Defining parameters
Level: | \( N \) | \(=\) | \( 76 = 2^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 76.i (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(76, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 78 | 12 | 66 |
Cusp forms | 42 | 12 | 30 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(76, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
76.2.i.a | $12$ | $0.607$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-3\) | \(0\) | \(3\) | \(q+(-1-\beta _{5}+\beta _{7}+\beta _{9}+\beta _{11})q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(76, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(76, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 2}\)