Properties

Label 76.2.k
Level $76$
Weight $2$
Character orbit 76.k
Rep. character $\chi_{76}(3,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $48$
Newform subspaces $1$
Sturm bound $20$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 76.k (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(20\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(76, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 48 48 0
Eisenstein series 24 24 0

Trace form

\( 48 q - 6 q^{2} - 12 q^{5} - 12 q^{6} - 9 q^{8} - 18 q^{9} - 3 q^{10} - 9 q^{12} - 3 q^{14} - 12 q^{17} - 42 q^{20} - 18 q^{21} - 12 q^{22} + 24 q^{24} - 12 q^{25} + 21 q^{26} - 12 q^{29} + 42 q^{30} + 9 q^{32}+ \cdots + 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(76, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
76.2.k.a 76.k 76.k $48$ $0.607$ None 76.2.k.a \(-6\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{18}]$