Properties

Label 76.2.e
Level $76$
Weight $2$
Character orbit 76.e
Rep. character $\chi_{76}(45,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $2$
Newform subspaces $1$
Sturm bound $20$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 76.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(20\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(76, [\chi])\).

Total New Old
Modular forms 26 2 24
Cusp forms 14 2 12
Eisenstein series 12 0 12

Trace form

\( 2 q + q^{3} + q^{5} + 2 q^{9} - 8 q^{11} + q^{13} - q^{15} - 3 q^{17} - 8 q^{19} - 5 q^{23} + 4 q^{25} + 10 q^{27} - 7 q^{29} + 8 q^{31} - 4 q^{33} + 20 q^{37} + 2 q^{39} + 5 q^{41} + 5 q^{43} + 4 q^{45}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(76, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
76.2.e.a 76.e 19.c $2$ $0.607$ \(\Q(\sqrt{-3}) \) None 76.2.e.a \(0\) \(1\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+(1-\zeta_{6})q^{5}+2\zeta_{6}q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(76, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(76, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 2}\)