Properties

Label 7569.2.a.u.1.2
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $4$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(-0.209057\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{4} -2.24520 q^{7} +O(q^{10})\) \(q-2.00000 q^{4} -2.24520 q^{7} -5.97108 q^{13} +4.00000 q^{16} +8.54541 q^{19} -5.00000 q^{25} +4.49041 q^{28} +2.87238 q^{31} +1.54265 q^{37} +11.1716 q^{43} -1.95906 q^{49} +11.9422 q^{52} -5.42685 q^{61} -8.00000 q^{64} +14.9301 q^{67} -10.0881 q^{73} -17.0908 q^{76} +15.5482 q^{79} +13.4063 q^{91} +19.4708 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{4} + q^{7} - 2 q^{13} + 16 q^{16} - q^{19} - 20 q^{25} - 2 q^{28} - 4 q^{31} + 11 q^{37} + 5 q^{43} + 41 q^{49} + 4 q^{52} - 13 q^{61} - 32 q^{64} - 11 q^{67} - 10 q^{73} + 2 q^{76} - 13 q^{79} + 2 q^{91} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −2.24520 −0.848608 −0.424304 0.905520i \(-0.639481\pi\)
−0.424304 + 0.905520i \(0.639481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −5.97108 −1.65608 −0.828040 0.560670i \(-0.810544\pi\)
−0.828040 + 0.560670i \(0.810544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 8.54541 1.96045 0.980226 0.197884i \(-0.0634068\pi\)
0.980226 + 0.197884i \(0.0634068\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 4.49041 0.848608
\(29\) 0 0
\(30\) 0 0
\(31\) 2.87238 0.515894 0.257947 0.966159i \(-0.416954\pi\)
0.257947 + 0.966159i \(0.416954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.54265 0.253610 0.126805 0.991928i \(-0.459528\pi\)
0.126805 + 0.991928i \(0.459528\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 11.1716 1.70365 0.851827 0.523824i \(-0.175495\pi\)
0.851827 + 0.523824i \(0.175495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −1.95906 −0.279865
\(50\) 0 0
\(51\) 0 0
\(52\) 11.9422 1.65608
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −5.42685 −0.694837 −0.347419 0.937710i \(-0.612942\pi\)
−0.347419 + 0.937710i \(0.612942\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 14.9301 1.82401 0.912003 0.410183i \(-0.134535\pi\)
0.912003 + 0.410183i \(0.134535\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −10.0881 −1.18072 −0.590359 0.807141i \(-0.701014\pi\)
−0.590359 + 0.807141i \(0.701014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −17.0908 −1.96045
\(77\) 0 0
\(78\) 0 0
\(79\) 15.5482 1.74931 0.874653 0.484750i \(-0.161089\pi\)
0.874653 + 0.484750i \(0.161089\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 13.4063 1.40536
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 19.4708 1.97696 0.988482 0.151341i \(-0.0483592\pi\)
0.988482 + 0.151341i \(0.0483592\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −14.1442 −1.39367 −0.696834 0.717232i \(-0.745409\pi\)
−0.696834 + 0.717232i \(0.745409\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −20.8798 −1.99992 −0.999961 0.00878995i \(-0.997202\pi\)
−0.999961 + 0.00878995i \(0.997202\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −8.98082 −0.848608
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −5.74475 −0.515894
\(125\) 0 0
\(126\) 0 0
\(127\) −14.0440 −1.24620 −0.623101 0.782142i \(-0.714127\pi\)
−0.623101 + 0.782142i \(0.714127\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −19.1862 −1.66365
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 23.1250 1.96144 0.980719 0.195424i \(-0.0626082\pi\)
0.980719 + 0.195424i \(0.0626082\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −3.08530 −0.253610
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 8.95418 0.728681 0.364340 0.931266i \(-0.381294\pi\)
0.364340 + 0.931266i \(0.381294\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −24.0936 −1.92288 −0.961438 0.275020i \(-0.911315\pi\)
−0.961438 + 0.275020i \(0.911315\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.55448 0.200082 0.100041 0.994983i \(-0.468103\pi\)
0.100041 + 0.994983i \(0.468103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 22.6538 1.74260
\(170\) 0 0
\(171\) 0 0
\(172\) −22.3432 −1.70365
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 11.2260 0.848608
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −26.8723 −1.99740 −0.998701 0.0509566i \(-0.983773\pi\)
−0.998701 + 0.0509566i \(0.983773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 27.7701 1.99893 0.999466 0.0326701i \(-0.0104011\pi\)
0.999466 + 0.0326701i \(0.0104011\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 3.91811 0.279865
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −11.9470 −0.846903 −0.423451 0.905919i \(-0.639182\pi\)
−0.423451 + 0.905919i \(0.639182\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −23.8843 −1.65608
\(209\) 0 0
\(210\) 0 0
\(211\) −29.0000 −1.99644 −0.998221 0.0596196i \(-0.981011\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.44907 −0.437791
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.40858 −0.496115 −0.248058 0.968745i \(-0.579792\pi\)
−0.248058 + 0.968745i \(0.579792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −29.0000 −1.91637 −0.958187 0.286143i \(-0.907627\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −27.6154 −1.77887 −0.889433 0.457066i \(-0.848900\pi\)
−0.889433 + 0.457066i \(0.848900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 10.8537 0.694837
\(245\) 0 0
\(246\) 0 0
\(247\) −51.0253 −3.24666
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −3.46356 −0.215215
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −29.8603 −1.82401
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −29.0000 −1.76162 −0.880812 0.473466i \(-0.843003\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 32.8434 1.97337 0.986683 0.162652i \(-0.0520049\pi\)
0.986683 + 0.162652i \(0.0520049\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0.00487458 0.000289764 0 0.000144882 1.00000i \(-0.499954\pi\)
0.000144882 1.00000i \(0.499954\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 20.1761 1.18072
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −25.0825 −1.44573
\(302\) 0 0
\(303\) 0 0
\(304\) 34.1816 1.96045
\(305\) 0 0
\(306\) 0 0
\(307\) −12.4629 −0.711294 −0.355647 0.934620i \(-0.615739\pi\)
−0.355647 + 0.934620i \(0.615739\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 29.8606 1.68782 0.843911 0.536483i \(-0.180247\pi\)
0.843911 + 0.536483i \(0.180247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −31.0963 −1.74931
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 29.8554 1.65608
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 36.0693 1.98255 0.991274 0.131821i \(-0.0420824\pi\)
0.991274 + 0.131821i \(0.0420824\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −29.0000 −1.57973 −0.789865 0.613280i \(-0.789850\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.1149 1.08610
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −20.8963 −1.11856 −0.559278 0.828980i \(-0.688921\pi\)
−0.559278 + 0.828980i \(0.688921\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 54.0240 2.84337
\(362\) 0 0
\(363\) 0 0
\(364\) −26.8126 −1.40536
\(365\) 0 0
\(366\) 0 0
\(367\) 19.1529 0.999775 0.499887 0.866090i \(-0.333375\pi\)
0.499887 + 0.866090i \(0.333375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.91817 0.151097 0.0755485 0.997142i \(-0.475929\pi\)
0.0755485 + 0.997142i \(0.475929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −38.9417 −1.97696
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −39.5144 −1.98317 −0.991586 0.129452i \(-0.958678\pi\)
−0.991586 + 0.129452i \(0.958678\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −17.1512 −0.854361
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −35.7243 −1.76645 −0.883226 0.468948i \(-0.844633\pi\)
−0.883226 + 0.468948i \(0.844633\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 28.2884 1.39367
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −28.7215 −1.39980 −0.699901 0.714240i \(-0.746772\pi\)
−0.699901 + 0.714240i \(0.746772\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.1844 0.589644
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 29.5537 1.42026 0.710130 0.704071i \(-0.248636\pi\)
0.710130 + 0.704071i \(0.248636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 41.7596 1.99992
\(437\) 0 0
\(438\) 0 0
\(439\) 20.9061 0.997793 0.498897 0.866662i \(-0.333739\pi\)
0.498897 + 0.866662i \(0.333739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 17.9616 0.848608
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.0432 −1.21825 −0.609124 0.793075i \(-0.708479\pi\)
−0.609124 + 0.793075i \(0.708479\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −14.9350 −0.694089 −0.347044 0.937849i \(-0.612815\pi\)
−0.347044 + 0.937849i \(0.612815\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −33.5212 −1.54787
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −42.7270 −1.96045
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −9.21127 −0.419998
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 26.8674 1.21748 0.608739 0.793370i \(-0.291675\pi\)
0.608739 + 0.793370i \(0.291675\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 11.4895 0.515894
\(497\) 0 0
\(498\) 0 0
\(499\) −34.3510 −1.53776 −0.768882 0.639391i \(-0.779187\pi\)
−0.768882 + 0.639391i \(0.779187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 28.0880 1.24620
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 22.6498 1.00197
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 38.8193 1.69745 0.848725 0.528834i \(-0.177371\pi\)
0.848725 + 0.528834i \(0.177371\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 38.3724 1.66365
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −29.0000 −1.24681 −0.623404 0.781900i \(-0.714251\pi\)
−0.623404 + 0.781900i \(0.714251\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −44.7855 −1.91489 −0.957445 0.288614i \(-0.906805\pi\)
−0.957445 + 0.288614i \(0.906805\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −34.9088 −1.48447
\(554\) 0 0
\(555\) 0 0
\(556\) −46.2500 −1.96144
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) −66.7065 −2.82139
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −47.7735 −1.99926 −0.999629 0.0272193i \(-0.991335\pi\)
−0.999629 + 0.0272193i \(0.991335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 36.3872 1.51482 0.757409 0.652941i \(-0.226465\pi\)
0.757409 + 0.652941i \(0.226465\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 24.5456 1.01138
\(590\) 0 0
\(591\) 0 0
\(592\) 6.17059 0.253610
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −38.6238 −1.57550 −0.787748 0.615998i \(-0.788753\pi\)
−0.787748 + 0.615998i \(0.788753\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −17.9084 −0.728681
\(605\) 0 0
\(606\) 0 0
\(607\) −29.0000 −1.17707 −0.588537 0.808470i \(-0.700296\pi\)
−0.588537 + 0.808470i \(0.700296\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 36.5962 1.47811 0.739054 0.673646i \(-0.235273\pi\)
0.739054 + 0.673646i \(0.235273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −49.7298 −1.99881 −0.999405 0.0344993i \(-0.989016\pi\)
−0.999405 + 0.0344993i \(0.989016\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 48.1872 1.92288
\(629\) 0 0
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11.6977 0.463479
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −7.00000 −0.276053 −0.138027 0.990429i \(-0.544076\pi\)
−0.138027 + 0.990429i \(0.544076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −5.10895 −0.200082
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 11.0000 0.427850 0.213925 0.976850i \(-0.431375\pi\)
0.213925 + 0.976850i \(0.431375\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −13.0000 −0.501113 −0.250557 0.968102i \(-0.580614\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −45.3076 −1.74260
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −43.7160 −1.67767
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 44.6864 1.70365
\(689\) 0 0
\(690\) 0 0
\(691\) 2.97823 0.113297 0.0566486 0.998394i \(-0.481959\pi\)
0.0566486 + 0.998394i \(0.481959\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −22.4520 −0.848608
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 13.1826 0.497189
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −50.7615 −1.90639 −0.953194 0.302360i \(-0.902225\pi\)
−0.953194 + 0.302360i \(0.902225\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 31.7566 1.18268
\(722\) 0 0
\(723\) 0 0
\(724\) 53.7446 1.99740
\(725\) 0 0
\(726\) 0 0
\(727\) 36.5564 1.35580 0.677902 0.735152i \(-0.262889\pi\)
0.677902 + 0.735152i \(0.262889\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 52.6677 1.94533 0.972664 0.232219i \(-0.0745985\pi\)
0.972664 + 0.232219i \(0.0745985\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 35.7514 1.31514 0.657568 0.753395i \(-0.271585\pi\)
0.657568 + 0.753395i \(0.271585\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −22.6611 −0.826915 −0.413458 0.910523i \(-0.635679\pi\)
−0.413458 + 0.910523i \(0.635679\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −29.0000 −1.05402 −0.527011 0.849858i \(-0.676688\pi\)
−0.527011 + 0.849858i \(0.676688\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 46.8794 1.69715
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −30.9603 −1.11646 −0.558229 0.829687i \(-0.688519\pi\)
−0.558229 + 0.829687i \(0.688519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −55.5401 −1.99893
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −14.3619 −0.515894
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −7.83622 −0.279865
\(785\) 0 0
\(786\) 0 0
\(787\) −25.0000 −0.891154 −0.445577 0.895244i \(-0.647001\pi\)
−0.445577 + 0.895244i \(0.647001\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 32.4042 1.15071
\(794\) 0 0
\(795\) 0 0
\(796\) 23.8941 0.846903
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −51.4134 −1.80537 −0.902684 0.430304i \(-0.858407\pi\)
−0.902684 + 0.430304i \(0.858407\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 95.4659 3.33993
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 52.8151 1.84102 0.920509 0.390721i \(-0.127774\pi\)
0.920509 + 0.390721i \(0.127774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −39.2596 −1.36354 −0.681770 0.731566i \(-0.738790\pi\)
−0.681770 + 0.731566i \(0.738790\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 47.7686 1.65608
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 58.0000 1.99644
\(845\) 0 0
\(846\) 0 0
\(847\) 24.6973 0.848608
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 58.0000 1.98588 0.992941 0.118609i \(-0.0378434\pi\)
0.992941 + 0.118609i \(0.0378434\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −0.832170 −0.0283933 −0.0141966 0.999899i \(-0.504519\pi\)
−0.0141966 + 0.999899i \(0.504519\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 12.8981 0.437791
\(869\) 0 0
\(870\) 0 0
\(871\) −89.1490 −3.02070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −44.6778 −1.50866 −0.754331 0.656495i \(-0.772038\pi\)
−0.754331 + 0.656495i \(0.772038\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −41.0866 −1.38268 −0.691338 0.722532i \(-0.742978\pi\)
−0.691338 + 0.722532i \(0.742978\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 31.5316 1.05754
\(890\) 0 0
\(891\) 0 0
\(892\) 14.8172 0.496115
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 55.1899 1.83255 0.916275 0.400549i \(-0.131180\pi\)
0.916275 + 0.400549i \(0.131180\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 58.0000 1.91637
\(917\) 0 0
\(918\) 0 0
\(919\) 60.3942 1.99222 0.996111 0.0881111i \(-0.0280831\pi\)
0.996111 + 0.0881111i \(0.0280831\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −7.71324 −0.253610
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −16.7409 −0.548662
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 35.0000 1.14340 0.571700 0.820463i \(-0.306284\pi\)
0.571700 + 0.820463i \(0.306284\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 60.2366 1.95536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −22.7495 −0.733854
\(962\) 0 0
\(963\) 0 0
\(964\) 55.2308 1.77887
\(965\) 0 0
\(966\) 0 0
\(967\) 31.8068 1.02284 0.511419 0.859331i \(-0.329120\pi\)
0.511419 + 0.859331i \(0.329120\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −51.9204 −1.66449
\(974\) 0 0
\(975\) 0 0
\(976\) −21.7074 −0.694837
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 102.051 3.24666
\(989\) 0 0
\(990\) 0 0
\(991\) 40.1874 1.27659 0.638297 0.769790i \(-0.279639\pi\)
0.638297 + 0.769790i \(0.279639\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 60.9670 1.93084 0.965422 0.260694i \(-0.0839513\pi\)
0.965422 + 0.260694i \(0.0839513\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.u.1.2 4
3.2 odd 2 CM 7569.2.a.u.1.2 4
29.28 even 2 7569.2.a.v.1.2 yes 4
87.86 odd 2 7569.2.a.v.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7569.2.a.u.1.2 4 1.1 even 1 trivial
7569.2.a.u.1.2 4 3.2 odd 2 CM
7569.2.a.v.1.2 yes 4 29.28 even 2
7569.2.a.v.1.2 yes 4 87.86 odd 2