\) 35.2016 15.5536i 1.32765 0.586613i
\(704\) −28.8475 20.8104i −1.08723 0.784320i
\(705\) 0.213019 + 0.585266i 0.00802278 + 0.0220424i
\(706\) −11.8274 7.09755i −0.445130 0.267120i
\(707\) 4.85401 + 5.78478i 0.182554 + 0.217559i
\(708\) −2.21705 15.6473i −0.0833220 0.588061i
\(709\) −1.17231 6.64851i −0.0440271 0.249690i 0.954849 0.297092i \(-0.0960169\pi\)
−0.998876 + 0.0474022i \(0.984906\pi\)
\(710\) 3.57301 0.567972i 0.134093 0.0213156i
\(711\) −0.488605 + 0.846288i −0.0183241 + 0.0317383i
\(712\) 3.77182 + 30.2959i 0.141355 + 1.13539i
\(713\) −1.93842 + 5.32577i −0.0725945 + 0.199452i
\(714\) −5.82193 + 4.71993i −0.217880 + 0.176639i
\(715\) 2.21528 + 3.83699i 0.0828470 + 0.143495i
\(716\) −25.2881 + 40.5710i −0.945059 + 1.51621i
\(717\) 8.94972 10.6659i 0.334234 0.398324i
\(718\) −43.6871 + 15.0702i −1.63039 + 0.562414i
\(719\) −28.0650 4.94861i −1.04665 0.184552i −0.376222 0.926529i \(-0.622777\pi\)
−0.670425 + 0.741977i \(0.733888\pi\)
\(720\) 0.0597134 + 0.121734i 0.00222539 + 0.00453676i
\(721\) 1.96823i 0.0733009i
\(722\) −19.5579 18.4252i −0.727869 0.685717i
\(723\) 27.3017i 1.01536i
\(724\) −4.07100 + 10.1088i −0.151297 + 0.375692i
\(725\) −14.7155 2.59475i −0.546522 0.0963665i
\(726\) −7.14126 20.7019i −0.265037 0.768318i
\(727\) 23.5241 28.0349i 0.872461 1.03976i −0.126397 0.991980i \(-0.540341\pi\)
0.998858 0.0477786i \(-0.0152142\pi\)
\(728\) 4.01846 + 5.31397i 0.148934 + 0.196949i
\(729\) −12.9283 22.3925i −0.478826 0.829351i
\(730\) −0.871449 1.07491i −0.0322538 0.0397843i
\(731\) −8.22418 + 22.5958i −0.304182 + 0.835734i
\(732\) −13.1116 24.5925i −0.484619 0.908964i
\(733\) 15.7141 27.2176i 0.580413 1.00531i −0.415017 0.909814i \(-0.636224\pi\)
0.995430 0.0954919i \(-0.0304424\pi\)
\(734\) −5.65186 35.5549i −0.208614 1.31235i
\(735\) 0.576169 + 3.26761i 0.0212523 + 0.120528i
\(736\) 2.49839 1.75989i 0.0920917 0.0648705i
\(737\) 14.1761 + 16.8944i 0.522184 + 0.622315i
\(738\) 0.161433 0.269012i 0.00594243 0.00990248i
\(739\) 12.5256 + 34.4138i 0.460762 + 1.26593i 0.924914 + 0.380177i \(0.124137\pi\)
−0.464152 + 0.885756i \(0.653641\pi\)
\(740\) −3.39136 + 3.77503i −0.124669 + 0.138773i
\(741\) −24.4108 + 10.7857i −0.896754 + 0.396224i
\(742\) 3.42943 8.94903i 0.125898 0.328529i
\(743\) 18.4966 6.73220i 0.678573 0.246980i 0.0203384 0.999793i \(-0.493526\pi\)
0.658235 + 0.752813i \(0.271303\pi\)
\(744\) −15.4037 50.0805i −0.564728 1.83604i
\(745\) −0.594486 + 0.498833i −0.0217803 + 0.0182758i
\(746\) 17.9501 + 32.3399i 0.657200 + 1.18405i
\(747\) 1.16006 0.204550i 0.0424444 0.00748408i
\(748\) −38.4383 8.12508i −1.40544 0.297082i
\(749\) 5.50476 + 3.17817i 0.201140 + 0.116128i
\(750\) 4.66633 5.37411i 0.170390 0.196235i
\(751\) −10.9116 3.97149i −0.398169 0.144922i 0.135171 0.990822i \(-0.456841\pi\)
−0.533341 + 0.845900i \(0.679064\pi\)
\(752\) −1.98672 + 4.48943i −0.0724481 + 0.163713i
\(753\) 12.6629 7.31090i 0.461460 0.266424i
\(754\) −14.6283 2.83490i −0.532731 0.103241i
\(755\) −2.84215 2.38485i −0.103437 0.0867936i
\(756\) 0.233524 6.91038i 0.00849319 0.251328i
\(757\) 2.76506 15.6814i 0.100498 0.569952i −0.892426 0.451195i \(-0.850998\pi\)
0.992923 0.118757i \(-0.0378909\pi\)
\(758\) 0.271686 16.0839i 0.00986807 0.584193i
\(759\) 4.24142 0.153954
\(760\) 3.34879 + 1.15735i 0.121473 + 0.0419816i
\(761\) −7.73239 −0.280299 −0.140149 0.990130i \(-0.544758\pi\)
−0.140149 + 0.990130i \(0.544758\pi\)
\(762\) −0.213268 + 12.6255i −0.00772587 + 0.457374i
\(763\) −1.09580 + 6.21459i −0.0396706 + 0.224983i
\(764\) 1.53943 45.5543i 0.0556945 1.64810i
\(765\) 0.114724 + 0.0962645i 0.00414784 + 0.00348045i
\(766\) 21.7562 + 4.21626i 0.786082 + 0.152340i
\(767\) −13.4374 + 7.75811i −0.485198 + 0.280129i
\(768\) −8.60933 + 26.9086i −0.310662 + 0.970982i
\(769\) −24.5001 8.91731i −0.883496 0.321566i −0.139877 0.990169i \(-0.544671\pi\)
−0.743620 + 0.668603i \(0.766893\pi\)
\(770\) 0.804867 0.926948i 0.0290054 0.0334049i
\(771\) 8.87699 + 5.12513i 0.319697 + 0.184577i
\(772\) −39.9902 8.45312i −1.43928 0.304235i