Properties

Label 76.2.k.a.67.8
Level $76$
Weight $2$
Character 76.67
Analytic conductor $0.607$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 76.k (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.606863055362\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 67.8
Character \(\chi\) \(=\) 76.67
Dual form 76.2.k.a.59.8

$q$-expansion

\(f(q)\) \(=\) \(q+(1.33760 + 0.459147i) q^{2} +(0.220673 - 0.185167i) q^{3} +(1.57837 + 1.22831i) q^{4} +(-2.14071 - 0.779153i) q^{5} +(0.380192 - 0.146358i) q^{6} +(-3.55057 - 2.04992i) q^{7} +(1.54725 + 2.36770i) q^{8} +(-0.506535 + 2.87270i) q^{9} +O(q^{10})\) \(q+(1.33760 + 0.459147i) q^{2} +(0.220673 - 0.185167i) q^{3} +(1.57837 + 1.22831i) q^{4} +(-2.14071 - 0.779153i) q^{5} +(0.380192 - 0.146358i) q^{6} +(-3.55057 - 2.04992i) q^{7} +(1.54725 + 2.36770i) q^{8} +(-0.506535 + 2.87270i) q^{9} +(-2.50567 - 2.02510i) q^{10} +(3.61965 - 2.08981i) q^{11} +(0.575746 - 0.0212054i) q^{12} +(-0.374492 + 0.446302i) q^{13} +(-3.80804 - 4.37222i) q^{14} +(-0.616669 + 0.224449i) q^{15} +(0.982490 + 3.87746i) q^{16} +(-0.573106 - 3.25025i) q^{17} +(-1.99653 + 3.60996i) q^{18} +(-0.458280 + 4.33474i) q^{19} +(-2.42178 - 3.85925i) q^{20} +(-1.16309 + 0.205085i) q^{21} +(5.80119 - 1.13338i) q^{22} +(-0.862701 - 2.37025i) q^{23} +(0.779857 + 0.235988i) q^{24} +(0.145317 + 0.121936i) q^{25} +(-0.705840 + 0.425028i) q^{26} +(0.852252 + 1.47614i) q^{27} +(-3.08616 - 7.59675i) q^{28} +(8.34798 + 1.47197i) q^{29} +(-0.927914 + 0.0170823i) q^{30} +(-0.386863 + 0.670066i) q^{31} +(-0.466142 + 5.63762i) q^{32} +(0.411797 - 1.13140i) q^{33} +(0.725752 - 4.61068i) q^{34} +(6.00353 + 7.15472i) q^{35} +(-4.32808 + 3.91200i) q^{36} +1.23521i q^{37} +(-2.60328 + 5.58775i) q^{38} +0.167830i q^{39} +(-1.46741 - 6.27410i) q^{40} +(-4.51238 - 5.37764i) q^{41} +(-1.64992 - 0.259709i) q^{42} +(-1.55737 + 4.27884i) q^{43} +(8.28008 + 1.14758i) q^{44} +(3.32261 - 5.75494i) q^{45} +(-0.0656581 - 3.56656i) q^{46} +(4.84679 + 0.854620i) q^{47} +(0.934786 + 0.673727i) q^{48} +(4.90438 + 8.49464i) q^{49} +(0.138391 + 0.229824i) q^{50} +(-0.728306 - 0.611122i) q^{51} +(-1.13928 + 0.244435i) q^{52} +(-0.232598 - 0.639058i) q^{53} +(0.462209 + 2.36581i) q^{54} +(-9.37689 + 1.65340i) q^{55} +(-0.640033 - 11.5784i) q^{56} +(0.701520 + 1.04142i) q^{57} +(10.4904 + 5.80187i) q^{58} +(-0.368113 - 2.08767i) q^{59} +(-1.24902 - 0.403200i) q^{60} +(-2.91217 + 1.05994i) q^{61} +(-0.825128 + 0.718656i) q^{62} +(7.68731 - 9.16138i) q^{63} +(-3.21201 + 7.32687i) q^{64} +(1.14941 - 0.663614i) q^{65} +(1.07030 - 1.32429i) q^{66} +(2.44691 - 13.8771i) q^{67} +(3.08775 - 5.83404i) q^{68} +(-0.629267 - 0.363307i) q^{69} +(4.74527 + 12.3267i) q^{70} +(-12.4034 - 4.51448i) q^{71} +(-7.58543 + 3.24548i) q^{72} +(-8.59023 + 7.20806i) q^{73} +(-0.567143 + 1.65222i) q^{74} +0.0546461 q^{75} +(-6.04776 + 6.27890i) q^{76} -17.1358 q^{77} +(-0.0770587 + 0.224490i) q^{78} +(-7.91111 + 6.63821i) q^{79} +(0.917914 - 9.06601i) q^{80} +(-7.76190 - 2.82510i) q^{81} +(-3.56664 - 9.26500i) q^{82} +(1.29416 + 0.747183i) q^{83} +(-2.08770 - 1.10494i) q^{84} +(-1.30559 + 7.40436i) q^{85} +(-4.04776 + 5.00833i) q^{86} +(2.11474 - 1.22094i) q^{87} +(10.5486 + 5.33679i) q^{88} +(9.52313 - 11.3492i) q^{89} +(7.08670 - 6.17226i) q^{90} +(2.24455 - 0.816948i) q^{91} +(1.54975 - 4.80080i) q^{92} +(0.0387037 + 0.219500i) q^{93} +(6.09069 + 3.36853i) q^{94} +(4.35847 - 8.92233i) q^{95} +(0.941034 + 1.33038i) q^{96} +(10.1050 - 1.78178i) q^{97} +(2.65983 + 13.6143i) q^{98} +(4.16991 + 11.4567i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 6q^{2} - 12q^{5} - 12q^{6} - 9q^{8} - 18q^{9} + O(q^{10}) \) \( 48q - 6q^{2} - 12q^{5} - 12q^{6} - 9q^{8} - 18q^{9} - 3q^{10} - 9q^{12} - 3q^{14} - 12q^{17} - 42q^{20} - 18q^{21} - 12q^{22} + 24q^{24} - 12q^{25} + 21q^{26} - 12q^{29} + 42q^{30} + 9q^{32} - 36q^{33} + 87q^{36} + 60q^{38} + 6q^{40} + 30q^{41} + 3q^{42} + 45q^{44} - 6q^{45} + 36q^{46} + 45q^{48} - 18q^{49} + 18q^{50} - 15q^{52} - 24q^{53} - 75q^{54} - 12q^{57} + 60q^{58} + 6q^{60} - 66q^{62} - 45q^{64} + 18q^{65} - 42q^{66} - 42q^{68} + 126q^{69} - 63q^{70} - 78q^{72} - 12q^{73} - 105q^{74} - 126q^{76} - 36q^{77} + 3q^{78} - 3q^{80} + 72q^{81} - 111q^{82} - 117q^{84} + 108q^{85} - 24q^{86} - 81q^{88} - 18q^{90} + 36q^{92} + 30q^{93} - 66q^{96} - 6q^{97} + 39q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33760 + 0.459147i 0.945829 + 0.324666i
\(3\) 0.220673 0.185167i 0.127406 0.106906i −0.576858 0.816844i \(-0.695722\pi\)
0.704264 + 0.709938i \(0.251277\pi\)
\(4\) 1.57837 + 1.22831i 0.789184 + 0.614157i
\(5\) −2.14071 0.779153i −0.957352 0.348448i −0.184357 0.982859i \(-0.559020\pi\)
−0.772995 + 0.634412i \(0.781242\pi\)
\(6\) 0.380192 0.146358i 0.155213 0.0597505i
\(7\) −3.55057 2.04992i −1.34199 0.774799i −0.354891 0.934908i \(-0.615482\pi\)
−0.987099 + 0.160109i \(0.948815\pi\)
\(8\) 1.54725 + 2.36770i 0.547037 + 0.837108i
\(9\) −0.506535 + 2.87270i −0.168845 + 0.957567i
\(10\) −2.50567 2.02510i −0.792362 0.640392i
\(11\) 3.61965 2.08981i 1.09137 0.630101i 0.157426 0.987531i \(-0.449680\pi\)
0.933940 + 0.357430i \(0.116347\pi\)
\(12\) 0.575746 0.0212054i 0.166204 0.00612147i
\(13\) −0.374492 + 0.446302i −0.103865 + 0.123782i −0.815473 0.578795i \(-0.803523\pi\)
0.711608 + 0.702577i \(0.247967\pi\)
\(14\) −3.80804 4.37222i −1.01774 1.16853i
\(15\) −0.616669 + 0.224449i −0.159223 + 0.0579525i
\(16\) 0.982490 + 3.87746i 0.245623 + 0.969366i
\(17\) −0.573106 3.25025i −0.138999 0.788301i −0.971991 0.235017i \(-0.924486\pi\)
0.832993 0.553284i \(-0.186626\pi\)
\(18\) −1.99653 + 3.60996i −0.470588 + 0.850876i
\(19\) −0.458280 + 4.33474i −0.105137 + 0.994458i
\(20\) −2.42178 3.85925i −0.541526 0.862954i
\(21\) −1.16309 + 0.205085i −0.253808 + 0.0447532i
\(22\) 5.80119 1.13338i 1.23682 0.241638i
\(23\) −0.862701 2.37025i −0.179886 0.494232i 0.816675 0.577098i \(-0.195815\pi\)
−0.996561 + 0.0828661i \(0.973593\pi\)
\(24\) 0.779857 + 0.235988i 0.159188 + 0.0481708i
\(25\) 0.145317 + 0.121936i 0.0290635 + 0.0243872i
\(26\) −0.705840 + 0.425028i −0.138427 + 0.0833549i
\(27\) 0.852252 + 1.47614i 0.164016 + 0.284084i
\(28\) −3.08616 7.59675i −0.583230 1.43565i
\(29\) 8.34798 + 1.47197i 1.55018 + 0.273339i 0.882213 0.470850i \(-0.156053\pi\)
0.667969 + 0.744189i \(0.267164\pi\)
\(30\) −0.927914 + 0.0170823i −0.169413 + 0.00311878i
\(31\) −0.386863 + 0.670066i −0.0694826 + 0.120347i −0.898674 0.438618i \(-0.855468\pi\)
0.829191 + 0.558965i \(0.188801\pi\)
\(32\) −0.466142 + 5.63762i −0.0824031 + 0.996599i
\(33\) 0.411797 1.13140i 0.0716847 0.196952i
\(34\) 0.725752 4.61068i 0.124465 0.790725i
\(35\) 6.00353 + 7.15472i 1.01478 + 1.20937i
\(36\) −4.32808 + 3.91200i −0.721346 + 0.651999i
\(37\) 1.23521i 0.203067i 0.994832 + 0.101534i \(0.0323749\pi\)
−0.994832 + 0.101534i \(0.967625\pi\)
\(38\) −2.60328 + 5.58775i −0.422308 + 0.906452i
\(39\) 0.167830i 0.0268743i
\(40\) −1.46741 6.27410i −0.232019 0.992022i
\(41\) −4.51238 5.37764i −0.704715 0.839847i 0.288336 0.957529i \(-0.406898\pi\)
−0.993051 + 0.117683i \(0.962453\pi\)
\(42\) −1.64992 0.259709i −0.254589 0.0400739i
\(43\) −1.55737 + 4.27884i −0.237497 + 0.652517i 0.762488 + 0.647002i \(0.223978\pi\)
−0.999985 + 0.00551486i \(0.998245\pi\)
\(44\) 8.28008 + 1.14758i 1.24827 + 0.173005i
\(45\) 3.32261 5.75494i 0.495306 0.857895i
\(46\) −0.0656581 3.56656i −0.00968075 0.525861i
\(47\) 4.84679 + 0.854620i 0.706977 + 0.124659i 0.515565 0.856851i \(-0.327582\pi\)
0.191412 + 0.981510i \(0.438693\pi\)
\(48\) 0.934786 + 0.673727i 0.134925 + 0.0972441i
\(49\) 4.90438 + 8.49464i 0.700626 + 1.21352i
\(50\) 0.138391 + 0.229824i 0.0195714 + 0.0325020i
\(51\) −0.728306 0.611122i −0.101983 0.0855742i
\(52\) −1.13928 + 0.244435i −0.157990 + 0.0338971i
\(53\) −0.232598 0.639058i −0.0319498 0.0877814i 0.922692 0.385538i \(-0.125984\pi\)
−0.954642 + 0.297756i \(0.903762\pi\)
\(54\) 0.462209 + 2.36581i 0.0628986 + 0.321945i
\(55\) −9.37689 + 1.65340i −1.26438 + 0.222944i
\(56\) −0.640033 11.5784i −0.0855280 1.54724i
\(57\) 0.701520 + 1.04142i 0.0929185 + 0.137939i
\(58\) 10.4904 + 5.80187i 1.37746 + 0.761823i
\(59\) −0.368113 2.08767i −0.0479243 0.271792i 0.951424 0.307883i \(-0.0996205\pi\)
−0.999349 + 0.0360909i \(0.988509\pi\)
\(60\) −1.24902 0.403200i −0.161248 0.0520529i
\(61\) −2.91217 + 1.05994i −0.372866 + 0.135712i −0.521654 0.853157i \(-0.674685\pi\)
0.148789 + 0.988869i \(0.452463\pi\)
\(62\) −0.825128 + 0.718656i −0.104791 + 0.0912693i
\(63\) 7.68731 9.16138i 0.968510 1.15423i
\(64\) −3.21201 + 7.32687i −0.401501 + 0.915859i
\(65\) 1.14941 0.663614i 0.142567 0.0823112i
\(66\) 1.07030 1.32429i 0.131745 0.163009i
\(67\) 2.44691 13.8771i 0.298938 1.69536i −0.351813 0.936070i \(-0.614435\pi\)
0.650751 0.759291i \(-0.274454\pi\)
\(68\) 3.08775 5.83404i 0.374445 0.707481i
\(69\) −0.629267 0.363307i −0.0757548 0.0437370i
\(70\) 4.74527 + 12.3267i 0.567168 + 1.47332i
\(71\) −12.4034 4.51448i −1.47202 0.535771i −0.523370 0.852105i \(-0.675326\pi\)
−0.948648 + 0.316335i \(0.897548\pi\)
\(72\) −7.58543 + 3.24548i −0.893952 + 0.382483i
\(73\) −8.59023 + 7.20806i −1.00541 + 0.843639i −0.987725 0.156205i \(-0.950074\pi\)
−0.0176852 + 0.999844i \(0.505630\pi\)
\(74\) −0.567143 + 1.65222i −0.0659290 + 0.192067i
\(75\) 0.0546461 0.00630999
\(76\) −6.04776 + 6.27890i −0.693725 + 0.720240i
\(77\) −17.1358 −1.95280
\(78\) −0.0770587 + 0.224490i −0.00872518 + 0.0254185i
\(79\) −7.91111 + 6.63821i −0.890069 + 0.746857i −0.968224 0.250085i \(-0.919542\pi\)
0.0781550 + 0.996941i \(0.475097\pi\)
\(80\) 0.917914 9.06601i 0.102626 1.01361i
\(81\) −7.76190 2.82510i −0.862433 0.313900i
\(82\) −3.56664 9.26500i −0.393870 1.02315i
\(83\) 1.29416 + 0.747183i 0.142052 + 0.0820140i 0.569342 0.822101i \(-0.307198\pi\)
−0.427289 + 0.904115i \(0.640531\pi\)
\(84\) −2.08770 1.10494i −0.227787 0.120559i
\(85\) −1.30559 + 7.40436i −0.141611 + 0.803115i
\(86\) −4.04776 + 5.00833i −0.436482 + 0.540062i
\(87\) 2.11474 1.22094i 0.226723 0.130899i
\(88\) 10.5486 + 5.33679i 1.12448 + 0.568904i
\(89\) 9.52313 11.3492i 1.00945 1.20302i 0.0303703 0.999539i \(-0.490331\pi\)
0.979080 0.203477i \(-0.0652242\pi\)
\(90\) 7.08670 6.17226i 0.747004 0.650613i
\(91\) 2.24455 0.816948i 0.235292 0.0856394i
\(92\) 1.54975 4.80080i 0.161573 0.500518i
\(93\) 0.0387037 + 0.219500i 0.00401339 + 0.0227610i
\(94\) 6.09069 + 3.36853i 0.628206 + 0.347438i
\(95\) 4.35847 8.92233i 0.447169 0.915412i
\(96\) 0.941034 + 1.33038i 0.0960438 + 0.135782i
\(97\) 10.1050 1.78178i 1.02601 0.180913i 0.364776 0.931095i \(-0.381146\pi\)
0.661230 + 0.750183i \(0.270035\pi\)
\(98\) 2.65983 + 13.6143i 0.268684 + 1.37525i
\(99\) 4.16991 + 11.4567i 0.419092 + 1.15145i
\(100\) 0.0795889 + 0.370955i 0.00795889 + 0.0370955i
\(101\) 6.70325 + 5.62470i 0.666999 + 0.559678i 0.912175 0.409800i \(-0.134402\pi\)
−0.245177 + 0.969478i \(0.578846\pi\)
\(102\) −0.693591 1.15184i −0.0686757 0.114049i
\(103\) −4.40079 7.62240i −0.433623 0.751057i 0.563559 0.826076i \(-0.309432\pi\)
−0.997182 + 0.0750187i \(0.976098\pi\)
\(104\) −1.63614 0.196142i −0.160437 0.0192333i
\(105\) 2.64963 + 0.467202i 0.258578 + 0.0455942i
\(106\) −0.0177025 0.961604i −0.00171942 0.0933992i
\(107\) −0.252753 + 0.437781i −0.0244346 + 0.0423219i −0.877984 0.478690i \(-0.841112\pi\)
0.853550 + 0.521012i \(0.174445\pi\)
\(108\) −0.468001 + 3.37673i −0.0450334 + 0.324926i
\(109\) 2.13914 5.87723i 0.204892 0.562937i −0.794102 0.607785i \(-0.792058\pi\)
0.998994 + 0.0448483i \(0.0142805\pi\)
\(110\) −13.3017 2.09378i −1.26827 0.199634i
\(111\) 0.228720 + 0.272577i 0.0217091 + 0.0258719i
\(112\) 4.46010 15.7812i 0.421440 1.49119i
\(113\) 7.26696i 0.683618i 0.939769 + 0.341809i \(0.111040\pi\)
−0.939769 + 0.341809i \(0.888960\pi\)
\(114\) 0.460191 + 1.71511i 0.0431008 + 0.160634i
\(115\) 5.74619i 0.535835i
\(116\) 11.3681 + 12.5773i 1.05551 + 1.16777i
\(117\) −1.09240 1.30187i −0.100992 0.120358i
\(118\) 0.466160 2.96150i 0.0429135 0.272628i
\(119\) −4.62790 + 12.7151i −0.424239 + 1.16559i
\(120\) −1.48557 1.11281i −0.135614 0.101585i
\(121\) 3.23459 5.60247i 0.294054 0.509316i
\(122\) −4.38201 + 0.0806698i −0.396728 + 0.00730350i
\(123\) −1.99152 0.351159i −0.179569 0.0316629i
\(124\) −1.43366 + 0.582421i −0.128747 + 0.0523030i
\(125\) 5.47915 + 9.49017i 0.490070 + 0.848827i
\(126\) 14.4890 8.72469i 1.29078 0.777257i
\(127\) 6.88695 + 5.77884i 0.611118 + 0.512789i 0.894998 0.446071i \(-0.147177\pi\)
−0.283879 + 0.958860i \(0.591622\pi\)
\(128\) −7.66051 + 8.32566i −0.677099 + 0.735892i
\(129\) 0.448629 + 1.23260i 0.0394996 + 0.108524i
\(130\) 1.84216 0.359903i 0.161568 0.0315656i
\(131\) 13.5834 2.39512i 1.18679 0.209262i 0.454807 0.890590i \(-0.349708\pi\)
0.731979 + 0.681328i \(0.238597\pi\)
\(132\) 2.03969 1.27995i 0.177532 0.111406i
\(133\) 10.5130 14.4514i 0.911597 1.25309i
\(134\) 9.64465 17.4386i 0.833171 1.50647i
\(135\) −0.674279 3.82402i −0.0580327 0.329120i
\(136\) 6.80887 6.38590i 0.583856 0.547587i
\(137\) −7.03294 + 2.55978i −0.600865 + 0.218697i −0.624501 0.781024i \(-0.714698\pi\)
0.0236365 + 0.999721i \(0.492476\pi\)
\(138\) −0.674898 0.774887i −0.0574511 0.0659628i
\(139\) −12.3852 + 14.7601i −1.05050 + 1.25194i −0.0836787 + 0.996493i \(0.526667\pi\)
−0.966823 + 0.255447i \(0.917777\pi\)
\(140\) 0.687527 + 18.6670i 0.0581066 + 1.57765i
\(141\) 1.22780 0.708872i 0.103400 0.0596978i
\(142\) −14.5181 11.7336i −1.21833 0.984662i
\(143\) −0.422845 + 2.39807i −0.0353601 + 0.200537i
\(144\) −11.6365 + 0.858332i −0.969704 + 0.0715277i
\(145\) −16.7237 9.65542i −1.38883 0.801839i
\(146\) −14.7999 + 5.69735i −1.22485 + 0.471516i
\(147\) 2.65519 + 0.966410i 0.218996 + 0.0797081i
\(148\) −1.51722 + 1.94961i −0.124715 + 0.160257i
\(149\) 1.56368 1.31208i 0.128101 0.107490i −0.576486 0.817107i \(-0.695576\pi\)
0.704588 + 0.709617i \(0.251132\pi\)
\(150\) 0.0730948 + 0.0250906i 0.00596817 + 0.00204864i
\(151\) 9.61868 0.782757 0.391378 0.920230i \(-0.371998\pi\)
0.391378 + 0.920230i \(0.371998\pi\)
\(152\) −10.9724 + 5.62188i −0.889983 + 0.455994i
\(153\) 9.62728 0.778320
\(154\) −22.9209 7.86785i −1.84702 0.634009i
\(155\) 1.35024 1.13299i 0.108454 0.0910038i
\(156\) −0.206148 + 0.264898i −0.0165051 + 0.0212088i
\(157\) −7.10221 2.58499i −0.566818 0.206305i 0.0426851 0.999089i \(-0.486409\pi\)
−0.609503 + 0.792784i \(0.708631\pi\)
\(158\) −13.6298 + 5.24693i −1.08433 + 0.417423i
\(159\) −0.169660 0.0979535i −0.0134549 0.00776822i
\(160\) 5.39044 11.7053i 0.426152 0.925383i
\(161\) −1.79575 + 10.1842i −0.141525 + 0.802629i
\(162\) −9.08520 7.34271i −0.713801 0.576898i
\(163\) 14.3484 8.28406i 1.12385 0.648858i 0.181472 0.983396i \(-0.441914\pi\)
0.942382 + 0.334538i \(0.108580\pi\)
\(164\) −0.516760 14.0305i −0.0403522 1.09560i
\(165\) −1.76307 + 2.10115i −0.137255 + 0.163574i
\(166\) 1.38801 + 1.59364i 0.107730 + 0.123691i
\(167\) −7.24993 + 2.63876i −0.561016 + 0.204193i −0.606934 0.794752i \(-0.707601\pi\)
0.0459180 + 0.998945i \(0.485379\pi\)
\(168\) −2.28518 2.43654i −0.176306 0.187983i
\(169\) 2.19849 + 12.4682i 0.169114 + 0.959094i
\(170\) −5.14605 + 9.30464i −0.394684 + 0.713633i
\(171\) −12.2203 3.51220i −0.934508 0.268585i
\(172\) −7.71387 + 4.84065i −0.588177 + 0.369096i
\(173\) −9.18629 + 1.61979i −0.698421 + 0.123150i −0.511575 0.859239i \(-0.670938\pi\)
−0.186846 + 0.982389i \(0.559827\pi\)
\(174\) 3.38927 0.662164i 0.256940 0.0501985i
\(175\) −0.266001 0.730832i −0.0201078 0.0552457i
\(176\) 11.6594 + 11.9818i 0.878862 + 0.903166i
\(177\) −0.467801 0.392531i −0.0351620 0.0295045i
\(178\) 17.9491 10.8083i 1.34535 0.810113i
\(179\) 0.791374 + 1.37070i 0.0591501 + 0.102451i 0.894084 0.447899i \(-0.147828\pi\)
−0.834934 + 0.550350i \(0.814494\pi\)
\(180\) 12.3132 5.00220i 0.917770 0.372842i
\(181\) 13.1059 + 2.31093i 0.974156 + 0.171770i 0.638000 0.770036i \(-0.279762\pi\)
0.336156 + 0.941806i \(0.390873\pi\)
\(182\) 3.37741 0.0621759i 0.250350 0.00460878i
\(183\) −0.446372 + 0.773139i −0.0329968 + 0.0571521i
\(184\) 4.27723 5.71000i 0.315321 0.420947i
\(185\) 0.962417 2.64422i 0.0707583 0.194407i
\(186\) −0.0490124 + 0.311374i −0.00359376 + 0.0228311i
\(187\) −8.86683 10.5671i −0.648407 0.772742i
\(188\) 6.60028 + 7.30228i 0.481375 + 0.532574i
\(189\) 6.98821i 0.508318i
\(190\) 9.92657 9.93337i 0.720149 0.720642i
\(191\) 12.6803i 0.917517i 0.888561 + 0.458759i \(0.151706\pi\)
−0.888561 + 0.458759i \(0.848294\pi\)
\(192\) 0.647888 + 2.21160i 0.0467573 + 0.159608i
\(193\) −14.1194 16.8269i −1.01634 1.21123i −0.977272 0.211989i \(-0.932006\pi\)
−0.0390670 0.999237i \(-0.512439\pi\)
\(194\) 14.3346 + 2.25636i 1.02916 + 0.161997i
\(195\) 0.130765 0.359275i 0.00936430 0.0257282i
\(196\) −2.69316 + 19.4318i −0.192369 + 1.38798i
\(197\) 2.27195 3.93514i 0.161870 0.280367i −0.773669 0.633590i \(-0.781581\pi\)
0.935539 + 0.353223i \(0.114914\pi\)
\(198\) 0.317362 + 17.2392i 0.0225539 + 1.22514i
\(199\) 11.9982 + 2.11561i 0.850530 + 0.149971i 0.581888 0.813269i \(-0.302314\pi\)
0.268642 + 0.963240i \(0.413425\pi\)
\(200\) −0.0638644 + 0.532734i −0.00451590 + 0.0376700i
\(201\) −2.02962 3.51540i −0.143158 0.247957i
\(202\) 6.38373 + 10.6014i 0.449158 + 0.745912i
\(203\) −26.6227 22.3391i −1.86855 1.56790i
\(204\) −0.398886 1.85916i −0.0279276 0.130167i
\(205\) 5.46966 + 15.0278i 0.382018 + 1.04959i
\(206\) −2.38672 12.2164i −0.166290 0.851154i
\(207\) 7.24601 1.27767i 0.503633 0.0888040i
\(208\) −2.09845 1.01359i −0.145502 0.0702798i
\(209\) 7.39996 + 16.6480i 0.511866 + 1.15156i
\(210\) 3.32965 + 1.84150i 0.229767 + 0.127076i
\(211\) −0.635579 3.60455i −0.0437551 0.248147i 0.955083 0.296338i \(-0.0957656\pi\)
−0.998838 + 0.0481908i \(0.984654\pi\)
\(212\) 0.417839 1.29437i 0.0286973 0.0888979i
\(213\) −3.57304 + 1.30048i −0.244821 + 0.0891074i
\(214\) −0.539089 + 0.469527i −0.0368514 + 0.0320962i
\(215\) 6.66775 7.94631i 0.454736 0.541934i
\(216\) −2.17642 + 4.30185i −0.148086 + 0.292704i
\(217\) 2.74717 1.58608i 0.186490 0.107670i
\(218\) 5.55983 6.87923i 0.376559 0.465920i
\(219\) −0.560940 + 3.18125i −0.0379048 + 0.214969i
\(220\) −16.8311 8.90809i −1.13475 0.600583i
\(221\) 1.66521 + 0.961412i 0.112014 + 0.0646716i
\(222\) 0.180783 + 0.469616i 0.0121334 + 0.0315186i
\(223\) 26.3079 + 9.57530i 1.76171 + 0.641210i 0.999978 0.00668309i \(-0.00212731\pi\)
0.761732 + 0.647893i \(0.224350\pi\)
\(224\) 13.2118 19.0612i 0.882748 1.27358i
\(225\) −0.423893 + 0.355689i −0.0282596 + 0.0237126i
\(226\) −3.33660 + 9.72032i −0.221948 + 0.646586i
\(227\) −6.26652 −0.415924 −0.207962 0.978137i \(-0.566683\pi\)
−0.207962 + 0.978137i \(0.566683\pi\)
\(228\) −0.171933 + 2.50543i −0.0113865 + 0.165926i
\(229\) −12.6430 −0.835472 −0.417736 0.908569i \(-0.637176\pi\)
−0.417736 + 0.908569i \(0.637176\pi\)
\(230\) −2.63834 + 7.68612i −0.173967 + 0.506808i
\(231\) −3.78141 + 3.17298i −0.248798 + 0.208767i
\(232\) 9.43126 + 22.0430i 0.619192 + 1.44720i
\(233\) 6.32647 + 2.30265i 0.414461 + 0.150851i 0.540830 0.841132i \(-0.318110\pi\)
−0.126369 + 0.991983i \(0.540332\pi\)
\(234\) −0.863447 2.24296i −0.0564453 0.146627i
\(235\) −9.70967 5.60588i −0.633389 0.365687i
\(236\) 1.98330 3.74728i 0.129102 0.243927i
\(237\) −0.516593 + 2.92975i −0.0335563 + 0.190307i
\(238\) −12.0284 + 14.8828i −0.779685 + 0.964711i
\(239\) −8.72510 + 5.03744i −0.564380 + 0.325845i −0.754901 0.655838i \(-0.772315\pi\)
0.190522 + 0.981683i \(0.438982\pi\)
\(240\) −1.47616 2.17059i −0.0952860 0.140111i
\(241\) 5.43427 6.47631i 0.350052 0.417176i −0.562073 0.827088i \(-0.689996\pi\)
0.912125 + 0.409912i \(0.134440\pi\)
\(242\) 6.89896 6.00874i 0.443482 0.386256i
\(243\) −7.04109 + 2.56275i −0.451686 + 0.164400i
\(244\) −5.89843 1.90408i −0.377608 0.121896i
\(245\) −3.88021 22.0058i −0.247898 1.40590i
\(246\) −2.50263 1.38411i −0.159562 0.0882478i
\(247\) −1.76298 1.82786i −0.112176 0.116304i
\(248\) −2.18509 + 0.120787i −0.138753 + 0.00767000i
\(249\) 0.423939 0.0747520i 0.0268661 0.00473721i
\(250\) 2.97155 + 15.2098i 0.187937 + 0.961954i
\(251\) −2.91664 8.01342i −0.184097 0.505802i 0.812973 0.582302i \(-0.197848\pi\)
−0.997070 + 0.0764996i \(0.975626\pi\)
\(252\) 23.3864 5.01760i 1.47321 0.316079i
\(253\) −8.07605 6.77661i −0.507737 0.426042i
\(254\) 6.55868 + 10.8919i 0.411528 + 0.683420i
\(255\) 1.08293 + 1.87569i 0.0678158 + 0.117460i
\(256\) −14.0694 + 7.61914i −0.879339 + 0.476196i
\(257\) −2.70278 0.476573i −0.168595 0.0297278i 0.0887134 0.996057i \(-0.471724\pi\)
−0.257308 + 0.966329i \(0.582836\pi\)
\(258\) 0.0341441 + 1.85472i 0.00212572 + 0.115470i
\(259\) 2.53208 4.38570i 0.157336 0.272514i
\(260\) 2.62932 + 0.364413i 0.163064 + 0.0225999i
\(261\) −8.45709 + 23.2357i −0.523481 + 1.43825i
\(262\) 19.2689 + 3.03305i 1.19044 + 0.187383i
\(263\) −1.42151 1.69409i −0.0876540 0.104462i 0.720435 0.693523i \(-0.243942\pi\)
−0.808089 + 0.589061i \(0.799498\pi\)
\(264\) 3.31598 0.775556i 0.204084 0.0477322i
\(265\) 1.54926i 0.0951706i
\(266\) 20.6976 14.5032i 1.26905 0.889247i
\(267\) 4.26784i 0.261187i
\(268\) 20.9076 18.8976i 1.27714 1.15436i
\(269\) 9.64383 + 11.4931i 0.587995 + 0.700745i 0.975219 0.221241i \(-0.0710106\pi\)
−0.387225 + 0.921985i \(0.626566\pi\)
\(270\) 0.853872 5.42462i 0.0519650 0.330132i
\(271\) 8.76172 24.0726i 0.532237 1.46231i −0.324166 0.946000i \(-0.605084\pi\)
0.856403 0.516308i \(-0.172694\pi\)
\(272\) 12.0396 5.41553i 0.730010 0.328365i
\(273\) 0.344039 0.595893i 0.0208222 0.0360651i
\(274\) −10.5826 + 0.194819i −0.639319 + 0.0117694i
\(275\) 0.780821 + 0.137680i 0.0470853 + 0.00830240i
\(276\) −0.546959 1.34637i −0.0329231 0.0810419i
\(277\) −4.24573 7.35381i −0.255101 0.441848i 0.709822 0.704381i \(-0.248775\pi\)
−0.964923 + 0.262533i \(0.915442\pi\)
\(278\) −23.3436 + 14.0566i −1.40006 + 0.843058i
\(279\) −1.72894 1.45075i −0.103509 0.0868542i
\(280\) −7.65126 + 25.2847i −0.457250 + 1.51105i
\(281\) −0.393696 1.08167i −0.0234859 0.0645270i 0.927396 0.374082i \(-0.122042\pi\)
−0.950882 + 0.309555i \(0.899820\pi\)
\(282\) 1.96779 0.384448i 0.117180 0.0228936i
\(283\) −9.24245 + 1.62969i −0.549407 + 0.0968752i −0.441459 0.897281i \(-0.645539\pi\)
−0.107948 + 0.994157i \(0.534428\pi\)
\(284\) −14.0320 22.3608i −0.832646 1.32687i
\(285\) −0.690322 2.77596i −0.0408911 0.164434i
\(286\) −1.66667 + 3.01352i −0.0985521 + 0.178193i
\(287\) 4.99777 + 28.3437i 0.295009 + 1.67308i
\(288\) −15.9591 4.19474i −0.940397 0.247177i
\(289\) 5.73912 2.08887i 0.337595 0.122875i
\(290\) −17.9364 20.5938i −1.05326 1.20931i
\(291\) 1.89997 2.26430i 0.111378 0.132736i
\(292\) −22.4123 + 0.825470i −1.31158 + 0.0483070i
\(293\) −15.9687 + 9.21954i −0.932902 + 0.538611i −0.887728 0.460368i \(-0.847717\pi\)
−0.0451738 + 0.998979i \(0.514384\pi\)
\(294\) 3.10787 + 2.51180i 0.181254 + 0.146491i
\(295\) −0.838596 + 4.75591i −0.0488249 + 0.276900i
\(296\) −2.92460 + 1.91118i −0.169989 + 0.111085i
\(297\) 6.16971 + 3.56209i 0.358003 + 0.206693i
\(298\) 2.69402 1.03709i 0.156060 0.0600768i
\(299\) 1.38092 + 0.502615i 0.0798608 + 0.0290669i
\(300\) 0.0862516 + 0.0671225i 0.00497974 + 0.00387532i
\(301\) 14.3009 11.9999i 0.824288 0.691660i
\(302\) 12.8660 + 4.41639i 0.740354 + 0.254135i
\(303\) 2.52073 0.144812
\(304\) −17.2580 + 2.48188i −0.989817 + 0.142345i
\(305\) 7.05996 0.404252
\(306\) 12.8775 + 4.42034i 0.736157 + 0.252694i
\(307\) −4.28349 + 3.59427i −0.244471 + 0.205136i −0.756787 0.653661i \(-0.773232\pi\)
0.512316 + 0.858797i \(0.328788\pi\)
\(308\) −27.0466 21.0481i −1.54112 1.19933i
\(309\) −2.38255 0.867177i −0.135539 0.0493320i
\(310\) 2.32630 0.895529i 0.132125 0.0508626i
\(311\) 10.3643 + 5.98382i 0.587704 + 0.339311i 0.764189 0.644992i \(-0.223139\pi\)
−0.176485 + 0.984303i \(0.556473\pi\)
\(312\) −0.397372 + 0.259676i −0.0224967 + 0.0147013i
\(313\) −2.75949 + 15.6499i −0.155976 + 0.884582i 0.801913 + 0.597441i \(0.203816\pi\)
−0.957888 + 0.287141i \(0.907295\pi\)
\(314\) −8.31305 6.71865i −0.469133 0.379156i
\(315\) −23.5944 + 13.6222i −1.32939 + 0.767525i
\(316\) −20.6404 + 0.760211i −1.16112 + 0.0427652i
\(317\) 10.8229 12.8982i 0.607875 0.724437i −0.371060 0.928609i \(-0.621006\pi\)
0.978935 + 0.204172i \(0.0654500\pi\)
\(318\) −0.181963 0.208922i −0.0102040 0.0117158i
\(319\) 33.2929 12.1176i 1.86405 0.678458i
\(320\) 12.5847 13.1820i 0.703507 0.736897i
\(321\) 0.0252867 + 0.143408i 0.00141137 + 0.00800425i
\(322\) −7.07806 + 12.7979i −0.394445 + 0.713202i
\(323\) 14.3516 0.994743i 0.798546 0.0553490i
\(324\) −8.78102 13.9931i −0.487834 0.777394i
\(325\) −0.108840 + 0.0191915i −0.00603738 + 0.00106455i
\(326\) 22.9961 4.49276i 1.27364 0.248831i
\(327\) −0.616218 1.69304i −0.0340769 0.0936255i
\(328\) 5.75085 19.0045i 0.317538 1.04935i
\(329\) −15.4570 12.9699i −0.852171 0.715056i
\(330\) −3.32303 + 2.00099i −0.182927 + 0.110151i
\(331\) 7.28237 + 12.6134i 0.400275 + 0.693297i 0.993759 0.111549i \(-0.0355811\pi\)
−0.593484 + 0.804846i \(0.702248\pi\)
\(332\) 1.12488 + 2.76896i 0.0617360 + 0.151967i
\(333\) −3.54839 0.625676i −0.194450 0.0342868i
\(334\) −10.9091 + 0.200829i −0.596920 + 0.0109889i
\(335\) −16.0505 + 27.8003i −0.876934 + 1.51889i
\(336\) −1.93794 4.30836i −0.105723 0.235040i
\(337\) 0.136737 0.375681i 0.00744853 0.0204647i −0.935913 0.352232i \(-0.885423\pi\)
0.943361 + 0.331768i \(0.107645\pi\)
\(338\) −2.78405 + 17.6870i −0.151432 + 0.962045i
\(339\) 1.34560 + 1.60362i 0.0730829 + 0.0870968i
\(340\) −11.1556 + 10.0831i −0.604996 + 0.546834i
\(341\) 3.23387i 0.175124i
\(342\) −14.7333 10.3088i −0.796684 0.557438i
\(343\) 11.5155i 0.621779i
\(344\) −12.5407 + 2.93307i −0.676147 + 0.158140i
\(345\) 1.06400 + 1.26803i 0.0572840 + 0.0682684i
\(346\) −13.0313 2.05122i −0.700569 0.110274i
\(347\) 6.38859 17.5525i 0.342958 0.942268i −0.641574 0.767061i \(-0.721718\pi\)
0.984532 0.175207i \(-0.0560595\pi\)
\(348\) 4.83753 + 0.670461i 0.259319 + 0.0359405i
\(349\) −3.47936 + 6.02643i −0.186246 + 0.322587i −0.943996 0.329958i \(-0.892965\pi\)
0.757750 + 0.652545i \(0.226299\pi\)
\(350\) −0.0202447 1.09970i −0.00108212 0.0587813i
\(351\) −0.977967 0.172442i −0.0522000 0.00920427i
\(352\) 10.0943 + 21.3804i 0.538026 + 1.13958i
\(353\) −2.82935 4.90058i −0.150591 0.260831i 0.780854 0.624714i \(-0.214784\pi\)
−0.931445 + 0.363882i \(0.881451\pi\)
\(354\) −0.445502 0.739841i −0.0236782 0.0393221i
\(355\) 23.0346 + 19.3284i 1.22255 + 1.02584i
\(356\) 28.9714 6.21586i 1.53548 0.329440i
\(357\) 1.33315 + 3.66281i 0.0705579 + 0.193856i
\(358\) 0.429192 + 2.19681i 0.0226835 + 0.116105i
\(359\) −22.1724 + 3.90959i −1.17022 + 0.206340i −0.724784 0.688976i \(-0.758061\pi\)
−0.445431 + 0.895316i \(0.646949\pi\)
\(360\) 18.7669 1.03740i 0.989102 0.0546756i
\(361\) −18.5800 3.97305i −0.977893 0.209108i
\(362\) 16.4695 + 9.10865i 0.865617 + 0.478740i
\(363\) −0.323605 1.83525i −0.0169848 0.0963258i
\(364\) 4.54619 + 1.46756i 0.238285 + 0.0769211i
\(365\) 24.0053 8.73722i 1.25650 0.457327i
\(366\) −0.952053 + 0.829203i −0.0497646 + 0.0433431i
\(367\) −19.3515 + 23.0622i −1.01014 + 1.20384i −0.0312345 + 0.999512i \(0.509944\pi\)
−0.978903 + 0.204323i \(0.934501\pi\)
\(368\) 8.34297 5.67384i 0.434907 0.295769i
\(369\) 17.7340 10.2387i 0.923197 0.533008i
\(370\) 2.50142 3.09503i 0.130042 0.160903i
\(371\) −0.484164 + 2.74583i −0.0251366 + 0.142557i
\(372\) −0.208526 + 0.393991i −0.0108115 + 0.0204275i
\(373\) 15.0172 + 8.67020i 0.777562 + 0.448926i 0.835566 0.549391i \(-0.185140\pi\)
−0.0580034 + 0.998316i \(0.518473\pi\)
\(374\) −7.00847 18.2057i −0.362399 0.941397i
\(375\) 2.96636 + 1.07967i 0.153182 + 0.0557538i
\(376\) 5.47573 + 12.7981i 0.282389 + 0.660009i
\(377\) −3.78320 + 3.17448i −0.194844 + 0.163494i
\(378\) 3.20862 9.34746i 0.165033 0.480781i
\(379\) −13.0139 −0.668480 −0.334240 0.942488i \(-0.608480\pi\)
−0.334240 + 0.942488i \(0.608480\pi\)
\(380\) 17.8387 8.72916i 0.915106 0.447796i
\(381\) 2.58981 0.132680
\(382\) −5.82214 + 16.9613i −0.297887 + 0.867814i
\(383\) 21.9719 18.4366i 1.12271 0.942068i 0.123975 0.992285i \(-0.460436\pi\)
0.998738 + 0.0502175i \(0.0159915\pi\)
\(384\) −0.148832 + 3.25572i −0.00759504 + 0.166143i
\(385\) 36.6827 + 13.3514i 1.86952 + 0.680450i
\(386\) −11.1602 28.9906i −0.568039 1.47558i
\(387\) −11.5030 6.64124i −0.584729 0.337593i
\(388\) 18.1380 + 9.59979i 0.920816 + 0.487355i
\(389\) 5.59981 31.7581i 0.283921 1.61020i −0.425191 0.905104i \(-0.639793\pi\)
0.709113 0.705095i \(-0.249096\pi\)
\(390\) 0.339872 0.420527i 0.0172101 0.0212942i
\(391\) −7.20948 + 4.16240i −0.364599 + 0.210501i
\(392\) −12.5244 + 24.7555i −0.632579 + 1.25034i
\(393\) 2.55399 3.04373i 0.128832 0.153536i
\(394\) 4.84578 4.22049i 0.244127 0.212625i
\(395\) 22.1075 8.04648i 1.11235 0.404862i
\(396\) −7.49081 + 23.2049i −0.376428 + 1.16609i
\(397\) 2.86736 + 16.2616i 0.143909 + 0.816146i 0.968237 + 0.250034i \(0.0804419\pi\)
−0.824328 + 0.566112i \(0.808447\pi\)
\(398\) 15.0775 + 8.33878i 0.755765 + 0.417985i
\(399\) −0.355967 5.13570i −0.0178206 0.257106i
\(400\) −0.330028 + 0.683264i −0.0165014 + 0.0341632i
\(401\) −22.0221 + 3.88308i −1.09973 + 0.193912i −0.693925 0.720048i \(-0.744120\pi\)
−0.405805 + 0.913960i \(0.633009\pi\)
\(402\) −1.10074 5.63410i −0.0548998 0.281003i
\(403\) −0.154175 0.423591i −0.00767999 0.0211006i
\(404\) 3.67131 + 17.1115i 0.182654 + 0.851331i
\(405\) 14.4147 + 12.0954i 0.716274 + 0.601026i
\(406\) −25.3537 42.1046i −1.25828 2.08962i
\(407\) 2.58135 + 4.47103i 0.127953 + 0.221621i
\(408\) 0.320078 2.66997i 0.0158462 0.132183i
\(409\) −21.3931 3.77218i −1.05782 0.186522i −0.382431 0.923984i \(-0.624913\pi\)
−0.675389 + 0.737462i \(0.736024\pi\)
\(410\) 0.416283 + 22.6126i 0.0205587 + 1.11676i
\(411\) −1.07799 + 1.86714i −0.0531736 + 0.0920993i
\(412\) 2.41662 17.4365i 0.119059 0.859035i
\(413\) −2.97256 + 8.16705i −0.146270 + 0.401874i
\(414\) 10.2789 + 1.61797i 0.505182 + 0.0795190i
\(415\) −2.18824 2.60785i −0.107417 0.128014i
\(416\) −2.34151 2.31928i −0.114802 0.113712i
\(417\) 5.55050i 0.271809i
\(418\) 2.25434 + 25.6661i 0.110264 + 1.25537i
\(419\) 13.1962i 0.644678i −0.946624 0.322339i \(-0.895531\pi\)
0.946624 0.322339i \(-0.104469\pi\)
\(420\) 3.60823 + 3.99200i 0.176063 + 0.194790i
\(421\) −4.59262 5.47327i −0.223830 0.266751i 0.642429 0.766345i \(-0.277927\pi\)
−0.866259 + 0.499595i \(0.833482\pi\)
\(422\) 0.804865 5.11328i 0.0391802 0.248911i
\(423\) −4.91013 + 13.4905i −0.238739 + 0.655930i
\(424\) 1.15321 1.53951i 0.0560048 0.0747651i
\(425\) 0.313039 0.542200i 0.0151846 0.0263005i
\(426\) −5.37642 + 0.0989763i −0.260488 + 0.00479542i
\(427\) 12.5127 + 2.20633i 0.605532 + 0.106772i
\(428\) −0.936670 + 0.380520i −0.0452756 + 0.0183931i
\(429\) 0.350733 + 0.607487i 0.0169335 + 0.0293297i
\(430\) 12.5673 7.56754i 0.606050 0.364939i
\(431\) −10.9959 9.22664i −0.529653 0.444432i 0.338329 0.941028i \(-0.390138\pi\)
−0.867982 + 0.496596i \(0.834583\pi\)
\(432\) −4.88636 + 4.75487i −0.235095 + 0.228769i
\(433\) −9.93835 27.3054i −0.477607 1.31221i −0.911519 0.411258i \(-0.865089\pi\)
0.433912 0.900955i \(-0.357133\pi\)
\(434\) 4.40287 0.860190i 0.211344 0.0412904i
\(435\) −5.47833 + 0.965977i −0.262666 + 0.0463151i
\(436\) 10.5954 6.64890i 0.507429 0.318425i
\(437\) 10.6698 2.65335i 0.510405 0.126927i
\(438\) −2.21098 + 3.99769i −0.105644 + 0.191017i
\(439\) −4.75454 26.9643i −0.226922 1.28694i −0.858977 0.512014i \(-0.828900\pi\)
0.632055 0.774923i \(-0.282212\pi\)
\(440\) −18.4232 19.6434i −0.878291 0.936464i
\(441\) −26.8868 + 9.78599i −1.28032 + 0.466000i
\(442\) 1.78597 + 2.05057i 0.0849498 + 0.0975355i
\(443\) 9.24631 11.0193i 0.439305 0.523544i −0.500278 0.865865i \(-0.666769\pi\)
0.939583 + 0.342321i \(0.111213\pi\)
\(444\) 0.0261931 + 0.711167i 0.00124307 + 0.0337505i
\(445\) −29.2290 + 16.8754i −1.38559 + 0.799969i
\(446\) 30.7931 + 24.8872i 1.45810 + 1.17844i
\(447\) 0.102108 0.579082i 0.00482953 0.0273896i
\(448\) 26.4240 19.4302i 1.24842 0.917991i
\(449\) −19.6084 11.3209i −0.925380 0.534268i −0.0400325 0.999198i \(-0.512746\pi\)
−0.885347 + 0.464930i \(0.846079\pi\)
\(450\) −0.730315 + 0.281141i −0.0344274 + 0.0132531i
\(451\) −27.5715 10.0352i −1.29829 0.472539i
\(452\) −8.92611 + 11.4699i −0.419849 + 0.539501i
\(453\) 2.12258 1.78106i 0.0997276 0.0836814i
\(454\) −8.38213 2.87726i −0.393393 0.135036i
\(455\) −5.44144 −0.255099
\(456\) −1.38034 + 3.27233i −0.0646403 + 0.153241i
\(457\) 20.3699 0.952862 0.476431 0.879212i \(-0.341930\pi\)
0.476431 + 0.879212i \(0.341930\pi\)
\(458\) −16.9113 5.80499i −0.790213 0.271249i
\(459\) 4.30940 3.61602i 0.201146 0.168781i
\(460\) −7.05812 + 9.06960i −0.329087 + 0.422872i
\(461\) −17.2074 6.26298i −0.801429 0.291696i −0.0913504 0.995819i \(-0.529118\pi\)
−0.710078 + 0.704123i \(0.751341\pi\)
\(462\) −6.51489 + 2.50796i −0.303100 + 0.116681i
\(463\) −8.71218 5.02998i −0.404890 0.233763i 0.283702 0.958912i \(-0.408437\pi\)
−0.688592 + 0.725149i \(0.741771\pi\)
\(464\) 2.49429 + 33.8152i 0.115794 + 1.56983i
\(465\) 0.0881705 0.500040i 0.00408881 0.0231888i
\(466\) 7.40506 + 5.98481i 0.343033 + 0.277241i
\(467\) 4.54318 2.62300i 0.210233 0.121378i −0.391187 0.920311i \(-0.627935\pi\)
0.601420 + 0.798933i \(0.294602\pi\)
\(468\) −0.125102 3.39664i −0.00578285 0.157010i
\(469\) −37.1350 + 44.2558i −1.71474 + 2.04354i
\(470\) −10.4138 11.9566i −0.480351 0.551517i
\(471\) −2.04592 + 0.744654i −0.0942711 + 0.0343119i
\(472\) 4.37342 4.10175i 0.201303 0.188798i
\(473\) 3.30481 + 18.7425i 0.151955 + 0.861782i
\(474\) −2.03618 + 3.68165i −0.0935249 + 0.169104i
\(475\) −0.595156 + 0.574033i −0.0273076 + 0.0263384i
\(476\) −22.9226 + 14.3845i −1.05066 + 0.659314i
\(477\) 1.95364 0.344480i 0.0894511 0.0157726i
\(478\) −13.9836 + 2.73199i −0.639597 + 0.124958i
\(479\) 1.67304 + 4.59663i 0.0764430 + 0.210025i 0.972028 0.234865i \(-0.0754648\pi\)
−0.895585 + 0.444890i \(0.853243\pi\)
\(480\) −0.977903 3.58117i −0.0446350 0.163457i
\(481\) −0.551276 0.462575i −0.0251360 0.0210916i
\(482\) 10.2425 6.16761i 0.466532 0.280927i
\(483\) 1.48950 + 2.57990i 0.0677748 + 0.117389i
\(484\) 11.9870 4.86967i 0.544862 0.221349i
\(485\) −23.0201 4.05906i −1.04529 0.184312i
\(486\) −10.5949 + 0.195044i −0.480593 + 0.00884739i
\(487\) 9.66172 16.7346i 0.437814 0.758317i −0.559706 0.828691i \(-0.689086\pi\)
0.997521 + 0.0703744i \(0.0224194\pi\)
\(488\) −7.01550 5.25515i −0.317577 0.237890i
\(489\) 1.63238 4.48492i 0.0738186 0.202815i
\(490\) 4.91370 31.2166i 0.221978 1.41022i
\(491\) −14.7254 17.5490i −0.664547 0.791977i 0.323483 0.946234i \(-0.395146\pi\)
−0.988031 + 0.154257i \(0.950702\pi\)
\(492\) −2.71202 3.00047i −0.122267 0.135272i
\(493\) 27.9766i 1.26000i
\(494\) −1.51891 3.25441i −0.0683392 0.146423i
\(495\) 27.7745i 1.24837i
\(496\) −2.97824 0.841712i −0.133727 0.0377940i
\(497\) 34.7850 + 41.4551i 1.56032 + 1.85952i
\(498\) 0.601385 + 0.0946620i 0.0269487 + 0.00424191i
\(499\) 0.869506 2.38895i 0.0389245 0.106944i −0.918708 0.394938i \(-0.870766\pi\)
0.957632 + 0.287994i \(0.0929883\pi\)
\(500\) −3.00879 + 21.7091i −0.134557 + 0.970860i
\(501\) −1.11125 + 1.92475i −0.0496472 + 0.0859914i
\(502\) −0.221979 12.0579i −0.00990740 0.538172i
\(503\) −39.8057 7.01881i −1.77485 0.312953i −0.812132 0.583473i \(-0.801693\pi\)
−0.962714 + 0.270520i \(0.912804\pi\)
\(504\) 33.5856 + 4.02626i 1.49602 + 0.179344i
\(505\) −9.96719 17.2637i −0.443534 0.768224i
\(506\) −7.69109 12.7725i −0.341911 0.567807i
\(507\) 2.79385 + 2.34432i 0.124079 + 0.104115i
\(508\) 3.77192 + 17.5805i 0.167352 + 0.780008i
\(509\) 2.34020 + 6.42964i 0.103728 + 0.284989i 0.980690 0.195570i \(-0.0626558\pi\)
−0.876962 + 0.480559i \(0.840434\pi\)
\(510\) 0.587315 + 3.00616i 0.0260067 + 0.133115i
\(511\) 45.2762 7.98342i 2.00290 0.353166i
\(512\) −22.3176 + 3.73145i −0.986309 + 0.164909i
\(513\) −6.78927 + 3.01781i −0.299754 + 0.133239i
\(514\) −3.39643 1.87844i −0.149810 0.0828545i
\(515\) 3.48179 + 19.7462i 0.153426 + 0.870121i
\(516\) −0.805916 + 2.49655i −0.0354785 + 0.109905i
\(517\) 19.3297 7.03543i 0.850118 0.309418i
\(518\) 5.40061 4.70373i 0.237289 0.206670i
\(519\) −1.72724 + 2.05844i −0.0758173 + 0.0903555i
\(520\) 3.34967 + 1.69469i 0.146893 + 0.0743169i
\(521\) 32.2497 18.6194i 1.41288 0.815729i 0.417225 0.908803i \(-0.363003\pi\)
0.995659 + 0.0930744i \(0.0296694\pi\)
\(522\) −21.9808 + 27.1971i −0.962074 + 1.19038i
\(523\) −7.68298 + 43.5724i −0.335953 + 1.90529i 0.0816571 + 0.996660i \(0.473979\pi\)
−0.417611 + 0.908626i \(0.637132\pi\)
\(524\) 24.3815 + 12.9043i 1.06511 + 0.563726i
\(525\) −0.194025 0.112020i −0.00846794 0.00488897i
\(526\) −1.12358 2.91870i −0.0489904 0.127261i
\(527\) 2.39959 + 0.873380i 0.104528 + 0.0380450i
\(528\) 4.79156 + 0.485135i 0.208526 + 0.0211128i
\(529\) 12.7452 10.6945i 0.554138 0.464977i
\(530\) −0.711340 + 2.07230i −0.0308987 + 0.0900151i
\(531\) 6.18373 0.268351
\(532\) 34.3443 9.89627i 1.48901 0.429058i
\(533\) 4.08990 0.177153
\(534\) 1.95956 5.70867i 0.0847986 0.247038i
\(535\) 0.882168 0.740227i 0.0381395 0.0320028i
\(536\) 36.6429 15.6779i 1.58273 0.677182i
\(537\) 0.428443 + 0.155940i 0.0184887 + 0.00672933i
\(538\) 7.62261 + 19.8011i 0.328634 + 0.853686i
\(539\) 35.5043 + 20.4984i 1.52928 + 0.882930i
\(540\) 3.63284 6.86394i 0.156333 0.295377i
\(541\) 6.37799 36.1714i 0.274211 1.55513i −0.467245 0.884128i \(-0.654753\pi\)
0.741456 0.671001i \(-0.234135\pi\)
\(542\) 22.7726 28.1767i 0.978167 1.21029i
\(543\) 3.32003 1.91682i 0.142476 0.0822587i
\(544\) 18.5908 1.71587i 0.797074 0.0735675i
\(545\) −9.15853 + 10.9147i −0.392308 + 0.467535i
\(546\) 0.733791 0.639105i 0.0314033 0.0273512i
\(547\) −30.6008 + 11.1378i −1.30840 + 0.476217i −0.899722 0.436464i \(-0.856231\pi\)
−0.408673 + 0.912681i \(0.634008\pi\)
\(548\) −14.2448 4.59838i −0.608507 0.196433i
\(549\) −1.56979 8.90270i −0.0669969 0.379958i
\(550\) 0.981214 + 0.542673i 0.0418391 + 0.0231396i
\(551\) −10.2063 + 35.5118i −0.434805 + 1.51285i
\(552\) −0.113433 2.05204i −0.00482802 0.0873408i
\(553\) 41.6968 7.35227i 1.77313 0.312650i
\(554\) −2.30262 11.7859i −0.0978288 0.500735i
\(555\) −0.277242 0.761715i −0.0117683 0.0323330i
\(556\) −37.6786 + 8.08399i −1.59793 + 0.342838i
\(557\) 9.87223 + 8.28378i 0.418300 + 0.350995i 0.827516 0.561442i \(-0.189753\pi\)
−0.409216 + 0.912438i \(0.634198\pi\)
\(558\) −1.64653 2.73437i −0.0697030 0.115755i
\(559\) −1.32643 2.29745i −0.0561021 0.0971717i
\(560\) −21.8438 + 30.3079i −0.923068 + 1.28074i
\(561\) −3.91334 0.690028i −0.165221 0.0291330i
\(562\) −0.0299632 1.62761i −0.00126392 0.0686566i
\(563\) 2.06206 3.57160i 0.0869055 0.150525i −0.819296 0.573371i \(-0.805635\pi\)
0.906202 + 0.422846i \(0.138969\pi\)
\(564\) 2.80864 + 0.389266i 0.118265 + 0.0163911i
\(565\) 5.66208 15.5564i 0.238205 0.654464i
\(566\) −13.1110 2.06376i −0.551097 0.0867463i
\(567\) 21.7679 + 25.9420i 0.914168 + 1.08946i
\(568\) −8.50234 36.3527i −0.356750 1.52533i
\(569\) 2.71200i 0.113693i 0.998383 + 0.0568466i \(0.0181046\pi\)
−0.998383 + 0.0568466i \(0.981895\pi\)
\(570\) 0.351197 4.03010i 0.0147100 0.168802i
\(571\) 27.8695i 1.16630i 0.812363 + 0.583152i \(0.198181\pi\)
−0.812363 + 0.583152i \(0.801819\pi\)
\(572\) −3.61299 + 3.26565i −0.151067 + 0.136544i
\(573\) 2.34798 + 2.79821i 0.0980881 + 0.116897i
\(574\) −6.32892 + 40.2074i −0.264164 + 1.67823i
\(575\) 0.163653 0.449633i 0.00682480 0.0187510i
\(576\) −19.4209 12.9385i −0.809204 0.539102i
\(577\) −20.7062 + 35.8643i −0.862012 + 1.49305i 0.00797112 + 0.999968i \(0.497463\pi\)
−0.869983 + 0.493081i \(0.835871\pi\)
\(578\) 8.63577 0.158979i 0.359201 0.00661265i
\(579\) −6.23156 1.09879i −0.258975 0.0456642i
\(580\) −14.5362 35.7817i −0.603584 1.48576i
\(581\) −3.06334 5.30586i −0.127089 0.220124i
\(582\) 3.58106 2.15637i 0.148440 0.0893843i
\(583\) −2.17743 1.82708i −0.0901801 0.0756701i
\(584\) −30.3578 9.18639i −1.25621 0.380135i
\(585\) 1.32415 + 3.63807i 0.0547468 + 0.150415i
\(586\) −25.5929 + 5.00010i −1.05723 + 0.206552i
\(587\) 14.7610 2.60276i 0.609252 0.107428i 0.139494 0.990223i \(-0.455452\pi\)
0.469758 + 0.882795i \(0.344341\pi\)
\(588\) 3.00381 + 4.78676i 0.123875 + 0.197402i
\(589\) −2.72727 1.98403i −0.112375 0.0817504i
\(590\) −3.30537 + 5.97649i −0.136080 + 0.246048i
\(591\) −0.227298 1.28907i −0.00934977 0.0530252i
\(592\) −4.78948 + 1.21358i −0.196846 + 0.0498779i
\(593\) −7.47341 + 2.72010i −0.306896 + 0.111701i −0.490877 0.871229i \(-0.663324\pi\)
0.183981 + 0.982930i \(0.441101\pi\)
\(594\) 6.61711 + 7.59747i 0.271503 + 0.311728i
\(595\) 19.8140 23.6134i 0.812293 0.968053i
\(596\) 4.07971 0.150260i 0.167111 0.00615490i
\(597\) 3.03942 1.75481i 0.124395 0.0718195i
\(598\) 1.61635 + 1.30635i 0.0660976 + 0.0534204i
\(599\) 4.61115 26.1511i 0.188407 1.06851i −0.733093 0.680128i \(-0.761924\pi\)
0.921500 0.388379i \(-0.126965\pi\)
\(600\) 0.0845514 + 0.129386i 0.00345180 + 0.00528214i
\(601\) 22.0067 + 12.7056i 0.897673 + 0.518272i 0.876444 0.481503i \(-0.159909\pi\)
0.0212282 + 0.999775i \(0.493242\pi\)
\(602\) 24.6386 9.48485i 1.00419 0.386573i
\(603\) 38.6254 + 14.0585i 1.57295 + 0.572506i
\(604\) 15.1818 + 11.8148i 0.617739 + 0.480735i
\(605\) −11.2895 + 9.47300i −0.458983 + 0.385132i
\(606\) 3.37174 + 1.15739i 0.136968 + 0.0470157i
\(607\) −13.6931 −0.555787 −0.277894 0.960612i \(-0.589636\pi\)
−0.277894 + 0.960612i \(0.589636\pi\)
\(608\) −24.2240 4.60421i −0.982412 0.186726i
\(609\) −10.0114 −0.405681
\(610\) 9.44344 + 3.24156i 0.382354 + 0.131247i
\(611\) −2.19650 + 1.84308i −0.0888609 + 0.0745631i
\(612\) 15.1954 + 11.8253i 0.614237 + 0.478010i
\(613\) 18.5018 + 6.73412i 0.747282 + 0.271988i 0.687462 0.726221i \(-0.258725\pi\)
0.0598205 + 0.998209i \(0.480947\pi\)
\(614\) −7.37991 + 2.84096i −0.297829 + 0.114652i
\(615\) 3.98965 + 2.30343i 0.160878 + 0.0928831i
\(616\) −26.5134 40.5724i −1.06826 1.63471i
\(617\) 0.953161 5.40564i 0.0383728 0.217623i −0.959592 0.281396i \(-0.909202\pi\)
0.997964 + 0.0637735i \(0.0203135\pi\)
\(618\) −2.78875 2.25388i −0.112180 0.0906644i
\(619\) −12.3997 + 7.15899i −0.498388 + 0.287744i −0.728047 0.685527i \(-0.759572\pi\)
0.229660 + 0.973271i \(0.426239\pi\)
\(620\) 3.52284 0.129750i 0.141481 0.00521090i
\(621\) 2.76359 3.29352i 0.110899 0.132165i
\(622\) 11.1158 + 12.7627i 0.445705 + 0.511738i
\(623\) −57.0776 + 20.7746i −2.28677 + 0.832315i
\(624\) −0.650755 + 0.164892i −0.0260511 + 0.00660094i
\(625\) −4.49966 25.5188i −0.179986 1.02075i
\(626\) −10.8767 + 19.6663i −0.434720 + 0.786023i
\(627\) 4.71562 + 2.30353i 0.188324 + 0.0919943i
\(628\) −8.03472 12.8038i −0.320620 0.510928i
\(629\) 4.01473 0.707906i 0.160078 0.0282261i
\(630\) −37.8145 + 7.38784i −1.50657 + 0.294339i
\(631\) −0.896513 2.46315i −0.0356896 0.0980565i 0.920568 0.390583i \(-0.127726\pi\)
−0.956258 + 0.292526i \(0.905504\pi\)
\(632\) −27.9578 8.46013i −1.11210 0.336526i
\(633\) −0.807698 0.677739i −0.0321031 0.0269377i
\(634\) 20.3990 12.2834i 0.810146 0.487837i
\(635\) −10.2403 17.7368i −0.406375 0.703863i
\(636\) −0.147469 0.363003i −0.00584752 0.0143940i
\(637\) −5.62782 0.992337i −0.222982 0.0393178i
\(638\) 50.0966 0.922244i 1.98334 0.0365120i
\(639\) 19.2515 33.3446i 0.761579 1.31909i
\(640\) 22.8858 11.8541i 0.904643 0.468574i
\(641\) 12.1986 33.5152i 0.481814 1.32377i −0.426123 0.904665i \(-0.640121\pi\)
0.907937 0.419107i \(-0.137657\pi\)
\(642\) −0.0320218 + 0.203433i −0.00126380 + 0.00802887i
\(643\) 15.4800 + 18.4484i 0.610472 + 0.727532i 0.979401 0.201925i \(-0.0647198\pi\)
−0.368929 + 0.929458i \(0.620275\pi\)
\(644\) −15.3438 + 13.8687i −0.604630 + 0.546504i
\(645\) 2.98818i 0.117660i
\(646\) 19.6535 + 5.25893i 0.773257 + 0.206910i
\(647\) 28.8314i 1.13348i 0.823897 + 0.566740i \(0.191796\pi\)
−0.823897 + 0.566740i \(0.808204\pi\)
\(648\) −5.32064 22.7490i −0.209014 0.893665i
\(649\) −5.69528 6.78737i −0.223559 0.266428i
\(650\) −0.154397 0.0243031i −0.00605595 0.000953247i
\(651\) 0.312537 0.858689i 0.0122493 0.0336547i
\(652\) 32.8225 + 4.54906i 1.28543 + 0.178155i
\(653\) −21.8194 + 37.7923i −0.853859 + 1.47893i 0.0238403 + 0.999716i \(0.492411\pi\)
−0.877699 + 0.479212i \(0.840923\pi\)
\(654\) −0.0468988 2.54756i −0.00183389 0.0996173i
\(655\) −30.9442 5.45629i −1.20909 0.213195i
\(656\) 16.4182 22.7801i 0.641024 0.889412i
\(657\) −16.3553 28.3283i −0.638083 1.10519i
\(658\) −14.7202 24.4457i −0.573853 0.952991i
\(659\) 30.8465 + 25.8833i 1.20161 + 1.00827i 0.999583 + 0.0288882i \(0.00919669\pi\)
0.202025 + 0.979380i \(0.435248\pi\)
\(660\) −5.36365 + 1.15078i −0.208780 + 0.0447940i
\(661\) 5.51264 + 15.1459i 0.214417 + 0.589106i 0.999543 0.0302304i \(-0.00962411\pi\)
−0.785126 + 0.619336i \(0.787402\pi\)
\(662\) 3.94951 + 20.2155i 0.153502 + 0.785696i
\(663\) 0.545489 0.0961845i 0.0211851 0.00373550i
\(664\) 0.233288 + 4.22026i 0.00905331 + 0.163778i
\(665\) −33.7652 + 22.7449i −1.30936 + 0.882008i
\(666\) −4.45906 2.46614i −0.172785 0.0955609i
\(667\) −3.71286 21.0567i −0.143763 0.815319i
\(668\) −14.6843 4.74026i −0.568152 0.183406i
\(669\) 7.57848 2.75834i 0.293001 0.106644i
\(670\) −34.2337 + 29.8163i −1.32256 + 1.15190i
\(671\) −8.32598 + 9.92251i −0.321421 + 0.383054i
\(672\) −0.614022 6.65267i −0.0236864 0.256632i
\(673\) −20.0030 + 11.5487i −0.771058 + 0.445171i −0.833252 0.552894i \(-0.813524\pi\)
0.0621939 + 0.998064i \(0.480190\pi\)
\(674\) 0.355392 0.439730i 0.0136892 0.0169378i
\(675\) −0.0561477 + 0.318430i −0.00216113 + 0.0122564i
\(676\) −11.8449 + 22.3799i −0.455572 + 0.860765i
\(677\) 25.2730 + 14.5914i 0.971321 + 0.560792i 0.899639 0.436635i \(-0.143830\pi\)
0.0716821 + 0.997428i \(0.477163\pi\)
\(678\) 1.06358 + 2.76284i 0.0408465 + 0.106106i
\(679\) −39.5310 14.3881i −1.51706 0.552165i
\(680\) −19.5514 + 8.36518i −0.749761 + 0.320790i
\(681\) −1.38285 + 1.16035i −0.0529910 + 0.0444648i
\(682\) −1.48482 + 4.32564i −0.0568568 + 0.165637i
\(683\) 32.3508 1.23787 0.618934 0.785443i \(-0.287565\pi\)
0.618934 + 0.785443i \(0.287565\pi\)
\(684\) −14.9740 20.5539i −0.572546 0.785897i
\(685\) 17.0499 0.651444
\(686\) 5.28731 15.4032i 0.201871 0.588097i
\(687\) −2.78996 + 2.34106i −0.106444 + 0.0893170i
\(688\) −18.1212 1.83473i −0.690862 0.0699483i
\(689\) 0.372319 + 0.135513i 0.0141842 + 0.00516263i
\(690\) 0.841002 + 2.18465i 0.0320164 + 0.0831683i
\(691\) 13.6086 + 7.85694i 0.517696 + 0.298892i 0.735992 0.676991i \(-0.236716\pi\)
−0.218295 + 0.975883i \(0.570050\pi\)
\(692\) −16.4890 8.72703i −0.626816 0.331752i
\(693\) 8.67987 49.2260i 0.329721 1.86994i
\(694\) 16.6046 20.5450i 0.630302 0.779878i
\(695\) 38.0136 21.9471i 1.44194 0.832502i
\(696\) 6.16286 + 3.11795i 0.233603 + 0.118186i
\(697\) −14.8926 + 17.7483i −0.564097 + 0.672265i
\(698\) −7.42102 + 6.46344i −0.280890 + 0.244645i
\(699\) 1.82246 0.663319i 0.0689316 0.0250890i
\(700\) 0.477843 1.48025i 0.0180608 0.0559483i
\(701\) 3.32956 + 18.8829i 0.125756 + 0.713196i 0.980856 + 0.194734i \(0.0623842\pi\)
−0.855100 + 0.518462i \(0.826505\pi\)
\(702\) −1.22896 0.679690i −0.0463840 0.0256532i
\(703\) −5.35431 0.566072i −0.201942 0.0213498i
\(704\) 3.68539 + 33.2332i 0.138898 + 1.25252i
\(705\) −3.18068 + 0.560840i −0.119791 + 0.0211225i
\(706\) −1.53446 7.85412i −0.0577503 0.295594i
\(707\) −12.2702 33.7121i −0.461468 1.26787i
\(708\) −0.256210 1.19416i −0.00962895 0.0448795i
\(709\) −13.0269 10.9309i −0.489235 0.410517i 0.364517 0.931197i \(-0.381234\pi\)
−0.853752 + 0.520680i \(0.825679\pi\)
\(710\) 21.9367 + 36.4300i 0.823268 + 1.36719i
\(711\) −15.0623 26.0887i −0.564881 0.978403i
\(712\) 41.6063 + 4.98778i 1.55926 + 0.186925i
\(713\) 1.92197 + 0.338895i 0.0719784 + 0.0126917i
\(714\) 0.101463 + 5.51150i 0.00379716 + 0.206263i
\(715\) 2.77365 4.80411i 0.103729 0.179663i
\(716\) −0.434570 + 3.13552i −0.0162407 + 0.117180i
\(717\) −0.992628 + 2.72722i −0.0370704 + 0.101850i
\(718\) −31.4530 4.95091i −1.17381 0.184766i
\(719\) −25.6259 30.5397i −0.955684 1.13894i −0.990217 0.139536i \(-0.955439\pi\)
0.0345328 0.999404i \(-0.489006\pi\)
\(720\) 25.5790 + 7.22914i 0.953273 + 0.269414i
\(721\) 36.0852i 1.34388i
\(722\) −23.0284 13.8453i −0.857029 0.515269i
\(723\) 2.43539i 0.0905733i
\(724\) 17.8474 + 19.7457i 0.663294 + 0.733843i
\(725\) 1.03362 + 1.23182i 0.0383877 + 0.0457487i
\(726\) 0.409796 2.60342i 0.0152090 0.0966221i
\(727\) −2.73410 + 7.51188i −0.101402 + 0.278600i −0.980011 0.198941i \(-0.936250\pi\)
0.878609 + 0.477541i \(0.158472\pi\)
\(728\) 5.40717 + 4.05038i 0.200403 + 0.150117i
\(729\) 11.3108 19.5909i 0.418919 0.725589i
\(730\) 36.1213 0.664969i 1.33691 0.0246116i
\(731\) 14.7998 + 2.60961i 0.547392 + 0.0965199i
\(732\) −1.65420 + 0.672013i −0.0611408 + 0.0248383i
\(733\) 14.5869 + 25.2652i 0.538779 + 0.933193i 0.998970 + 0.0453728i \(0.0144476\pi\)
−0.460191 + 0.887820i \(0.652219\pi\)
\(734\) −36.4735 + 21.9629i −1.34626 + 0.810665i
\(735\) −4.93100 4.13760i −0.181883 0.152618i
\(736\) 13.7647 3.75870i 0.507374 0.138548i
\(737\) −20.1436 55.3440i −0.741998 2.03862i
\(738\) 28.4222 5.55286i 1.04624 0.204404i
\(739\) −18.2045 + 3.20994i −0.669663 + 0.118080i −0.498135 0.867100i \(-0.665981\pi\)
−0.171528 + 0.985179i \(0.554870\pi\)
\(740\) 4.76698 2.99140i 0.175238 0.109966i
\(741\) −0.727500 0.0769132i −0.0267254 0.00282548i
\(742\) −1.90836 + 3.45053i −0.0700581 + 0.126673i
\(743\) −1.20332 6.82439i −0.0441457 0.250363i 0.954746 0.297421i \(-0.0961264\pi\)
−0.998892 + 0.0470583i \(0.985015\pi\)
\(744\) −0.459825 + 0.431260i −0.0168580 + 0.0158108i
\(745\) −4.36969 + 1.59044i −0.160093 + 0.0582690i
\(746\) 16.1062 + 18.4924i 0.589690 + 0.677055i
\(747\) −2.80197 + 3.33926i −0.102519 + 0.122177i
\(748\) −1.01543 27.5700i −0.0371280 1.00806i
\(749\) 1.79484 1.03625i 0.0655819 0.0378637i
\(750\) 3.47209 + 2.80617i 0.126783 + 0.102467i
\(751\) −1.76031 + 9.98320i −0.0642345 + 0.364292i 0.935699 + 0.352798i \(0.114770\pi\)
−0.999934 + 0.0114939i \(0.996341\pi\)
\(752\) 1.44817 + 19.6329i 0.0528093 + 0.715938i
\(753\) −2.12744 1.22828i −0.0775283 0.0447610i
\(754\) −6.51797 + 2.50915i −0.237370 + 0.0913779i
\(755\) −20.5908 7.49442i −0.749374 0.272750i
\(756\) 8.58372 11.0300i 0.312187 0.401156i
\(757\) −15.0952 + 12.6664i −0.548646 + 0.460368i −0.874482 0.485058i \(-0.838799\pi\)
0.325836 + 0.945426i \(0.394354\pi\)
\(758\) −17.4075 5.97530i −0.632267 0.217033i
\(759\) −3.03697 −0.110235
\(760\) 27.8691 3.48557i 1.01092 0.126435i
\(761\) 19.6304 0.711603 0.355801 0.934562i \(-0.384208\pi\)
0.355801 + 0.934562i \(0.384208\pi\)
\(762\) 3.46414 + 1.18911i 0.125493 + 0.0430767i
\(763\) −19.6430 + 16.4825i −0.711126 + 0.596706i
\(764\) −15.5754 + 20.0142i −0.563500 + 0.724090i
\(765\) −20.6092 7.50113i −0.745126 0.271204i
\(766\) 37.8549 14.5726i 1.36775 0.526528i
\(767\) 1.06959 + 0.617527i 0.0386206 + 0.0222976i
\(768\) −1.69393 + 4.28653i −0.0611245 + 0.154677i
\(769\) −6.67065 + 37.8311i −0.240550 + 1.36423i 0.590055 + 0.807363i \(0.299106\pi\)
−0.830605 + 0.556863i \(0.812005\pi\)
\(770\) 42.9366 + 34.7016i 1.54733 + 1.25056i
\(771\) −0.684677 + 0.395298i −0.0246580 + 0.0142363i
\(772\) −1.61697 43.9021i −0.0581958 1.58007i