Properties

Label 76.1.c.a
Level 7676
Weight 11
Character orbit 76.c
Self dual yes
Analytic conductor 0.0380.038
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -19
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [76,1,Mod(37,76)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(76, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("76.37"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 76=2219 76 = 2^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 76.c (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.03792894096010.0379289409601
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.76.1
Artin image: S3S_3
Artin field: Galois closure of 3.1.76.1
Stark unit: Root of x33x2+x1x^{3} - 3x^{2} + x - 1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == qq5q7+q9q11q17+q19+2q23+q35q43q45q47+q55q61q63q73+q77+q81+2q83+q85q95+q99+O(q100) q - q^{5} - q^{7} + q^{9} - q^{11} - q^{17} + q^{19} + 2 q^{23} + q^{35} - q^{43} - q^{45} - q^{47} + q^{55} - q^{61} - q^{63} - q^{73} + q^{77} + q^{81} + 2 q^{83} + q^{85} - q^{95}+ \cdots - q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/76Z)×\left(\mathbb{Z}/76\mathbb{Z}\right)^\times.

nn 2121 3939
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
37.1
0
0 0 0 −1.00000 0 −1.00000 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 76.1.c.a 1
3.b odd 2 1 684.1.h.a 1
4.b odd 2 1 304.1.e.a 1
5.b even 2 1 1900.1.e.a 1
5.c odd 4 2 1900.1.g.a 2
7.b odd 2 1 3724.1.e.c 1
7.c even 3 2 3724.1.bc.c 2
7.d odd 6 2 3724.1.bc.b 2
8.b even 2 1 1216.1.e.a 1
8.d odd 2 1 1216.1.e.b 1
12.b even 2 1 2736.1.o.b 1
19.b odd 2 1 CM 76.1.c.a 1
19.c even 3 2 1444.1.h.a 2
19.d odd 6 2 1444.1.h.a 2
19.e even 9 6 1444.1.j.a 6
19.f odd 18 6 1444.1.j.a 6
57.d even 2 1 684.1.h.a 1
76.d even 2 1 304.1.e.a 1
95.d odd 2 1 1900.1.e.a 1
95.g even 4 2 1900.1.g.a 2
133.c even 2 1 3724.1.e.c 1
133.o even 6 2 3724.1.bc.b 2
133.r odd 6 2 3724.1.bc.c 2
152.b even 2 1 1216.1.e.b 1
152.g odd 2 1 1216.1.e.a 1
228.b odd 2 1 2736.1.o.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.1.c.a 1 1.a even 1 1 trivial
76.1.c.a 1 19.b odd 2 1 CM
304.1.e.a 1 4.b odd 2 1
304.1.e.a 1 76.d even 2 1
684.1.h.a 1 3.b odd 2 1
684.1.h.a 1 57.d even 2 1
1216.1.e.a 1 8.b even 2 1
1216.1.e.a 1 152.g odd 2 1
1216.1.e.b 1 8.d odd 2 1
1216.1.e.b 1 152.b even 2 1
1444.1.h.a 2 19.c even 3 2
1444.1.h.a 2 19.d odd 6 2
1444.1.j.a 6 19.e even 9 6
1444.1.j.a 6 19.f odd 18 6
1900.1.e.a 1 5.b even 2 1
1900.1.e.a 1 95.d odd 2 1
1900.1.g.a 2 5.c odd 4 2
1900.1.g.a 2 95.g even 4 2
2736.1.o.b 1 12.b even 2 1
2736.1.o.b 1 228.b odd 2 1
3724.1.e.c 1 7.b odd 2 1
3724.1.e.c 1 133.c even 2 1
3724.1.bc.b 2 7.d odd 6 2
3724.1.bc.b 2 133.o even 6 2
3724.1.bc.c 2 7.c even 3 2
3724.1.bc.c 2 133.r odd 6 2

Hecke kernels

This newform subspace is the entire newspace S1new(76,[χ])S_{1}^{\mathrm{new}}(76, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+1 T + 1 Copy content Toggle raw display
77 T+1 T + 1 Copy content Toggle raw display
1111 T+1 T + 1 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T+1 T + 1 Copy content Toggle raw display
1919 T1 T - 1 Copy content Toggle raw display
2323 T2 T - 2 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T+1 T + 1 Copy content Toggle raw display
4747 T+1 T + 1 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+1 T + 1 Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+1 T + 1 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T2 T - 2 Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less