Properties

Label 7569.2.a.u.1.3
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $4$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.3
Root \(1.82709\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{4} +3.86324 q^{7} +O(q^{10})\) \(q-2.00000 q^{4} +3.86324 q^{7} +7.20715 q^{13} +4.00000 q^{16} -7.92737 q^{19} -5.00000 q^{25} -7.72648 q^{28} -9.34451 q^{31} -8.34102 q^{37} -3.08143 q^{43} +7.92461 q^{49} -14.4143 q^{52} -15.6076 q^{61} -8.00000 q^{64} -8.13176 q^{67} +16.2684 q^{73} +15.8547 q^{76} -7.51373 q^{79} +27.8429 q^{91} +3.18165 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{4} + q^{7} - 2 q^{13} + 16 q^{16} - q^{19} - 20 q^{25} - 2 q^{28} - 4 q^{31} + 11 q^{37} + 5 q^{43} + 41 q^{49} + 4 q^{52} - 13 q^{61} - 32 q^{64} - 11 q^{67} - 10 q^{73} + 2 q^{76} - 13 q^{79} + 2 q^{91} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 3.86324 1.46017 0.730084 0.683358i \(-0.239481\pi\)
0.730084 + 0.683358i \(0.239481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 7.20715 1.99890 0.999451 0.0331183i \(-0.0105438\pi\)
0.999451 + 0.0331183i \(0.0105438\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −7.92737 −1.81866 −0.909332 0.416071i \(-0.863407\pi\)
−0.909332 + 0.416071i \(0.863407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −7.72648 −1.46017
\(29\) 0 0
\(30\) 0 0
\(31\) −9.34451 −1.67832 −0.839162 0.543882i \(-0.816954\pi\)
−0.839162 + 0.543882i \(0.816954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.34102 −1.37126 −0.685628 0.727952i \(-0.740472\pi\)
−0.685628 + 0.727952i \(0.740472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −3.08143 −0.469914 −0.234957 0.972006i \(-0.575495\pi\)
−0.234957 + 0.972006i \(0.575495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.92461 1.13209
\(50\) 0 0
\(51\) 0 0
\(52\) −14.4143 −1.99890
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −15.6076 −1.99835 −0.999174 0.0406463i \(-0.987058\pi\)
−0.999174 + 0.0406463i \(0.987058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.13176 −0.993453 −0.496726 0.867907i \(-0.665465\pi\)
−0.496726 + 0.867907i \(0.665465\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 16.2684 1.90407 0.952036 0.305987i \(-0.0989863\pi\)
0.952036 + 0.305987i \(0.0989863\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 15.8547 1.81866
\(77\) 0 0
\(78\) 0 0
\(79\) −7.51373 −0.845360 −0.422680 0.906279i \(-0.638911\pi\)
−0.422680 + 0.906279i \(0.638911\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 27.8429 2.91873
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.18165 0.323047 0.161524 0.986869i \(-0.448359\pi\)
0.161524 + 0.986869i \(0.448359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −18.2165 −1.79492 −0.897462 0.441092i \(-0.854591\pi\)
−0.897462 + 0.441092i \(0.854591\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −6.62677 −0.634730 −0.317365 0.948304i \(-0.602798\pi\)
−0.317365 + 0.948304i \(0.602798\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 15.4530 1.46017
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 18.6890 1.67832
\(125\) 0 0
\(126\) 0 0
\(127\) 12.4259 1.10262 0.551312 0.834299i \(-0.314127\pi\)
0.551312 + 0.834299i \(0.314127\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −30.6253 −2.65555
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 2.76353 0.234400 0.117200 0.993108i \(-0.462608\pi\)
0.117200 + 0.993108i \(0.462608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 16.6820 1.37126
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −20.6968 −1.68428 −0.842142 0.539256i \(-0.818706\pi\)
−0.842142 + 0.539256i \(0.818706\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 15.4411 1.23233 0.616167 0.787616i \(-0.288685\pi\)
0.616167 + 0.787616i \(0.288685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 24.9521 1.95440 0.977200 0.212322i \(-0.0681026\pi\)
0.977200 + 0.212322i \(0.0681026\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 38.9430 2.99561
\(170\) 0 0
\(171\) 0 0
\(172\) 6.16286 0.469914
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) −19.3162 −1.46017
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 22.5461 1.67584 0.837918 0.545797i \(-0.183773\pi\)
0.837918 + 0.545797i \(0.183773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 9.44473 0.679846 0.339923 0.940453i \(-0.389599\pi\)
0.339923 + 0.940453i \(0.389599\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −15.8492 −1.13209
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −5.35792 −0.379813 −0.189906 0.981802i \(-0.560818\pi\)
−0.189906 + 0.981802i \(0.560818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 28.8286 1.99890
\(209\) 0 0
\(210\) 0 0
\(211\) −29.0000 −1.99644 −0.998221 0.0596196i \(-0.981011\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −36.1001 −2.45063
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −29.8062 −1.99597 −0.997986 0.0634420i \(-0.979792\pi\)
−0.997986 + 0.0634420i \(0.979792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −29.0000 −1.91637 −0.958187 0.286143i \(-0.907627\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 4.96294 0.319691 0.159846 0.987142i \(-0.448900\pi\)
0.159846 + 0.987142i \(0.448900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 31.2152 1.99835
\(245\) 0 0
\(246\) 0 0
\(247\) −57.1337 −3.63533
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −32.2234 −2.00226
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 16.2635 0.993453
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −29.0000 −1.76162 −0.880812 0.473466i \(-0.843003\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −29.7532 −1.78770 −0.893848 0.448370i \(-0.852005\pi\)
−0.893848 + 0.448370i \(0.852005\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 19.7722 1.17534 0.587668 0.809102i \(-0.300046\pi\)
0.587668 + 0.809102i \(0.300046\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −32.5368 −1.90407
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −11.9043 −0.686153
\(302\) 0 0
\(303\) 0 0
\(304\) −31.7095 −1.81866
\(305\) 0 0
\(306\) 0 0
\(307\) −9.16832 −0.523263 −0.261632 0.965168i \(-0.584261\pi\)
−0.261632 + 0.965168i \(0.584261\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −8.82618 −0.498885 −0.249443 0.968390i \(-0.580247\pi\)
−0.249443 + 0.968390i \(0.580247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 15.0275 0.845360
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −36.0357 −1.99890
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 15.7078 0.863379 0.431690 0.902022i \(-0.357918\pi\)
0.431690 + 0.902022i \(0.357918\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −29.0000 −1.57973 −0.789865 0.613280i \(-0.789850\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 3.57200 0.192870
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 35.1111 1.87946 0.939728 0.341924i \(-0.111079\pi\)
0.939728 + 0.341924i \(0.111079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 43.8433 2.30754
\(362\) 0 0
\(363\) 0 0
\(364\) −55.6859 −2.91873
\(365\) 0 0
\(366\) 0 0
\(367\) 37.4783 1.95635 0.978175 0.207785i \(-0.0666253\pi\)
0.978175 + 0.207785i \(0.0666253\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 37.5327 1.94337 0.971684 0.236283i \(-0.0759292\pi\)
0.971684 + 0.236283i \(0.0759292\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −6.36329 −0.323047
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −17.1168 −0.859067 −0.429533 0.903051i \(-0.641322\pi\)
−0.429533 + 0.903051i \(0.641322\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −67.3473 −3.35481
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 40.0505 1.98037 0.990185 0.139761i \(-0.0446333\pi\)
0.990185 + 0.139761i \(0.0446333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 36.4330 1.79492
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 40.4642 1.97210 0.986051 0.166441i \(-0.0532276\pi\)
0.986051 + 0.166441i \(0.0532276\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −60.2958 −2.91792
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −6.68643 −0.321329 −0.160665 0.987009i \(-0.551364\pi\)
−0.160665 + 0.987009i \(0.551364\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 13.2535 0.634730
\(437\) 0 0
\(438\) 0 0
\(439\) 4.43331 0.211590 0.105795 0.994388i \(-0.466261\pi\)
0.105795 + 0.994388i \(0.466261\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −30.9059 −1.46017
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −40.2962 −1.88498 −0.942489 0.334238i \(-0.891521\pi\)
−0.942489 + 0.334238i \(0.891521\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −11.6405 −0.540978 −0.270489 0.962723i \(-0.587185\pi\)
−0.270489 + 0.962723i \(0.587185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −31.4149 −1.45061
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 39.6369 1.81866
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −60.1150 −2.74101
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) −42.3183 −1.91762 −0.958812 0.284042i \(-0.908325\pi\)
−0.958812 + 0.284042i \(0.908325\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −37.3780 −1.67832
\(497\) 0 0
\(498\) 0 0
\(499\) 16.5527 0.740999 0.370499 0.928833i \(-0.379187\pi\)
0.370499 + 0.928833i \(0.379187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −24.8519 −1.10262
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 62.8487 2.78026
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −17.1881 −0.751585 −0.375792 0.926704i \(-0.622629\pi\)
−0.375792 + 0.926704i \(0.622629\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 61.2507 2.65555
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −29.0000 −1.24681 −0.623404 0.781900i \(-0.714251\pi\)
−0.623404 + 0.781900i \(0.714251\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.1675 1.88847 0.944233 0.329278i \(-0.106805\pi\)
0.944233 + 0.329278i \(0.106805\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −29.0273 −1.23437
\(554\) 0 0
\(555\) 0 0
\(556\) −5.52707 −0.234400
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) −22.2083 −0.939313
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 37.8850 1.58544 0.792718 0.609588i \(-0.208665\pi\)
0.792718 + 0.609588i \(0.208665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −18.5888 −0.773862 −0.386931 0.922109i \(-0.626465\pi\)
−0.386931 + 0.922109i \(0.626465\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 74.0774 3.05231
\(590\) 0 0
\(591\) 0 0
\(592\) −33.3641 −1.37126
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −40.6599 −1.65855 −0.829276 0.558839i \(-0.811247\pi\)
−0.829276 + 0.558839i \(0.811247\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 41.3937 1.68428
\(605\) 0 0
\(606\) 0 0
\(607\) −29.0000 −1.17707 −0.588537 0.808470i \(-0.700296\pi\)
−0.588537 + 0.808470i \(0.700296\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −20.4159 −0.824590 −0.412295 0.911050i \(-0.635273\pi\)
−0.412295 + 0.911050i \(0.635273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 39.2232 1.57651 0.788257 0.615346i \(-0.210984\pi\)
0.788257 + 0.615346i \(0.210984\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −30.8822 −1.23233
\(629\) 0 0
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 57.1139 2.26293
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −7.00000 −0.276053 −0.138027 0.990429i \(-0.544076\pi\)
−0.138027 + 0.990429i \(0.544076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −49.9042 −1.95440
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 11.0000 0.427850 0.213925 0.976850i \(-0.431375\pi\)
0.213925 + 0.976850i \(0.431375\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −13.0000 −0.501113 −0.250557 0.968102i \(-0.580614\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −77.8859 −2.99561
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 12.2915 0.471703
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −12.3257 −0.469914
\(689\) 0 0
\(690\) 0 0
\(691\) −33.2619 −1.26534 −0.632671 0.774421i \(-0.718041\pi\)
−0.632671 + 0.774421i \(0.718041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 38.6324 1.46017
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 66.1224 2.49385
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 31.6024 1.18685 0.593427 0.804888i \(-0.297775\pi\)
0.593427 + 0.804888i \(0.297775\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −70.3746 −2.62089
\(722\) 0 0
\(723\) 0 0
\(724\) −45.0921 −1.67584
\(725\) 0 0
\(726\) 0 0
\(727\) −6.27278 −0.232645 −0.116322 0.993212i \(-0.537111\pi\)
−0.116322 + 0.993212i \(0.537111\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 28.2340 1.04285 0.521423 0.853299i \(-0.325402\pi\)
0.521423 + 0.853299i \(0.325402\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 50.0044 1.83944 0.919721 0.392572i \(-0.128415\pi\)
0.919721 + 0.392572i \(0.128415\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 40.4595 1.47639 0.738194 0.674589i \(-0.235679\pi\)
0.738194 + 0.674589i \(0.235679\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −29.0000 −1.05402 −0.527011 0.849858i \(-0.676688\pi\)
−0.527011 + 0.849858i \(0.676688\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) −25.6008 −0.926811
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 34.1964 1.23315 0.616577 0.787295i \(-0.288519\pi\)
0.616577 + 0.787295i \(0.288519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −18.8895 −0.679846
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 46.7226 1.67832
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 31.6985 1.13209
\(785\) 0 0
\(786\) 0 0
\(787\) −25.0000 −0.891154 −0.445577 0.895244i \(-0.647001\pi\)
−0.445577 + 0.895244i \(0.647001\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −112.486 −3.99450
\(794\) 0 0
\(795\) 0 0
\(796\) 10.7158 0.379813
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −39.1965 −1.37638 −0.688188 0.725533i \(-0.741593\pi\)
−0.688188 + 0.725533i \(0.741593\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 24.4277 0.854616
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) −55.9053 −1.94874 −0.974368 0.224962i \(-0.927774\pi\)
−0.974368 + 0.224962i \(0.927774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 27.9333 0.970164 0.485082 0.874469i \(-0.338790\pi\)
0.485082 + 0.874469i \(0.338790\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −57.6572 −1.99890
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 58.0000 1.99644
\(845\) 0 0
\(846\) 0 0
\(847\) −42.4956 −1.46017
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 58.0000 1.98588 0.992941 0.118609i \(-0.0378434\pi\)
0.992941 + 0.118609i \(0.0378434\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −33.7777 −1.15248 −0.576241 0.817280i \(-0.695481\pi\)
−0.576241 + 0.817280i \(0.695481\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 72.2002 2.45063
\(869\) 0 0
\(870\) 0 0
\(871\) −58.6068 −1.98582
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −50.7862 −1.71493 −0.857464 0.514543i \(-0.827962\pi\)
−0.857464 + 0.514543i \(0.827962\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 28.1424 0.947066 0.473533 0.880776i \(-0.342978\pi\)
0.473533 + 0.880776i \(0.342978\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 48.0044 1.61002
\(890\) 0 0
\(891\) 0 0
\(892\) 59.6124 1.99597
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −30.4686 −1.01169 −0.505846 0.862624i \(-0.668820\pi\)
−0.505846 + 0.862624i \(0.668820\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 58.0000 1.91637
\(917\) 0 0
\(918\) 0 0
\(919\) 23.7436 0.783228 0.391614 0.920130i \(-0.371917\pi\)
0.391614 + 0.920130i \(0.371917\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 41.7051 1.37126
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −62.8214 −2.05889
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 35.0000 1.14340 0.571700 0.820463i \(-0.306284\pi\)
0.571700 + 0.820463i \(0.306284\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 117.249 3.80605
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 56.3199 1.81677
\(962\) 0 0
\(963\) 0 0
\(964\) −9.92589 −0.319691
\(965\) 0 0
\(966\) 0 0
\(967\) −57.1462 −1.83770 −0.918849 0.394609i \(-0.870880\pi\)
−0.918849 + 0.394609i \(0.870880\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 10.6762 0.342263
\(974\) 0 0
\(975\) 0 0
\(976\) −62.4304 −1.99835
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 114.267 3.63533
\(989\) 0 0
\(990\) 0 0
\(991\) 58.5127 1.85872 0.929359 0.369178i \(-0.120361\pi\)
0.929359 + 0.369178i \(0.120361\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 34.4970 1.09253 0.546266 0.837612i \(-0.316049\pi\)
0.546266 + 0.837612i \(0.316049\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.u.1.3 4
3.2 odd 2 CM 7569.2.a.u.1.3 4
29.28 even 2 7569.2.a.v.1.3 yes 4
87.86 odd 2 7569.2.a.v.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7569.2.a.u.1.3 4 1.1 even 1 trivial
7569.2.a.u.1.3 4 3.2 odd 2 CM
7569.2.a.v.1.3 yes 4 29.28 even 2
7569.2.a.v.1.3 yes 4 87.86 odd 2