Properties

Label 7569.2.a.l.1.2
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 841)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803 q^{2} +0.618034 q^{4} +2.85410 q^{5} +2.23607 q^{7} -2.23607 q^{8} +O(q^{10})\) \(q+1.61803 q^{2} +0.618034 q^{4} +2.85410 q^{5} +2.23607 q^{7} -2.23607 q^{8} +4.61803 q^{10} +3.61803 q^{11} +4.23607 q^{13} +3.61803 q^{14} -4.85410 q^{16} +6.61803 q^{17} +1.85410 q^{19} +1.76393 q^{20} +5.85410 q^{22} -3.23607 q^{23} +3.14590 q^{25} +6.85410 q^{26} +1.38197 q^{28} +1.09017 q^{31} -3.38197 q^{32} +10.7082 q^{34} +6.38197 q^{35} -8.70820 q^{37} +3.00000 q^{38} -6.38197 q^{40} +2.85410 q^{41} -2.76393 q^{43} +2.23607 q^{44} -5.23607 q^{46} +7.00000 q^{47} -2.00000 q^{49} +5.09017 q^{50} +2.61803 q^{52} +2.00000 q^{53} +10.3262 q^{55} -5.00000 q^{56} +5.09017 q^{59} +1.61803 q^{61} +1.76393 q^{62} +4.23607 q^{64} +12.0902 q^{65} -10.4721 q^{67} +4.09017 q^{68} +10.3262 q^{70} -1.52786 q^{71} -0.291796 q^{73} -14.0902 q^{74} +1.14590 q^{76} +8.09017 q^{77} +5.09017 q^{79} -13.8541 q^{80} +4.61803 q^{82} -7.94427 q^{83} +18.8885 q^{85} -4.47214 q^{86} -8.09017 q^{88} +8.70820 q^{89} +9.47214 q^{91} -2.00000 q^{92} +11.3262 q^{94} +5.29180 q^{95} -16.5623 q^{97} -3.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{4} - q^{5} + 7 q^{10} + 5 q^{11} + 4 q^{13} + 5 q^{14} - 3 q^{16} + 11 q^{17} - 3 q^{19} + 8 q^{20} + 5 q^{22} - 2 q^{23} + 13 q^{25} + 7 q^{26} + 5 q^{28} - 9 q^{31} - 9 q^{32} + 8 q^{34} + 15 q^{35} - 4 q^{37} + 6 q^{38} - 15 q^{40} - q^{41} - 10 q^{43} - 6 q^{46} + 14 q^{47} - 4 q^{49} - q^{50} + 3 q^{52} + 4 q^{53} + 5 q^{55} - 10 q^{56} - q^{59} + q^{61} + 8 q^{62} + 4 q^{64} + 13 q^{65} - 12 q^{67} - 3 q^{68} + 5 q^{70} - 12 q^{71} - 14 q^{73} - 17 q^{74} + 9 q^{76} + 5 q^{77} - q^{79} - 21 q^{80} + 7 q^{82} + 2 q^{83} + 2 q^{85} - 5 q^{88} + 4 q^{89} + 10 q^{91} - 4 q^{92} + 7 q^{94} + 24 q^{95} - 13 q^{97} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.14412 0.572061 0.820211i \(-0.306144\pi\)
0.572061 + 0.820211i \(0.306144\pi\)
\(3\) 0 0
\(4\) 0.618034 0.309017
\(5\) 2.85410 1.27639 0.638197 0.769873i \(-0.279681\pi\)
0.638197 + 0.769873i \(0.279681\pi\)
\(6\) 0 0
\(7\) 2.23607 0.845154 0.422577 0.906327i \(-0.361126\pi\)
0.422577 + 0.906327i \(0.361126\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 4.61803 1.46035
\(11\) 3.61803 1.09088 0.545439 0.838150i \(-0.316363\pi\)
0.545439 + 0.838150i \(0.316363\pi\)
\(12\) 0 0
\(13\) 4.23607 1.17487 0.587437 0.809270i \(-0.300137\pi\)
0.587437 + 0.809270i \(0.300137\pi\)
\(14\) 3.61803 0.966960
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 6.61803 1.60511 0.802555 0.596579i \(-0.203474\pi\)
0.802555 + 0.596579i \(0.203474\pi\)
\(18\) 0 0
\(19\) 1.85410 0.425360 0.212680 0.977122i \(-0.431781\pi\)
0.212680 + 0.977122i \(0.431781\pi\)
\(20\) 1.76393 0.394427
\(21\) 0 0
\(22\) 5.85410 1.24810
\(23\) −3.23607 −0.674767 −0.337383 0.941367i \(-0.609542\pi\)
−0.337383 + 0.941367i \(0.609542\pi\)
\(24\) 0 0
\(25\) 3.14590 0.629180
\(26\) 6.85410 1.34420
\(27\) 0 0
\(28\) 1.38197 0.261167
\(29\) 0 0
\(30\) 0 0
\(31\) 1.09017 0.195800 0.0979002 0.995196i \(-0.468787\pi\)
0.0979002 + 0.995196i \(0.468787\pi\)
\(32\) −3.38197 −0.597853
\(33\) 0 0
\(34\) 10.7082 1.83644
\(35\) 6.38197 1.07875
\(36\) 0 0
\(37\) −8.70820 −1.43162 −0.715810 0.698295i \(-0.753942\pi\)
−0.715810 + 0.698295i \(0.753942\pi\)
\(38\) 3.00000 0.486664
\(39\) 0 0
\(40\) −6.38197 −1.00908
\(41\) 2.85410 0.445736 0.222868 0.974849i \(-0.428458\pi\)
0.222868 + 0.974849i \(0.428458\pi\)
\(42\) 0 0
\(43\) −2.76393 −0.421496 −0.210748 0.977540i \(-0.567590\pi\)
−0.210748 + 0.977540i \(0.567590\pi\)
\(44\) 2.23607 0.337100
\(45\) 0 0
\(46\) −5.23607 −0.772016
\(47\) 7.00000 1.02105 0.510527 0.859861i \(-0.329450\pi\)
0.510527 + 0.859861i \(0.329450\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 5.09017 0.719859
\(51\) 0 0
\(52\) 2.61803 0.363056
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 10.3262 1.39239
\(56\) −5.00000 −0.668153
\(57\) 0 0
\(58\) 0 0
\(59\) 5.09017 0.662684 0.331342 0.943511i \(-0.392499\pi\)
0.331342 + 0.943511i \(0.392499\pi\)
\(60\) 0 0
\(61\) 1.61803 0.207168 0.103584 0.994621i \(-0.466969\pi\)
0.103584 + 0.994621i \(0.466969\pi\)
\(62\) 1.76393 0.224020
\(63\) 0 0
\(64\) 4.23607 0.529508
\(65\) 12.0902 1.49960
\(66\) 0 0
\(67\) −10.4721 −1.27938 −0.639688 0.768635i \(-0.720936\pi\)
−0.639688 + 0.768635i \(0.720936\pi\)
\(68\) 4.09017 0.496006
\(69\) 0 0
\(70\) 10.3262 1.23422
\(71\) −1.52786 −0.181324 −0.0906621 0.995882i \(-0.528898\pi\)
−0.0906621 + 0.995882i \(0.528898\pi\)
\(72\) 0 0
\(73\) −0.291796 −0.0341521 −0.0170761 0.999854i \(-0.505436\pi\)
−0.0170761 + 0.999854i \(0.505436\pi\)
\(74\) −14.0902 −1.63795
\(75\) 0 0
\(76\) 1.14590 0.131444
\(77\) 8.09017 0.921960
\(78\) 0 0
\(79\) 5.09017 0.572689 0.286344 0.958127i \(-0.407560\pi\)
0.286344 + 0.958127i \(0.407560\pi\)
\(80\) −13.8541 −1.54894
\(81\) 0 0
\(82\) 4.61803 0.509977
\(83\) −7.94427 −0.871997 −0.435999 0.899947i \(-0.643605\pi\)
−0.435999 + 0.899947i \(0.643605\pi\)
\(84\) 0 0
\(85\) 18.8885 2.04875
\(86\) −4.47214 −0.482243
\(87\) 0 0
\(88\) −8.09017 −0.862415
\(89\) 8.70820 0.923068 0.461534 0.887123i \(-0.347299\pi\)
0.461534 + 0.887123i \(0.347299\pi\)
\(90\) 0 0
\(91\) 9.47214 0.992950
\(92\) −2.00000 −0.208514
\(93\) 0 0
\(94\) 11.3262 1.16821
\(95\) 5.29180 0.542927
\(96\) 0 0
\(97\) −16.5623 −1.68165 −0.840824 0.541309i \(-0.817929\pi\)
−0.840824 + 0.541309i \(0.817929\pi\)
\(98\) −3.23607 −0.326892
\(99\) 0 0
\(100\) 1.94427 0.194427
\(101\) −1.61803 −0.161000 −0.0805002 0.996755i \(-0.525652\pi\)
−0.0805002 + 0.996755i \(0.525652\pi\)
\(102\) 0 0
\(103\) −13.1803 −1.29870 −0.649349 0.760491i \(-0.724958\pi\)
−0.649349 + 0.760491i \(0.724958\pi\)
\(104\) −9.47214 −0.928819
\(105\) 0 0
\(106\) 3.23607 0.314315
\(107\) −11.2361 −1.08623 −0.543116 0.839658i \(-0.682756\pi\)
−0.543116 + 0.839658i \(0.682756\pi\)
\(108\) 0 0
\(109\) −16.6180 −1.59172 −0.795859 0.605481i \(-0.792981\pi\)
−0.795859 + 0.605481i \(0.792981\pi\)
\(110\) 16.7082 1.59306
\(111\) 0 0
\(112\) −10.8541 −1.02562
\(113\) 9.94427 0.935478 0.467739 0.883867i \(-0.345069\pi\)
0.467739 + 0.883867i \(0.345069\pi\)
\(114\) 0 0
\(115\) −9.23607 −0.861268
\(116\) 0 0
\(117\) 0 0
\(118\) 8.23607 0.758192
\(119\) 14.7984 1.35656
\(120\) 0 0
\(121\) 2.09017 0.190015
\(122\) 2.61803 0.237026
\(123\) 0 0
\(124\) 0.673762 0.0605056
\(125\) −5.29180 −0.473313
\(126\) 0 0
\(127\) −1.94427 −0.172526 −0.0862631 0.996272i \(-0.527493\pi\)
−0.0862631 + 0.996272i \(0.527493\pi\)
\(128\) 13.6180 1.20368
\(129\) 0 0
\(130\) 19.5623 1.71573
\(131\) 1.32624 0.115874 0.0579370 0.998320i \(-0.481548\pi\)
0.0579370 + 0.998320i \(0.481548\pi\)
\(132\) 0 0
\(133\) 4.14590 0.359495
\(134\) −16.9443 −1.46376
\(135\) 0 0
\(136\) −14.7984 −1.26895
\(137\) −13.8541 −1.18364 −0.591818 0.806072i \(-0.701590\pi\)
−0.591818 + 0.806072i \(0.701590\pi\)
\(138\) 0 0
\(139\) 14.7082 1.24753 0.623767 0.781611i \(-0.285601\pi\)
0.623767 + 0.781611i \(0.285601\pi\)
\(140\) 3.94427 0.333352
\(141\) 0 0
\(142\) −2.47214 −0.207457
\(143\) 15.3262 1.28164
\(144\) 0 0
\(145\) 0 0
\(146\) −0.472136 −0.0390742
\(147\) 0 0
\(148\) −5.38197 −0.442395
\(149\) −7.38197 −0.604754 −0.302377 0.953188i \(-0.597780\pi\)
−0.302377 + 0.953188i \(0.597780\pi\)
\(150\) 0 0
\(151\) 18.3262 1.49137 0.745684 0.666300i \(-0.232123\pi\)
0.745684 + 0.666300i \(0.232123\pi\)
\(152\) −4.14590 −0.336277
\(153\) 0 0
\(154\) 13.0902 1.05484
\(155\) 3.11146 0.249918
\(156\) 0 0
\(157\) −5.56231 −0.443920 −0.221960 0.975056i \(-0.571245\pi\)
−0.221960 + 0.975056i \(0.571245\pi\)
\(158\) 8.23607 0.655226
\(159\) 0 0
\(160\) −9.65248 −0.763095
\(161\) −7.23607 −0.570282
\(162\) 0 0
\(163\) 23.0344 1.80420 0.902098 0.431530i \(-0.142026\pi\)
0.902098 + 0.431530i \(0.142026\pi\)
\(164\) 1.76393 0.137740
\(165\) 0 0
\(166\) −12.8541 −0.997672
\(167\) −19.4721 −1.50680 −0.753400 0.657563i \(-0.771587\pi\)
−0.753400 + 0.657563i \(0.771587\pi\)
\(168\) 0 0
\(169\) 4.94427 0.380329
\(170\) 30.5623 2.34402
\(171\) 0 0
\(172\) −1.70820 −0.130249
\(173\) 7.09017 0.539056 0.269528 0.962993i \(-0.413132\pi\)
0.269528 + 0.962993i \(0.413132\pi\)
\(174\) 0 0
\(175\) 7.03444 0.531754
\(176\) −17.5623 −1.32381
\(177\) 0 0
\(178\) 14.0902 1.05610
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) −11.9443 −0.887811 −0.443905 0.896074i \(-0.646407\pi\)
−0.443905 + 0.896074i \(0.646407\pi\)
\(182\) 15.3262 1.13606
\(183\) 0 0
\(184\) 7.23607 0.533450
\(185\) −24.8541 −1.82731
\(186\) 0 0
\(187\) 23.9443 1.75098
\(188\) 4.32624 0.315523
\(189\) 0 0
\(190\) 8.56231 0.621175
\(191\) 12.0344 0.870782 0.435391 0.900242i \(-0.356610\pi\)
0.435391 + 0.900242i \(0.356610\pi\)
\(192\) 0 0
\(193\) 3.52786 0.253941 0.126971 0.991906i \(-0.459475\pi\)
0.126971 + 0.991906i \(0.459475\pi\)
\(194\) −26.7984 −1.92401
\(195\) 0 0
\(196\) −1.23607 −0.0882906
\(197\) 19.7082 1.40415 0.702076 0.712102i \(-0.252257\pi\)
0.702076 + 0.712102i \(0.252257\pi\)
\(198\) 0 0
\(199\) 0.854102 0.0605457 0.0302728 0.999542i \(-0.490362\pi\)
0.0302728 + 0.999542i \(0.490362\pi\)
\(200\) −7.03444 −0.497410
\(201\) 0 0
\(202\) −2.61803 −0.184204
\(203\) 0 0
\(204\) 0 0
\(205\) 8.14590 0.568934
\(206\) −21.3262 −1.48587
\(207\) 0 0
\(208\) −20.5623 −1.42574
\(209\) 6.70820 0.464016
\(210\) 0 0
\(211\) 19.6525 1.35293 0.676466 0.736474i \(-0.263511\pi\)
0.676466 + 0.736474i \(0.263511\pi\)
\(212\) 1.23607 0.0848935
\(213\) 0 0
\(214\) −18.1803 −1.24278
\(215\) −7.88854 −0.537994
\(216\) 0 0
\(217\) 2.43769 0.165481
\(218\) −26.8885 −1.82112
\(219\) 0 0
\(220\) 6.38197 0.430272
\(221\) 28.0344 1.88580
\(222\) 0 0
\(223\) 18.3262 1.22722 0.613608 0.789611i \(-0.289718\pi\)
0.613608 + 0.789611i \(0.289718\pi\)
\(224\) −7.56231 −0.505278
\(225\) 0 0
\(226\) 16.0902 1.07030
\(227\) −14.8885 −0.988187 −0.494094 0.869409i \(-0.664500\pi\)
−0.494094 + 0.869409i \(0.664500\pi\)
\(228\) 0 0
\(229\) 15.7082 1.03803 0.519014 0.854766i \(-0.326299\pi\)
0.519014 + 0.854766i \(0.326299\pi\)
\(230\) −14.9443 −0.985396
\(231\) 0 0
\(232\) 0 0
\(233\) −10.7639 −0.705169 −0.352584 0.935780i \(-0.614697\pi\)
−0.352584 + 0.935780i \(0.614697\pi\)
\(234\) 0 0
\(235\) 19.9787 1.30327
\(236\) 3.14590 0.204781
\(237\) 0 0
\(238\) 23.9443 1.55208
\(239\) −14.7426 −0.953622 −0.476811 0.879006i \(-0.658207\pi\)
−0.476811 + 0.879006i \(0.658207\pi\)
\(240\) 0 0
\(241\) 26.6525 1.71684 0.858418 0.512950i \(-0.171447\pi\)
0.858418 + 0.512950i \(0.171447\pi\)
\(242\) 3.38197 0.217401
\(243\) 0 0
\(244\) 1.00000 0.0640184
\(245\) −5.70820 −0.364684
\(246\) 0 0
\(247\) 7.85410 0.499745
\(248\) −2.43769 −0.154794
\(249\) 0 0
\(250\) −8.56231 −0.541528
\(251\) −11.6525 −0.735498 −0.367749 0.929925i \(-0.619871\pi\)
−0.367749 + 0.929925i \(0.619871\pi\)
\(252\) 0 0
\(253\) −11.7082 −0.736088
\(254\) −3.14590 −0.197391
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) 0.819660 0.0511290 0.0255645 0.999673i \(-0.491862\pi\)
0.0255645 + 0.999673i \(0.491862\pi\)
\(258\) 0 0
\(259\) −19.4721 −1.20994
\(260\) 7.47214 0.463402
\(261\) 0 0
\(262\) 2.14590 0.132574
\(263\) 3.29180 0.202981 0.101490 0.994837i \(-0.467639\pi\)
0.101490 + 0.994837i \(0.467639\pi\)
\(264\) 0 0
\(265\) 5.70820 0.350652
\(266\) 6.70820 0.411306
\(267\) 0 0
\(268\) −6.47214 −0.395349
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −12.1803 −0.739903 −0.369951 0.929051i \(-0.620626\pi\)
−0.369951 + 0.929051i \(0.620626\pi\)
\(272\) −32.1246 −1.94784
\(273\) 0 0
\(274\) −22.4164 −1.35422
\(275\) 11.3820 0.686358
\(276\) 0 0
\(277\) −23.6180 −1.41907 −0.709535 0.704670i \(-0.751095\pi\)
−0.709535 + 0.704670i \(0.751095\pi\)
\(278\) 23.7984 1.42733
\(279\) 0 0
\(280\) −14.2705 −0.852826
\(281\) 17.1246 1.02157 0.510784 0.859709i \(-0.329355\pi\)
0.510784 + 0.859709i \(0.329355\pi\)
\(282\) 0 0
\(283\) −0.763932 −0.0454110 −0.0227055 0.999742i \(-0.507228\pi\)
−0.0227055 + 0.999742i \(0.507228\pi\)
\(284\) −0.944272 −0.0560322
\(285\) 0 0
\(286\) 24.7984 1.46636
\(287\) 6.38197 0.376716
\(288\) 0 0
\(289\) 26.7984 1.57637
\(290\) 0 0
\(291\) 0 0
\(292\) −0.180340 −0.0105536
\(293\) −17.4721 −1.02073 −0.510367 0.859957i \(-0.670490\pi\)
−0.510367 + 0.859957i \(0.670490\pi\)
\(294\) 0 0
\(295\) 14.5279 0.845845
\(296\) 19.4721 1.13179
\(297\) 0 0
\(298\) −11.9443 −0.691913
\(299\) −13.7082 −0.792766
\(300\) 0 0
\(301\) −6.18034 −0.356229
\(302\) 29.6525 1.70631
\(303\) 0 0
\(304\) −9.00000 −0.516185
\(305\) 4.61803 0.264428
\(306\) 0 0
\(307\) 3.18034 0.181512 0.0907558 0.995873i \(-0.471072\pi\)
0.0907558 + 0.995873i \(0.471072\pi\)
\(308\) 5.00000 0.284901
\(309\) 0 0
\(310\) 5.03444 0.285937
\(311\) 9.09017 0.515456 0.257728 0.966217i \(-0.417026\pi\)
0.257728 + 0.966217i \(0.417026\pi\)
\(312\) 0 0
\(313\) −24.0902 −1.36166 −0.680828 0.732443i \(-0.738380\pi\)
−0.680828 + 0.732443i \(0.738380\pi\)
\(314\) −9.00000 −0.507899
\(315\) 0 0
\(316\) 3.14590 0.176971
\(317\) −14.2918 −0.802707 −0.401354 0.915923i \(-0.631460\pi\)
−0.401354 + 0.915923i \(0.631460\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 12.0902 0.675861
\(321\) 0 0
\(322\) −11.7082 −0.652473
\(323\) 12.2705 0.682749
\(324\) 0 0
\(325\) 13.3262 0.739207
\(326\) 37.2705 2.06422
\(327\) 0 0
\(328\) −6.38197 −0.352385
\(329\) 15.6525 0.862949
\(330\) 0 0
\(331\) −1.18034 −0.0648773 −0.0324387 0.999474i \(-0.510327\pi\)
−0.0324387 + 0.999474i \(0.510327\pi\)
\(332\) −4.90983 −0.269462
\(333\) 0 0
\(334\) −31.5066 −1.72396
\(335\) −29.8885 −1.63299
\(336\) 0 0
\(337\) 24.0689 1.31112 0.655558 0.755145i \(-0.272434\pi\)
0.655558 + 0.755145i \(0.272434\pi\)
\(338\) 8.00000 0.435143
\(339\) 0 0
\(340\) 11.6738 0.633099
\(341\) 3.94427 0.213594
\(342\) 0 0
\(343\) −20.1246 −1.08663
\(344\) 6.18034 0.333222
\(345\) 0 0
\(346\) 11.4721 0.616746
\(347\) −8.12461 −0.436152 −0.218076 0.975932i \(-0.569978\pi\)
−0.218076 + 0.975932i \(0.569978\pi\)
\(348\) 0 0
\(349\) 13.4721 0.721147 0.360573 0.932731i \(-0.382581\pi\)
0.360573 + 0.932731i \(0.382581\pi\)
\(350\) 11.3820 0.608392
\(351\) 0 0
\(352\) −12.2361 −0.652185
\(353\) −21.1246 −1.12435 −0.562175 0.827018i \(-0.690035\pi\)
−0.562175 + 0.827018i \(0.690035\pi\)
\(354\) 0 0
\(355\) −4.36068 −0.231441
\(356\) 5.38197 0.285244
\(357\) 0 0
\(358\) 25.8885 1.36825
\(359\) 28.2361 1.49024 0.745121 0.666929i \(-0.232392\pi\)
0.745121 + 0.666929i \(0.232392\pi\)
\(360\) 0 0
\(361\) −15.5623 −0.819069
\(362\) −19.3262 −1.01576
\(363\) 0 0
\(364\) 5.85410 0.306838
\(365\) −0.832816 −0.0435916
\(366\) 0 0
\(367\) −6.27051 −0.327318 −0.163659 0.986517i \(-0.552330\pi\)
−0.163659 + 0.986517i \(0.552330\pi\)
\(368\) 15.7082 0.818847
\(369\) 0 0
\(370\) −40.2148 −2.09067
\(371\) 4.47214 0.232182
\(372\) 0 0
\(373\) 18.3820 0.951782 0.475891 0.879504i \(-0.342126\pi\)
0.475891 + 0.879504i \(0.342126\pi\)
\(374\) 38.7426 2.00333
\(375\) 0 0
\(376\) −15.6525 −0.807215
\(377\) 0 0
\(378\) 0 0
\(379\) −37.7082 −1.93694 −0.968470 0.249130i \(-0.919855\pi\)
−0.968470 + 0.249130i \(0.919855\pi\)
\(380\) 3.27051 0.167774
\(381\) 0 0
\(382\) 19.4721 0.996281
\(383\) 22.1459 1.13160 0.565801 0.824542i \(-0.308567\pi\)
0.565801 + 0.824542i \(0.308567\pi\)
\(384\) 0 0
\(385\) 23.0902 1.17678
\(386\) 5.70820 0.290540
\(387\) 0 0
\(388\) −10.2361 −0.519658
\(389\) −21.1246 −1.07106 −0.535530 0.844516i \(-0.679888\pi\)
−0.535530 + 0.844516i \(0.679888\pi\)
\(390\) 0 0
\(391\) −21.4164 −1.08307
\(392\) 4.47214 0.225877
\(393\) 0 0
\(394\) 31.8885 1.60652
\(395\) 14.5279 0.730976
\(396\) 0 0
\(397\) −31.9443 −1.60324 −0.801619 0.597836i \(-0.796027\pi\)
−0.801619 + 0.597836i \(0.796027\pi\)
\(398\) 1.38197 0.0692717
\(399\) 0 0
\(400\) −15.2705 −0.763525
\(401\) 33.0689 1.65138 0.825691 0.564123i \(-0.190786\pi\)
0.825691 + 0.564123i \(0.190786\pi\)
\(402\) 0 0
\(403\) 4.61803 0.230041
\(404\) −1.00000 −0.0497519
\(405\) 0 0
\(406\) 0 0
\(407\) −31.5066 −1.56172
\(408\) 0 0
\(409\) 0.583592 0.0288568 0.0144284 0.999896i \(-0.495407\pi\)
0.0144284 + 0.999896i \(0.495407\pi\)
\(410\) 13.1803 0.650931
\(411\) 0 0
\(412\) −8.14590 −0.401320
\(413\) 11.3820 0.560070
\(414\) 0 0
\(415\) −22.6738 −1.11301
\(416\) −14.3262 −0.702402
\(417\) 0 0
\(418\) 10.8541 0.530891
\(419\) −2.56231 −0.125177 −0.0625884 0.998039i \(-0.519936\pi\)
−0.0625884 + 0.998039i \(0.519936\pi\)
\(420\) 0 0
\(421\) −1.96556 −0.0957954 −0.0478977 0.998852i \(-0.515252\pi\)
−0.0478977 + 0.998852i \(0.515252\pi\)
\(422\) 31.7984 1.54792
\(423\) 0 0
\(424\) −4.47214 −0.217186
\(425\) 20.8197 1.00990
\(426\) 0 0
\(427\) 3.61803 0.175089
\(428\) −6.94427 −0.335664
\(429\) 0 0
\(430\) −12.7639 −0.615531
\(431\) 34.5967 1.66647 0.833233 0.552921i \(-0.186487\pi\)
0.833233 + 0.552921i \(0.186487\pi\)
\(432\) 0 0
\(433\) 12.6180 0.606384 0.303192 0.952929i \(-0.401948\pi\)
0.303192 + 0.952929i \(0.401948\pi\)
\(434\) 3.94427 0.189331
\(435\) 0 0
\(436\) −10.2705 −0.491868
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) −3.05573 −0.145842 −0.0729210 0.997338i \(-0.523232\pi\)
−0.0729210 + 0.997338i \(0.523232\pi\)
\(440\) −23.0902 −1.10078
\(441\) 0 0
\(442\) 45.3607 2.15759
\(443\) 13.0902 0.621933 0.310966 0.950421i \(-0.399347\pi\)
0.310966 + 0.950421i \(0.399347\pi\)
\(444\) 0 0
\(445\) 24.8541 1.17820
\(446\) 29.6525 1.40409
\(447\) 0 0
\(448\) 9.47214 0.447516
\(449\) −14.1246 −0.666582 −0.333291 0.942824i \(-0.608159\pi\)
−0.333291 + 0.942824i \(0.608159\pi\)
\(450\) 0 0
\(451\) 10.3262 0.486244
\(452\) 6.14590 0.289079
\(453\) 0 0
\(454\) −24.0902 −1.13061
\(455\) 27.0344 1.26739
\(456\) 0 0
\(457\) 5.29180 0.247540 0.123770 0.992311i \(-0.460502\pi\)
0.123770 + 0.992311i \(0.460502\pi\)
\(458\) 25.4164 1.18763
\(459\) 0 0
\(460\) −5.70820 −0.266146
\(461\) −7.97871 −0.371606 −0.185803 0.982587i \(-0.559489\pi\)
−0.185803 + 0.982587i \(0.559489\pi\)
\(462\) 0 0
\(463\) −2.70820 −0.125861 −0.0629305 0.998018i \(-0.520045\pi\)
−0.0629305 + 0.998018i \(0.520045\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −17.4164 −0.806800
\(467\) 0.0557281 0.00257879 0.00128939 0.999999i \(-0.499590\pi\)
0.00128939 + 0.999999i \(0.499590\pi\)
\(468\) 0 0
\(469\) −23.4164 −1.08127
\(470\) 32.3262 1.49110
\(471\) 0 0
\(472\) −11.3820 −0.523897
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) 5.83282 0.267628
\(476\) 9.14590 0.419202
\(477\) 0 0
\(478\) −23.8541 −1.09106
\(479\) −11.1803 −0.510843 −0.255421 0.966830i \(-0.582214\pi\)
−0.255421 + 0.966830i \(0.582214\pi\)
\(480\) 0 0
\(481\) −36.8885 −1.68197
\(482\) 43.1246 1.96427
\(483\) 0 0
\(484\) 1.29180 0.0587180
\(485\) −47.2705 −2.14644
\(486\) 0 0
\(487\) 22.4377 1.01675 0.508374 0.861136i \(-0.330247\pi\)
0.508374 + 0.861136i \(0.330247\pi\)
\(488\) −3.61803 −0.163781
\(489\) 0 0
\(490\) −9.23607 −0.417243
\(491\) −25.1246 −1.13386 −0.566929 0.823767i \(-0.691869\pi\)
−0.566929 + 0.823767i \(0.691869\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 12.7082 0.571769
\(495\) 0 0
\(496\) −5.29180 −0.237609
\(497\) −3.41641 −0.153247
\(498\) 0 0
\(499\) −35.6869 −1.59757 −0.798783 0.601619i \(-0.794522\pi\)
−0.798783 + 0.601619i \(0.794522\pi\)
\(500\) −3.27051 −0.146262
\(501\) 0 0
\(502\) −18.8541 −0.841500
\(503\) 19.2705 0.859230 0.429615 0.903012i \(-0.358649\pi\)
0.429615 + 0.903012i \(0.358649\pi\)
\(504\) 0 0
\(505\) −4.61803 −0.205500
\(506\) −18.9443 −0.842176
\(507\) 0 0
\(508\) −1.20163 −0.0533135
\(509\) −11.4377 −0.506967 −0.253483 0.967340i \(-0.581576\pi\)
−0.253483 + 0.967340i \(0.581576\pi\)
\(510\) 0 0
\(511\) −0.652476 −0.0288638
\(512\) −5.29180 −0.233867
\(513\) 0 0
\(514\) 1.32624 0.0584978
\(515\) −37.6180 −1.65765
\(516\) 0 0
\(517\) 25.3262 1.11385
\(518\) −31.5066 −1.38432
\(519\) 0 0
\(520\) −27.0344 −1.18554
\(521\) 7.09017 0.310626 0.155313 0.987865i \(-0.450361\pi\)
0.155313 + 0.987865i \(0.450361\pi\)
\(522\) 0 0
\(523\) −22.6180 −0.989018 −0.494509 0.869173i \(-0.664652\pi\)
−0.494509 + 0.869173i \(0.664652\pi\)
\(524\) 0.819660 0.0358070
\(525\) 0 0
\(526\) 5.32624 0.232235
\(527\) 7.21478 0.314281
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) 9.23607 0.401189
\(531\) 0 0
\(532\) 2.56231 0.111090
\(533\) 12.0902 0.523683
\(534\) 0 0
\(535\) −32.0689 −1.38646
\(536\) 23.4164 1.01143
\(537\) 0 0
\(538\) 9.70820 0.418550
\(539\) −7.23607 −0.311680
\(540\) 0 0
\(541\) 34.5967 1.48743 0.743715 0.668497i \(-0.233062\pi\)
0.743715 + 0.668497i \(0.233062\pi\)
\(542\) −19.7082 −0.846540
\(543\) 0 0
\(544\) −22.3820 −0.959619
\(545\) −47.4296 −2.03166
\(546\) 0 0
\(547\) 9.61803 0.411237 0.205619 0.978632i \(-0.434079\pi\)
0.205619 + 0.978632i \(0.434079\pi\)
\(548\) −8.56231 −0.365764
\(549\) 0 0
\(550\) 18.4164 0.785278
\(551\) 0 0
\(552\) 0 0
\(553\) 11.3820 0.484010
\(554\) −38.2148 −1.62359
\(555\) 0 0
\(556\) 9.09017 0.385509
\(557\) −32.5066 −1.37735 −0.688674 0.725071i \(-0.741807\pi\)
−0.688674 + 0.725071i \(0.741807\pi\)
\(558\) 0 0
\(559\) −11.7082 −0.495204
\(560\) −30.9787 −1.30909
\(561\) 0 0
\(562\) 27.7082 1.16880
\(563\) 45.3951 1.91318 0.956588 0.291443i \(-0.0941354\pi\)
0.956588 + 0.291443i \(0.0941354\pi\)
\(564\) 0 0
\(565\) 28.3820 1.19404
\(566\) −1.23607 −0.0519558
\(567\) 0 0
\(568\) 3.41641 0.143349
\(569\) −15.9443 −0.668419 −0.334209 0.942499i \(-0.608469\pi\)
−0.334209 + 0.942499i \(0.608469\pi\)
\(570\) 0 0
\(571\) 3.50658 0.146746 0.0733729 0.997305i \(-0.476624\pi\)
0.0733729 + 0.997305i \(0.476624\pi\)
\(572\) 9.47214 0.396050
\(573\) 0 0
\(574\) 10.3262 0.431009
\(575\) −10.1803 −0.424550
\(576\) 0 0
\(577\) −7.23607 −0.301241 −0.150621 0.988592i \(-0.548127\pi\)
−0.150621 + 0.988592i \(0.548127\pi\)
\(578\) 43.3607 1.80357
\(579\) 0 0
\(580\) 0 0
\(581\) −17.7639 −0.736972
\(582\) 0 0
\(583\) 7.23607 0.299687
\(584\) 0.652476 0.0269996
\(585\) 0 0
\(586\) −28.2705 −1.16784
\(587\) −44.3820 −1.83184 −0.915920 0.401361i \(-0.868537\pi\)
−0.915920 + 0.401361i \(0.868537\pi\)
\(588\) 0 0
\(589\) 2.02129 0.0832856
\(590\) 23.5066 0.967750
\(591\) 0 0
\(592\) 42.2705 1.73731
\(593\) 34.5623 1.41930 0.709652 0.704552i \(-0.248852\pi\)
0.709652 + 0.704552i \(0.248852\pi\)
\(594\) 0 0
\(595\) 42.2361 1.73151
\(596\) −4.56231 −0.186879
\(597\) 0 0
\(598\) −22.1803 −0.907022
\(599\) 45.0689 1.84146 0.920732 0.390195i \(-0.127592\pi\)
0.920732 + 0.390195i \(0.127592\pi\)
\(600\) 0 0
\(601\) −40.1591 −1.63812 −0.819061 0.573706i \(-0.805505\pi\)
−0.819061 + 0.573706i \(0.805505\pi\)
\(602\) −10.0000 −0.407570
\(603\) 0 0
\(604\) 11.3262 0.460858
\(605\) 5.96556 0.242534
\(606\) 0 0
\(607\) −35.9787 −1.46033 −0.730165 0.683270i \(-0.760557\pi\)
−0.730165 + 0.683270i \(0.760557\pi\)
\(608\) −6.27051 −0.254303
\(609\) 0 0
\(610\) 7.47214 0.302538
\(611\) 29.6525 1.19961
\(612\) 0 0
\(613\) −39.5410 −1.59705 −0.798523 0.601964i \(-0.794385\pi\)
−0.798523 + 0.601964i \(0.794385\pi\)
\(614\) 5.14590 0.207672
\(615\) 0 0
\(616\) −18.0902 −0.728874
\(617\) −8.18034 −0.329328 −0.164664 0.986350i \(-0.552654\pi\)
−0.164664 + 0.986350i \(0.552654\pi\)
\(618\) 0 0
\(619\) 24.9443 1.00259 0.501297 0.865275i \(-0.332856\pi\)
0.501297 + 0.865275i \(0.332856\pi\)
\(620\) 1.92299 0.0772290
\(621\) 0 0
\(622\) 14.7082 0.589745
\(623\) 19.4721 0.780135
\(624\) 0 0
\(625\) −30.8328 −1.23331
\(626\) −38.9787 −1.55790
\(627\) 0 0
\(628\) −3.43769 −0.137179
\(629\) −57.6312 −2.29791
\(630\) 0 0
\(631\) 23.2148 0.924166 0.462083 0.886837i \(-0.347102\pi\)
0.462083 + 0.886837i \(0.347102\pi\)
\(632\) −11.3820 −0.452750
\(633\) 0 0
\(634\) −23.1246 −0.918396
\(635\) −5.54915 −0.220211
\(636\) 0 0
\(637\) −8.47214 −0.335678
\(638\) 0 0
\(639\) 0 0
\(640\) 38.8673 1.53636
\(641\) −28.9443 −1.14323 −0.571615 0.820522i \(-0.693683\pi\)
−0.571615 + 0.820522i \(0.693683\pi\)
\(642\) 0 0
\(643\) −10.5836 −0.417376 −0.208688 0.977982i \(-0.566919\pi\)
−0.208688 + 0.977982i \(0.566919\pi\)
\(644\) −4.47214 −0.176227
\(645\) 0 0
\(646\) 19.8541 0.781149
\(647\) 39.4721 1.55181 0.775905 0.630850i \(-0.217294\pi\)
0.775905 + 0.630850i \(0.217294\pi\)
\(648\) 0 0
\(649\) 18.4164 0.722907
\(650\) 21.5623 0.845743
\(651\) 0 0
\(652\) 14.2361 0.557527
\(653\) 28.0132 1.09624 0.548120 0.836400i \(-0.315344\pi\)
0.548120 + 0.836400i \(0.315344\pi\)
\(654\) 0 0
\(655\) 3.78522 0.147901
\(656\) −13.8541 −0.540912
\(657\) 0 0
\(658\) 25.3262 0.987320
\(659\) 24.9443 0.971691 0.485845 0.874045i \(-0.338512\pi\)
0.485845 + 0.874045i \(0.338512\pi\)
\(660\) 0 0
\(661\) 18.4508 0.717655 0.358827 0.933404i \(-0.383177\pi\)
0.358827 + 0.933404i \(0.383177\pi\)
\(662\) −1.90983 −0.0742277
\(663\) 0 0
\(664\) 17.7639 0.689374
\(665\) 11.8328 0.458857
\(666\) 0 0
\(667\) 0 0
\(668\) −12.0344 −0.465627
\(669\) 0 0
\(670\) −48.3607 −1.86834
\(671\) 5.85410 0.225995
\(672\) 0 0
\(673\) 2.47214 0.0952938 0.0476469 0.998864i \(-0.484828\pi\)
0.0476469 + 0.998864i \(0.484828\pi\)
\(674\) 38.9443 1.50008
\(675\) 0 0
\(676\) 3.05573 0.117528
\(677\) −12.8328 −0.493205 −0.246603 0.969117i \(-0.579314\pi\)
−0.246603 + 0.969117i \(0.579314\pi\)
\(678\) 0 0
\(679\) −37.0344 −1.42125
\(680\) −42.2361 −1.61968
\(681\) 0 0
\(682\) 6.38197 0.244378
\(683\) −14.1459 −0.541278 −0.270639 0.962681i \(-0.587235\pi\)
−0.270639 + 0.962681i \(0.587235\pi\)
\(684\) 0 0
\(685\) −39.5410 −1.51078
\(686\) −32.5623 −1.24323
\(687\) 0 0
\(688\) 13.4164 0.511496
\(689\) 8.47214 0.322763
\(690\) 0 0
\(691\) −41.8328 −1.59140 −0.795698 0.605694i \(-0.792896\pi\)
−0.795698 + 0.605694i \(0.792896\pi\)
\(692\) 4.38197 0.166577
\(693\) 0 0
\(694\) −13.1459 −0.499011
\(695\) 41.9787 1.59234
\(696\) 0 0
\(697\) 18.8885 0.715455
\(698\) 21.7984 0.825081
\(699\) 0 0
\(700\) 4.34752 0.164321
\(701\) 38.9443 1.47090 0.735452 0.677576i \(-0.236970\pi\)
0.735452 + 0.677576i \(0.236970\pi\)
\(702\) 0 0
\(703\) −16.1459 −0.608954
\(704\) 15.3262 0.577629
\(705\) 0 0
\(706\) −34.1803 −1.28639
\(707\) −3.61803 −0.136070
\(708\) 0 0
\(709\) −3.49342 −0.131198 −0.0655991 0.997846i \(-0.520896\pi\)
−0.0655991 + 0.997846i \(0.520896\pi\)
\(710\) −7.05573 −0.264797
\(711\) 0 0
\(712\) −19.4721 −0.729749
\(713\) −3.52786 −0.132120
\(714\) 0 0
\(715\) 43.7426 1.63588
\(716\) 9.88854 0.369552
\(717\) 0 0
\(718\) 45.6869 1.70502
\(719\) 29.5066 1.10041 0.550205 0.835030i \(-0.314550\pi\)
0.550205 + 0.835030i \(0.314550\pi\)
\(720\) 0 0
\(721\) −29.4721 −1.09760
\(722\) −25.1803 −0.937115
\(723\) 0 0
\(724\) −7.38197 −0.274349
\(725\) 0 0
\(726\) 0 0
\(727\) 45.9443 1.70398 0.851989 0.523559i \(-0.175396\pi\)
0.851989 + 0.523559i \(0.175396\pi\)
\(728\) −21.1803 −0.784996
\(729\) 0 0
\(730\) −1.34752 −0.0498741
\(731\) −18.2918 −0.676547
\(732\) 0 0
\(733\) 37.1803 1.37329 0.686644 0.726994i \(-0.259083\pi\)
0.686644 + 0.726994i \(0.259083\pi\)
\(734\) −10.1459 −0.374492
\(735\) 0 0
\(736\) 10.9443 0.403411
\(737\) −37.8885 −1.39564
\(738\) 0 0
\(739\) 8.06888 0.296819 0.148409 0.988926i \(-0.452585\pi\)
0.148409 + 0.988926i \(0.452585\pi\)
\(740\) −15.3607 −0.564670
\(741\) 0 0
\(742\) 7.23607 0.265644
\(743\) −30.7639 −1.12862 −0.564310 0.825563i \(-0.690858\pi\)
−0.564310 + 0.825563i \(0.690858\pi\)
\(744\) 0 0
\(745\) −21.0689 −0.771904
\(746\) 29.7426 1.08896
\(747\) 0 0
\(748\) 14.7984 0.541082
\(749\) −25.1246 −0.918033
\(750\) 0 0
\(751\) −27.4721 −1.00247 −0.501236 0.865310i \(-0.667121\pi\)
−0.501236 + 0.865310i \(0.667121\pi\)
\(752\) −33.9787 −1.23908
\(753\) 0 0
\(754\) 0 0
\(755\) 52.3050 1.90357
\(756\) 0 0
\(757\) −46.9787 −1.70747 −0.853735 0.520707i \(-0.825668\pi\)
−0.853735 + 0.520707i \(0.825668\pi\)
\(758\) −61.0132 −2.21610
\(759\) 0 0
\(760\) −11.8328 −0.429221
\(761\) −49.7984 −1.80519 −0.902595 0.430491i \(-0.858340\pi\)
−0.902595 + 0.430491i \(0.858340\pi\)
\(762\) 0 0
\(763\) −37.1591 −1.34525
\(764\) 7.43769 0.269086
\(765\) 0 0
\(766\) 35.8328 1.29469
\(767\) 21.5623 0.778570
\(768\) 0 0
\(769\) 25.3607 0.914530 0.457265 0.889331i \(-0.348829\pi\)
0.457265 + 0.889331i \(0.348829\pi\)
\(770\) 37.3607 1.34639
\(771\) 0 0
\(772\) 2.18034 0.0784721
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) 0 0
\(775\) 3.42956 0.123194
\(776\) 37.0344 1.32946
\(777\) 0 0
\(778\) −34.1803 −1.22542
\(779\) 5.29180 0.189598
\(780\) 0 0
\(781\) −5.52786 −0.197803
\(782\) −34.6525 −1.23917
\(783\) 0 0
\(784\) 9.70820 0.346722
\(785\) −15.8754 −0.566617
\(786\) 0 0
\(787\) −25.3607 −0.904011 −0.452005 0.892015i \(-0.649291\pi\)
−0.452005 + 0.892015i \(0.649291\pi\)
\(788\) 12.1803 0.433907
\(789\) 0 0
\(790\) 23.5066 0.836327
\(791\) 22.2361 0.790624
\(792\) 0 0
\(793\) 6.85410 0.243396
\(794\) −51.6869 −1.83430
\(795\) 0 0
\(796\) 0.527864 0.0187096
\(797\) −20.8197 −0.737470 −0.368735 0.929535i \(-0.620209\pi\)
−0.368735 + 0.929535i \(0.620209\pi\)
\(798\) 0 0
\(799\) 46.3262 1.63890
\(800\) −10.6393 −0.376157
\(801\) 0 0
\(802\) 53.5066 1.88938
\(803\) −1.05573 −0.0372558
\(804\) 0 0
\(805\) −20.6525 −0.727904
\(806\) 7.47214 0.263195
\(807\) 0 0
\(808\) 3.61803 0.127282
\(809\) −15.0689 −0.529794 −0.264897 0.964277i \(-0.585338\pi\)
−0.264897 + 0.964277i \(0.585338\pi\)
\(810\) 0 0
\(811\) −25.6525 −0.900780 −0.450390 0.892832i \(-0.648715\pi\)
−0.450390 + 0.892832i \(0.648715\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −50.9787 −1.78680
\(815\) 65.7426 2.30286
\(816\) 0 0
\(817\) −5.12461 −0.179287
\(818\) 0.944272 0.0330157
\(819\) 0 0
\(820\) 5.03444 0.175810
\(821\) −35.4164 −1.23604 −0.618021 0.786162i \(-0.712065\pi\)
−0.618021 + 0.786162i \(0.712065\pi\)
\(822\) 0 0
\(823\) 3.47214 0.121031 0.0605155 0.998167i \(-0.480726\pi\)
0.0605155 + 0.998167i \(0.480726\pi\)
\(824\) 29.4721 1.02671
\(825\) 0 0
\(826\) 18.4164 0.640789
\(827\) −56.0344 −1.94851 −0.974254 0.225452i \(-0.927614\pi\)
−0.974254 + 0.225452i \(0.927614\pi\)
\(828\) 0 0
\(829\) 8.20163 0.284854 0.142427 0.989805i \(-0.454509\pi\)
0.142427 + 0.989805i \(0.454509\pi\)
\(830\) −36.6869 −1.27342
\(831\) 0 0
\(832\) 17.9443 0.622106
\(833\) −13.2361 −0.458603
\(834\) 0 0
\(835\) −55.5755 −1.92327
\(836\) 4.14590 0.143389
\(837\) 0 0
\(838\) −4.14590 −0.143218
\(839\) −3.21478 −0.110987 −0.0554933 0.998459i \(-0.517673\pi\)
−0.0554933 + 0.998459i \(0.517673\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −3.18034 −0.109602
\(843\) 0 0
\(844\) 12.1459 0.418079
\(845\) 14.1115 0.485449
\(846\) 0 0
\(847\) 4.67376 0.160592
\(848\) −9.70820 −0.333381
\(849\) 0 0
\(850\) 33.6869 1.15545
\(851\) 28.1803 0.966010
\(852\) 0 0
\(853\) −45.0000 −1.54077 −0.770385 0.637579i \(-0.779936\pi\)
−0.770385 + 0.637579i \(0.779936\pi\)
\(854\) 5.85410 0.200323
\(855\) 0 0
\(856\) 25.1246 0.858742
\(857\) 29.6738 1.01364 0.506818 0.862053i \(-0.330822\pi\)
0.506818 + 0.862053i \(0.330822\pi\)
\(858\) 0 0
\(859\) 19.2918 0.658228 0.329114 0.944290i \(-0.393250\pi\)
0.329114 + 0.944290i \(0.393250\pi\)
\(860\) −4.87539 −0.166249
\(861\) 0 0
\(862\) 55.9787 1.90664
\(863\) 24.7426 0.842249 0.421125 0.907003i \(-0.361635\pi\)
0.421125 + 0.907003i \(0.361635\pi\)
\(864\) 0 0
\(865\) 20.2361 0.688047
\(866\) 20.4164 0.693778
\(867\) 0 0
\(868\) 1.50658 0.0511366
\(869\) 18.4164 0.624734
\(870\) 0 0
\(871\) −44.3607 −1.50310
\(872\) 37.1591 1.25836
\(873\) 0 0
\(874\) −9.70820 −0.328385
\(875\) −11.8328 −0.400022
\(876\) 0 0
\(877\) 6.61803 0.223475 0.111738 0.993738i \(-0.464358\pi\)
0.111738 + 0.993738i \(0.464358\pi\)
\(878\) −4.94427 −0.166861
\(879\) 0 0
\(880\) −50.1246 −1.68970
\(881\) 29.2705 0.986149 0.493074 0.869987i \(-0.335873\pi\)
0.493074 + 0.869987i \(0.335873\pi\)
\(882\) 0 0
\(883\) 39.6869 1.33557 0.667786 0.744354i \(-0.267242\pi\)
0.667786 + 0.744354i \(0.267242\pi\)
\(884\) 17.3262 0.582744
\(885\) 0 0
\(886\) 21.1803 0.711567
\(887\) −20.0689 −0.673847 −0.336924 0.941532i \(-0.609386\pi\)
−0.336924 + 0.941532i \(0.609386\pi\)
\(888\) 0 0
\(889\) −4.34752 −0.145811
\(890\) 40.2148 1.34800
\(891\) 0 0
\(892\) 11.3262 0.379230
\(893\) 12.9787 0.434316
\(894\) 0 0
\(895\) 45.6656 1.52643
\(896\) 30.4508 1.01729
\(897\) 0 0
\(898\) −22.8541 −0.762651
\(899\) 0 0
\(900\) 0 0
\(901\) 13.2361 0.440957
\(902\) 16.7082 0.556322
\(903\) 0 0
\(904\) −22.2361 −0.739561
\(905\) −34.0902 −1.13320
\(906\) 0 0
\(907\) 14.2361 0.472701 0.236350 0.971668i \(-0.424049\pi\)
0.236350 + 0.971668i \(0.424049\pi\)
\(908\) −9.20163 −0.305367
\(909\) 0 0
\(910\) 43.7426 1.45005
\(911\) −6.94427 −0.230074 −0.115037 0.993361i \(-0.536699\pi\)
−0.115037 + 0.993361i \(0.536699\pi\)
\(912\) 0 0
\(913\) −28.7426 −0.951243
\(914\) 8.56231 0.283216
\(915\) 0 0
\(916\) 9.70820 0.320768
\(917\) 2.96556 0.0979314
\(918\) 0 0
\(919\) −31.3050 −1.03266 −0.516328 0.856391i \(-0.672701\pi\)
−0.516328 + 0.856391i \(0.672701\pi\)
\(920\) 20.6525 0.680892
\(921\) 0 0
\(922\) −12.9098 −0.425163
\(923\) −6.47214 −0.213033
\(924\) 0 0
\(925\) −27.3951 −0.900746
\(926\) −4.38197 −0.144000
\(927\) 0 0
\(928\) 0 0
\(929\) −27.6525 −0.907248 −0.453624 0.891193i \(-0.649869\pi\)
−0.453624 + 0.891193i \(0.649869\pi\)
\(930\) 0 0
\(931\) −3.70820 −0.121531
\(932\) −6.65248 −0.217909
\(933\) 0 0
\(934\) 0.0901699 0.00295045
\(935\) 68.3394 2.23494
\(936\) 0 0
\(937\) −24.6525 −0.805361 −0.402681 0.915341i \(-0.631921\pi\)
−0.402681 + 0.915341i \(0.631921\pi\)
\(938\) −37.8885 −1.23710
\(939\) 0 0
\(940\) 12.3475 0.402732
\(941\) −0.888544 −0.0289657 −0.0144829 0.999895i \(-0.504610\pi\)
−0.0144829 + 0.999895i \(0.504610\pi\)
\(942\) 0 0
\(943\) −9.23607 −0.300768
\(944\) −24.7082 −0.804184
\(945\) 0 0
\(946\) −16.1803 −0.526068
\(947\) −13.9656 −0.453820 −0.226910 0.973916i \(-0.572862\pi\)
−0.226910 + 0.973916i \(0.572862\pi\)
\(948\) 0 0
\(949\) −1.23607 −0.0401245
\(950\) 9.43769 0.306199
\(951\) 0 0
\(952\) −33.0902 −1.07246
\(953\) 35.6312 1.15421 0.577104 0.816671i \(-0.304183\pi\)
0.577104 + 0.816671i \(0.304183\pi\)
\(954\) 0 0
\(955\) 34.3475 1.11146
\(956\) −9.11146 −0.294686
\(957\) 0 0
\(958\) −18.0902 −0.584467
\(959\) −30.9787 −1.00035
\(960\) 0 0
\(961\) −29.8115 −0.961662
\(962\) −59.6869 −1.92438
\(963\) 0 0
\(964\) 16.4721 0.530532
\(965\) 10.0689 0.324129
\(966\) 0 0
\(967\) −16.5623 −0.532608 −0.266304 0.963889i \(-0.585802\pi\)
−0.266304 + 0.963889i \(0.585802\pi\)
\(968\) −4.67376 −0.150220
\(969\) 0 0
\(970\) −76.4853 −2.45579
\(971\) −18.5066 −0.593904 −0.296952 0.954892i \(-0.595970\pi\)
−0.296952 + 0.954892i \(0.595970\pi\)
\(972\) 0 0
\(973\) 32.8885 1.05436
\(974\) 36.3050 1.16329
\(975\) 0 0
\(976\) −7.85410 −0.251404
\(977\) −6.21478 −0.198828 −0.0994142 0.995046i \(-0.531697\pi\)
−0.0994142 + 0.995046i \(0.531697\pi\)
\(978\) 0 0
\(979\) 31.5066 1.00695
\(980\) −3.52786 −0.112693
\(981\) 0 0
\(982\) −40.6525 −1.29727
\(983\) −6.94427 −0.221488 −0.110744 0.993849i \(-0.535323\pi\)
−0.110744 + 0.993849i \(0.535323\pi\)
\(984\) 0 0
\(985\) 56.2492 1.79225
\(986\) 0 0
\(987\) 0 0
\(988\) 4.85410 0.154430
\(989\) 8.94427 0.284411
\(990\) 0 0
\(991\) 38.6525 1.22784 0.613918 0.789370i \(-0.289592\pi\)
0.613918 + 0.789370i \(0.289592\pi\)
\(992\) −3.68692 −0.117060
\(993\) 0 0
\(994\) −5.52786 −0.175333
\(995\) 2.43769 0.0772801
\(996\) 0 0
\(997\) 28.0902 0.889625 0.444812 0.895624i \(-0.353270\pi\)
0.444812 + 0.895624i \(0.353270\pi\)
\(998\) −57.7426 −1.82781
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.l.1.2 2
3.2 odd 2 841.2.a.a.1.1 2
29.28 even 2 7569.2.a.d.1.1 2
87.2 even 28 841.2.e.j.236.1 24
87.5 odd 14 841.2.d.g.605.1 12
87.8 even 28 841.2.e.j.267.1 24
87.11 even 28 841.2.e.j.63.1 24
87.14 even 28 841.2.e.j.196.4 24
87.17 even 4 841.2.b.b.840.4 4
87.20 odd 14 841.2.d.i.574.1 12
87.23 odd 14 841.2.d.i.645.2 12
87.26 even 28 841.2.e.j.270.4 24
87.32 even 28 841.2.e.j.270.1 24
87.35 odd 14 841.2.d.g.645.1 12
87.38 odd 14 841.2.d.g.574.2 12
87.41 even 4 841.2.b.b.840.1 4
87.44 even 28 841.2.e.j.196.1 24
87.47 even 28 841.2.e.j.63.4 24
87.50 even 28 841.2.e.j.267.4 24
87.53 odd 14 841.2.d.i.605.2 12
87.56 even 28 841.2.e.j.236.4 24
87.62 odd 14 841.2.d.g.190.1 12
87.65 odd 14 841.2.d.i.571.2 12
87.68 even 28 841.2.e.j.651.1 24
87.71 odd 14 841.2.d.g.778.2 12
87.74 odd 14 841.2.d.i.778.1 12
87.77 even 28 841.2.e.j.651.4 24
87.80 odd 14 841.2.d.g.571.1 12
87.83 odd 14 841.2.d.i.190.2 12
87.86 odd 2 841.2.a.c.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.a.1.1 2 3.2 odd 2
841.2.a.c.1.2 yes 2 87.86 odd 2
841.2.b.b.840.1 4 87.41 even 4
841.2.b.b.840.4 4 87.17 even 4
841.2.d.g.190.1 12 87.62 odd 14
841.2.d.g.571.1 12 87.80 odd 14
841.2.d.g.574.2 12 87.38 odd 14
841.2.d.g.605.1 12 87.5 odd 14
841.2.d.g.645.1 12 87.35 odd 14
841.2.d.g.778.2 12 87.71 odd 14
841.2.d.i.190.2 12 87.83 odd 14
841.2.d.i.571.2 12 87.65 odd 14
841.2.d.i.574.1 12 87.20 odd 14
841.2.d.i.605.2 12 87.53 odd 14
841.2.d.i.645.2 12 87.23 odd 14
841.2.d.i.778.1 12 87.74 odd 14
841.2.e.j.63.1 24 87.11 even 28
841.2.e.j.63.4 24 87.47 even 28
841.2.e.j.196.1 24 87.44 even 28
841.2.e.j.196.4 24 87.14 even 28
841.2.e.j.236.1 24 87.2 even 28
841.2.e.j.236.4 24 87.56 even 28
841.2.e.j.267.1 24 87.8 even 28
841.2.e.j.267.4 24 87.50 even 28
841.2.e.j.270.1 24 87.32 even 28
841.2.e.j.270.4 24 87.26 even 28
841.2.e.j.651.1 24 87.68 even 28
841.2.e.j.651.4 24 87.77 even 28
7569.2.a.d.1.1 2 29.28 even 2
7569.2.a.l.1.2 2 1.1 even 1 trivial