Properties

Label 7569.2.a.d.1.2
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 841)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} -1.61803 q^{4} -3.85410 q^{5} -2.23607 q^{7} -2.23607 q^{8} +O(q^{10})\) \(q+0.618034 q^{2} -1.61803 q^{4} -3.85410 q^{5} -2.23607 q^{7} -2.23607 q^{8} -2.38197 q^{10} -1.38197 q^{11} -0.236068 q^{13} -1.38197 q^{14} +1.85410 q^{16} -4.38197 q^{17} +4.85410 q^{19} +6.23607 q^{20} -0.854102 q^{22} +1.23607 q^{23} +9.85410 q^{25} -0.145898 q^{26} +3.61803 q^{28} +10.0902 q^{31} +5.61803 q^{32} -2.70820 q^{34} +8.61803 q^{35} -4.70820 q^{37} +3.00000 q^{38} +8.61803 q^{40} +3.85410 q^{41} +7.23607 q^{43} +2.23607 q^{44} +0.763932 q^{46} -7.00000 q^{47} -2.00000 q^{49} +6.09017 q^{50} +0.381966 q^{52} +2.00000 q^{53} +5.32624 q^{55} +5.00000 q^{56} -6.09017 q^{59} +0.618034 q^{61} +6.23607 q^{62} -0.236068 q^{64} +0.909830 q^{65} -1.52786 q^{67} +7.09017 q^{68} +5.32624 q^{70} -10.4721 q^{71} +13.7082 q^{73} -2.90983 q^{74} -7.85410 q^{76} +3.09017 q^{77} +6.09017 q^{79} -7.14590 q^{80} +2.38197 q^{82} +9.94427 q^{83} +16.8885 q^{85} +4.47214 q^{86} +3.09017 q^{88} +4.70820 q^{89} +0.527864 q^{91} -2.00000 q^{92} -4.32624 q^{94} -18.7082 q^{95} -3.56231 q^{97} -1.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - q^{4} - q^{5} - 7 q^{10} - 5 q^{11} + 4 q^{13} - 5 q^{14} - 3 q^{16} - 11 q^{17} + 3 q^{19} + 8 q^{20} + 5 q^{22} - 2 q^{23} + 13 q^{25} - 7 q^{26} + 5 q^{28} + 9 q^{31} + 9 q^{32} + 8 q^{34} + 15 q^{35} + 4 q^{37} + 6 q^{38} + 15 q^{40} + q^{41} + 10 q^{43} + 6 q^{46} - 14 q^{47} - 4 q^{49} + q^{50} + 3 q^{52} + 4 q^{53} - 5 q^{55} + 10 q^{56} - q^{59} - q^{61} + 8 q^{62} + 4 q^{64} + 13 q^{65} - 12 q^{67} + 3 q^{68} - 5 q^{70} - 12 q^{71} + 14 q^{73} - 17 q^{74} - 9 q^{76} - 5 q^{77} + q^{79} - 21 q^{80} + 7 q^{82} + 2 q^{83} - 2 q^{85} - 5 q^{88} - 4 q^{89} + 10 q^{91} - 4 q^{92} + 7 q^{94} - 24 q^{95} + 13 q^{97} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) 0 0
\(4\) −1.61803 −0.809017
\(5\) −3.85410 −1.72361 −0.861803 0.507242i \(-0.830665\pi\)
−0.861803 + 0.507242i \(0.830665\pi\)
\(6\) 0 0
\(7\) −2.23607 −0.845154 −0.422577 0.906327i \(-0.638874\pi\)
−0.422577 + 0.906327i \(0.638874\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) −2.38197 −0.753244
\(11\) −1.38197 −0.416678 −0.208339 0.978057i \(-0.566806\pi\)
−0.208339 + 0.978057i \(0.566806\pi\)
\(12\) 0 0
\(13\) −0.236068 −0.0654735 −0.0327367 0.999464i \(-0.510422\pi\)
−0.0327367 + 0.999464i \(0.510422\pi\)
\(14\) −1.38197 −0.369346
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) −4.38197 −1.06278 −0.531391 0.847126i \(-0.678331\pi\)
−0.531391 + 0.847126i \(0.678331\pi\)
\(18\) 0 0
\(19\) 4.85410 1.11361 0.556804 0.830644i \(-0.312028\pi\)
0.556804 + 0.830644i \(0.312028\pi\)
\(20\) 6.23607 1.39443
\(21\) 0 0
\(22\) −0.854102 −0.182095
\(23\) 1.23607 0.257738 0.128869 0.991662i \(-0.458865\pi\)
0.128869 + 0.991662i \(0.458865\pi\)
\(24\) 0 0
\(25\) 9.85410 1.97082
\(26\) −0.145898 −0.0286130
\(27\) 0 0
\(28\) 3.61803 0.683744
\(29\) 0 0
\(30\) 0 0
\(31\) 10.0902 1.81225 0.906124 0.423012i \(-0.139027\pi\)
0.906124 + 0.423012i \(0.139027\pi\)
\(32\) 5.61803 0.993137
\(33\) 0 0
\(34\) −2.70820 −0.464453
\(35\) 8.61803 1.45671
\(36\) 0 0
\(37\) −4.70820 −0.774024 −0.387012 0.922075i \(-0.626493\pi\)
−0.387012 + 0.922075i \(0.626493\pi\)
\(38\) 3.00000 0.486664
\(39\) 0 0
\(40\) 8.61803 1.36263
\(41\) 3.85410 0.601910 0.300955 0.953638i \(-0.402695\pi\)
0.300955 + 0.953638i \(0.402695\pi\)
\(42\) 0 0
\(43\) 7.23607 1.10349 0.551745 0.834013i \(-0.313962\pi\)
0.551745 + 0.834013i \(0.313962\pi\)
\(44\) 2.23607 0.337100
\(45\) 0 0
\(46\) 0.763932 0.112636
\(47\) −7.00000 −1.02105 −0.510527 0.859861i \(-0.670550\pi\)
−0.510527 + 0.859861i \(0.670550\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 6.09017 0.861280
\(51\) 0 0
\(52\) 0.381966 0.0529692
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 5.32624 0.718190
\(56\) 5.00000 0.668153
\(57\) 0 0
\(58\) 0 0
\(59\) −6.09017 −0.792873 −0.396436 0.918062i \(-0.629753\pi\)
−0.396436 + 0.918062i \(0.629753\pi\)
\(60\) 0 0
\(61\) 0.618034 0.0791311 0.0395656 0.999217i \(-0.487403\pi\)
0.0395656 + 0.999217i \(0.487403\pi\)
\(62\) 6.23607 0.791981
\(63\) 0 0
\(64\) −0.236068 −0.0295085
\(65\) 0.909830 0.112851
\(66\) 0 0
\(67\) −1.52786 −0.186658 −0.0933292 0.995635i \(-0.529751\pi\)
−0.0933292 + 0.995635i \(0.529751\pi\)
\(68\) 7.09017 0.859809
\(69\) 0 0
\(70\) 5.32624 0.636607
\(71\) −10.4721 −1.24281 −0.621407 0.783488i \(-0.713439\pi\)
−0.621407 + 0.783488i \(0.713439\pi\)
\(72\) 0 0
\(73\) 13.7082 1.60442 0.802212 0.597039i \(-0.203656\pi\)
0.802212 + 0.597039i \(0.203656\pi\)
\(74\) −2.90983 −0.338261
\(75\) 0 0
\(76\) −7.85410 −0.900927
\(77\) 3.09017 0.352158
\(78\) 0 0
\(79\) 6.09017 0.685198 0.342599 0.939482i \(-0.388693\pi\)
0.342599 + 0.939482i \(0.388693\pi\)
\(80\) −7.14590 −0.798936
\(81\) 0 0
\(82\) 2.38197 0.263044
\(83\) 9.94427 1.09153 0.545763 0.837940i \(-0.316240\pi\)
0.545763 + 0.837940i \(0.316240\pi\)
\(84\) 0 0
\(85\) 16.8885 1.83182
\(86\) 4.47214 0.482243
\(87\) 0 0
\(88\) 3.09017 0.329413
\(89\) 4.70820 0.499069 0.249534 0.968366i \(-0.419722\pi\)
0.249534 + 0.968366i \(0.419722\pi\)
\(90\) 0 0
\(91\) 0.527864 0.0553352
\(92\) −2.00000 −0.208514
\(93\) 0 0
\(94\) −4.32624 −0.446217
\(95\) −18.7082 −1.91942
\(96\) 0 0
\(97\) −3.56231 −0.361697 −0.180849 0.983511i \(-0.557884\pi\)
−0.180849 + 0.983511i \(0.557884\pi\)
\(98\) −1.23607 −0.124862
\(99\) 0 0
\(100\) −15.9443 −1.59443
\(101\) −0.618034 −0.0614967 −0.0307483 0.999527i \(-0.509789\pi\)
−0.0307483 + 0.999527i \(0.509789\pi\)
\(102\) 0 0
\(103\) 9.18034 0.904566 0.452283 0.891875i \(-0.350610\pi\)
0.452283 + 0.891875i \(0.350610\pi\)
\(104\) 0.527864 0.0517613
\(105\) 0 0
\(106\) 1.23607 0.120058
\(107\) −6.76393 −0.653894 −0.326947 0.945043i \(-0.606020\pi\)
−0.326947 + 0.945043i \(0.606020\pi\)
\(108\) 0 0
\(109\) −14.3820 −1.37754 −0.688771 0.724979i \(-0.741850\pi\)
−0.688771 + 0.724979i \(0.741850\pi\)
\(110\) 3.29180 0.313860
\(111\) 0 0
\(112\) −4.14590 −0.391751
\(113\) 7.94427 0.747334 0.373667 0.927563i \(-0.378100\pi\)
0.373667 + 0.927563i \(0.378100\pi\)
\(114\) 0 0
\(115\) −4.76393 −0.444239
\(116\) 0 0
\(117\) 0 0
\(118\) −3.76393 −0.346498
\(119\) 9.79837 0.898215
\(120\) 0 0
\(121\) −9.09017 −0.826379
\(122\) 0.381966 0.0345816
\(123\) 0 0
\(124\) −16.3262 −1.46614
\(125\) −18.7082 −1.67331
\(126\) 0 0
\(127\) −15.9443 −1.41483 −0.707413 0.706801i \(-0.750138\pi\)
−0.707413 + 0.706801i \(0.750138\pi\)
\(128\) −11.3820 −1.00603
\(129\) 0 0
\(130\) 0.562306 0.0493175
\(131\) 14.3262 1.25169 0.625845 0.779948i \(-0.284754\pi\)
0.625845 + 0.779948i \(0.284754\pi\)
\(132\) 0 0
\(133\) −10.8541 −0.941170
\(134\) −0.944272 −0.0815727
\(135\) 0 0
\(136\) 9.79837 0.840204
\(137\) 7.14590 0.610515 0.305258 0.952270i \(-0.401257\pi\)
0.305258 + 0.952270i \(0.401257\pi\)
\(138\) 0 0
\(139\) 1.29180 0.109569 0.0547844 0.998498i \(-0.482553\pi\)
0.0547844 + 0.998498i \(0.482553\pi\)
\(140\) −13.9443 −1.17851
\(141\) 0 0
\(142\) −6.47214 −0.543130
\(143\) 0.326238 0.0272814
\(144\) 0 0
\(145\) 0 0
\(146\) 8.47214 0.701159
\(147\) 0 0
\(148\) 7.61803 0.626199
\(149\) −9.61803 −0.787940 −0.393970 0.919123i \(-0.628899\pi\)
−0.393970 + 0.919123i \(0.628899\pi\)
\(150\) 0 0
\(151\) 2.67376 0.217588 0.108794 0.994064i \(-0.465301\pi\)
0.108794 + 0.994064i \(0.465301\pi\)
\(152\) −10.8541 −0.880384
\(153\) 0 0
\(154\) 1.90983 0.153898
\(155\) −38.8885 −3.12360
\(156\) 0 0
\(157\) −14.5623 −1.16220 −0.581099 0.813833i \(-0.697377\pi\)
−0.581099 + 0.813833i \(0.697377\pi\)
\(158\) 3.76393 0.299442
\(159\) 0 0
\(160\) −21.6525 −1.71178
\(161\) −2.76393 −0.217828
\(162\) 0 0
\(163\) 6.03444 0.472654 0.236327 0.971674i \(-0.424056\pi\)
0.236327 + 0.971674i \(0.424056\pi\)
\(164\) −6.23607 −0.486955
\(165\) 0 0
\(166\) 6.14590 0.477014
\(167\) −10.5279 −0.814671 −0.407335 0.913279i \(-0.633542\pi\)
−0.407335 + 0.913279i \(0.633542\pi\)
\(168\) 0 0
\(169\) −12.9443 −0.995713
\(170\) 10.4377 0.800535
\(171\) 0 0
\(172\) −11.7082 −0.892742
\(173\) −4.09017 −0.310970 −0.155485 0.987838i \(-0.549694\pi\)
−0.155485 + 0.987838i \(0.549694\pi\)
\(174\) 0 0
\(175\) −22.0344 −1.66565
\(176\) −2.56231 −0.193141
\(177\) 0 0
\(178\) 2.90983 0.218101
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) 5.94427 0.441834 0.220917 0.975293i \(-0.429095\pi\)
0.220917 + 0.975293i \(0.429095\pi\)
\(182\) 0.326238 0.0241824
\(183\) 0 0
\(184\) −2.76393 −0.203760
\(185\) 18.1459 1.33411
\(186\) 0 0
\(187\) 6.05573 0.442839
\(188\) 11.3262 0.826051
\(189\) 0 0
\(190\) −11.5623 −0.838818
\(191\) 17.0344 1.23257 0.616284 0.787524i \(-0.288637\pi\)
0.616284 + 0.787524i \(0.288637\pi\)
\(192\) 0 0
\(193\) −12.4721 −0.897764 −0.448882 0.893591i \(-0.648178\pi\)
−0.448882 + 0.893591i \(0.648178\pi\)
\(194\) −2.20163 −0.158068
\(195\) 0 0
\(196\) 3.23607 0.231148
\(197\) 6.29180 0.448272 0.224136 0.974558i \(-0.428044\pi\)
0.224136 + 0.974558i \(0.428044\pi\)
\(198\) 0 0
\(199\) −5.85410 −0.414986 −0.207493 0.978236i \(-0.566530\pi\)
−0.207493 + 0.978236i \(0.566530\pi\)
\(200\) −22.0344 −1.55807
\(201\) 0 0
\(202\) −0.381966 −0.0268750
\(203\) 0 0
\(204\) 0 0
\(205\) −14.8541 −1.03746
\(206\) 5.67376 0.395310
\(207\) 0 0
\(208\) −0.437694 −0.0303486
\(209\) −6.70820 −0.464016
\(210\) 0 0
\(211\) 11.6525 0.802190 0.401095 0.916037i \(-0.368630\pi\)
0.401095 + 0.916037i \(0.368630\pi\)
\(212\) −3.23607 −0.222254
\(213\) 0 0
\(214\) −4.18034 −0.285762
\(215\) −27.8885 −1.90198
\(216\) 0 0
\(217\) −22.5623 −1.53163
\(218\) −8.88854 −0.602008
\(219\) 0 0
\(220\) −8.61803 −0.581028
\(221\) 1.03444 0.0695841
\(222\) 0 0
\(223\) 2.67376 0.179048 0.0895242 0.995985i \(-0.471465\pi\)
0.0895242 + 0.995985i \(0.471465\pi\)
\(224\) −12.5623 −0.839354
\(225\) 0 0
\(226\) 4.90983 0.326597
\(227\) 20.8885 1.38642 0.693211 0.720735i \(-0.256196\pi\)
0.693211 + 0.720735i \(0.256196\pi\)
\(228\) 0 0
\(229\) −2.29180 −0.151446 −0.0757231 0.997129i \(-0.524126\pi\)
−0.0757231 + 0.997129i \(0.524126\pi\)
\(230\) −2.94427 −0.194140
\(231\) 0 0
\(232\) 0 0
\(233\) −15.2361 −0.998148 −0.499074 0.866559i \(-0.666326\pi\)
−0.499074 + 0.866559i \(0.666326\pi\)
\(234\) 0 0
\(235\) 26.9787 1.75990
\(236\) 9.85410 0.641447
\(237\) 0 0
\(238\) 6.05573 0.392535
\(239\) 27.7426 1.79452 0.897261 0.441500i \(-0.145553\pi\)
0.897261 + 0.441500i \(0.145553\pi\)
\(240\) 0 0
\(241\) −4.65248 −0.299692 −0.149846 0.988709i \(-0.547878\pi\)
−0.149846 + 0.988709i \(0.547878\pi\)
\(242\) −5.61803 −0.361141
\(243\) 0 0
\(244\) −1.00000 −0.0640184
\(245\) 7.70820 0.492459
\(246\) 0 0
\(247\) −1.14590 −0.0729117
\(248\) −22.5623 −1.43271
\(249\) 0 0
\(250\) −11.5623 −0.731264
\(251\) −19.6525 −1.24045 −0.620227 0.784423i \(-0.712959\pi\)
−0.620227 + 0.784423i \(0.712959\pi\)
\(252\) 0 0
\(253\) −1.70820 −0.107394
\(254\) −9.85410 −0.618301
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) 23.1803 1.44595 0.722975 0.690874i \(-0.242774\pi\)
0.722975 + 0.690874i \(0.242774\pi\)
\(258\) 0 0
\(259\) 10.5279 0.654170
\(260\) −1.47214 −0.0912980
\(261\) 0 0
\(262\) 8.85410 0.547008
\(263\) −16.7082 −1.03027 −0.515136 0.857108i \(-0.672259\pi\)
−0.515136 + 0.857108i \(0.672259\pi\)
\(264\) 0 0
\(265\) −7.70820 −0.473511
\(266\) −6.70820 −0.411306
\(267\) 0 0
\(268\) 2.47214 0.151010
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −10.1803 −0.618412 −0.309206 0.950995i \(-0.600063\pi\)
−0.309206 + 0.950995i \(0.600063\pi\)
\(272\) −8.12461 −0.492627
\(273\) 0 0
\(274\) 4.41641 0.266805
\(275\) −13.6180 −0.821198
\(276\) 0 0
\(277\) −21.3820 −1.28472 −0.642359 0.766404i \(-0.722044\pi\)
−0.642359 + 0.766404i \(0.722044\pi\)
\(278\) 0.798374 0.0478833
\(279\) 0 0
\(280\) −19.2705 −1.15163
\(281\) −23.1246 −1.37950 −0.689749 0.724048i \(-0.742279\pi\)
−0.689749 + 0.724048i \(0.742279\pi\)
\(282\) 0 0
\(283\) −5.23607 −0.311252 −0.155626 0.987816i \(-0.549739\pi\)
−0.155626 + 0.987816i \(0.549739\pi\)
\(284\) 16.9443 1.00546
\(285\) 0 0
\(286\) 0.201626 0.0119224
\(287\) −8.61803 −0.508706
\(288\) 0 0
\(289\) 2.20163 0.129507
\(290\) 0 0
\(291\) 0 0
\(292\) −22.1803 −1.29801
\(293\) 8.52786 0.498203 0.249102 0.968477i \(-0.419865\pi\)
0.249102 + 0.968477i \(0.419865\pi\)
\(294\) 0 0
\(295\) 23.4721 1.36660
\(296\) 10.5279 0.611920
\(297\) 0 0
\(298\) −5.94427 −0.344342
\(299\) −0.291796 −0.0168750
\(300\) 0 0
\(301\) −16.1803 −0.932619
\(302\) 1.65248 0.0950893
\(303\) 0 0
\(304\) 9.00000 0.516185
\(305\) −2.38197 −0.136391
\(306\) 0 0
\(307\) 19.1803 1.09468 0.547340 0.836910i \(-0.315640\pi\)
0.547340 + 0.836910i \(0.315640\pi\)
\(308\) −5.00000 −0.284901
\(309\) 0 0
\(310\) −24.0344 −1.36506
\(311\) 2.09017 0.118523 0.0592613 0.998243i \(-0.481125\pi\)
0.0592613 + 0.998243i \(0.481125\pi\)
\(312\) 0 0
\(313\) −12.9098 −0.729707 −0.364853 0.931065i \(-0.618881\pi\)
−0.364853 + 0.931065i \(0.618881\pi\)
\(314\) −9.00000 −0.507899
\(315\) 0 0
\(316\) −9.85410 −0.554337
\(317\) 27.7082 1.55625 0.778124 0.628111i \(-0.216172\pi\)
0.778124 + 0.628111i \(0.216172\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.909830 0.0508610
\(321\) 0 0
\(322\) −1.70820 −0.0951945
\(323\) −21.2705 −1.18352
\(324\) 0 0
\(325\) −2.32624 −0.129036
\(326\) 3.72949 0.206557
\(327\) 0 0
\(328\) −8.61803 −0.475851
\(329\) 15.6525 0.862949
\(330\) 0 0
\(331\) −21.1803 −1.16418 −0.582088 0.813126i \(-0.697764\pi\)
−0.582088 + 0.813126i \(0.697764\pi\)
\(332\) −16.0902 −0.883063
\(333\) 0 0
\(334\) −6.50658 −0.356024
\(335\) 5.88854 0.321726
\(336\) 0 0
\(337\) 34.0689 1.85585 0.927925 0.372767i \(-0.121591\pi\)
0.927925 + 0.372767i \(0.121591\pi\)
\(338\) −8.00000 −0.435143
\(339\) 0 0
\(340\) −27.3262 −1.48197
\(341\) −13.9443 −0.755125
\(342\) 0 0
\(343\) 20.1246 1.08663
\(344\) −16.1803 −0.872385
\(345\) 0 0
\(346\) −2.52786 −0.135899
\(347\) 32.1246 1.72454 0.862270 0.506449i \(-0.169042\pi\)
0.862270 + 0.506449i \(0.169042\pi\)
\(348\) 0 0
\(349\) 4.52786 0.242371 0.121186 0.992630i \(-0.461330\pi\)
0.121186 + 0.992630i \(0.461330\pi\)
\(350\) −13.6180 −0.727915
\(351\) 0 0
\(352\) −7.76393 −0.413819
\(353\) 19.1246 1.01790 0.508950 0.860796i \(-0.330034\pi\)
0.508950 + 0.860796i \(0.330034\pi\)
\(354\) 0 0
\(355\) 40.3607 2.14212
\(356\) −7.61803 −0.403755
\(357\) 0 0
\(358\) 9.88854 0.522626
\(359\) −23.7639 −1.25421 −0.627106 0.778934i \(-0.715761\pi\)
−0.627106 + 0.778934i \(0.715761\pi\)
\(360\) 0 0
\(361\) 4.56231 0.240121
\(362\) 3.67376 0.193089
\(363\) 0 0
\(364\) −0.854102 −0.0447671
\(365\) −52.8328 −2.76540
\(366\) 0 0
\(367\) −27.2705 −1.42351 −0.711755 0.702428i \(-0.752099\pi\)
−0.711755 + 0.702428i \(0.752099\pi\)
\(368\) 2.29180 0.119468
\(369\) 0 0
\(370\) 11.2148 0.583029
\(371\) −4.47214 −0.232182
\(372\) 0 0
\(373\) 20.6180 1.06756 0.533781 0.845623i \(-0.320771\pi\)
0.533781 + 0.845623i \(0.320771\pi\)
\(374\) 3.74265 0.193528
\(375\) 0 0
\(376\) 15.6525 0.807215
\(377\) 0 0
\(378\) 0 0
\(379\) 24.2918 1.24779 0.623893 0.781510i \(-0.285550\pi\)
0.623893 + 0.781510i \(0.285550\pi\)
\(380\) 30.2705 1.55284
\(381\) 0 0
\(382\) 10.5279 0.538652
\(383\) 28.8541 1.47438 0.737188 0.675688i \(-0.236153\pi\)
0.737188 + 0.675688i \(0.236153\pi\)
\(384\) 0 0
\(385\) −11.9098 −0.606981
\(386\) −7.70820 −0.392337
\(387\) 0 0
\(388\) 5.76393 0.292619
\(389\) −19.1246 −0.969656 −0.484828 0.874609i \(-0.661118\pi\)
−0.484828 + 0.874609i \(0.661118\pi\)
\(390\) 0 0
\(391\) −5.41641 −0.273920
\(392\) 4.47214 0.225877
\(393\) 0 0
\(394\) 3.88854 0.195902
\(395\) −23.4721 −1.18101
\(396\) 0 0
\(397\) −14.0557 −0.705437 −0.352718 0.935730i \(-0.614743\pi\)
−0.352718 + 0.935730i \(0.614743\pi\)
\(398\) −3.61803 −0.181356
\(399\) 0 0
\(400\) 18.2705 0.913525
\(401\) −25.0689 −1.25188 −0.625940 0.779871i \(-0.715285\pi\)
−0.625940 + 0.779871i \(0.715285\pi\)
\(402\) 0 0
\(403\) −2.38197 −0.118654
\(404\) 1.00000 0.0497519
\(405\) 0 0
\(406\) 0 0
\(407\) 6.50658 0.322519
\(408\) 0 0
\(409\) −27.4164 −1.35565 −0.677827 0.735221i \(-0.737078\pi\)
−0.677827 + 0.735221i \(0.737078\pi\)
\(410\) −9.18034 −0.453385
\(411\) 0 0
\(412\) −14.8541 −0.731809
\(413\) 13.6180 0.670100
\(414\) 0 0
\(415\) −38.3262 −1.88136
\(416\) −1.32624 −0.0650242
\(417\) 0 0
\(418\) −4.14590 −0.202783
\(419\) 17.5623 0.857975 0.428987 0.903310i \(-0.358870\pi\)
0.428987 + 0.903310i \(0.358870\pi\)
\(420\) 0 0
\(421\) 31.0344 1.51253 0.756263 0.654268i \(-0.227023\pi\)
0.756263 + 0.654268i \(0.227023\pi\)
\(422\) 7.20163 0.350570
\(423\) 0 0
\(424\) −4.47214 −0.217186
\(425\) −43.1803 −2.09455
\(426\) 0 0
\(427\) −1.38197 −0.0668780
\(428\) 10.9443 0.529011
\(429\) 0 0
\(430\) −17.2361 −0.831197
\(431\) −14.5967 −0.703101 −0.351550 0.936169i \(-0.614345\pi\)
−0.351550 + 0.936169i \(0.614345\pi\)
\(432\) 0 0
\(433\) −10.3820 −0.498925 −0.249463 0.968384i \(-0.580254\pi\)
−0.249463 + 0.968384i \(0.580254\pi\)
\(434\) −13.9443 −0.669346
\(435\) 0 0
\(436\) 23.2705 1.11446
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) −20.9443 −0.999616 −0.499808 0.866136i \(-0.666596\pi\)
−0.499808 + 0.866136i \(0.666596\pi\)
\(440\) −11.9098 −0.567779
\(441\) 0 0
\(442\) 0.639320 0.0304094
\(443\) −1.90983 −0.0907388 −0.0453694 0.998970i \(-0.514446\pi\)
−0.0453694 + 0.998970i \(0.514446\pi\)
\(444\) 0 0
\(445\) −18.1459 −0.860198
\(446\) 1.65248 0.0782470
\(447\) 0 0
\(448\) 0.527864 0.0249392
\(449\) −26.1246 −1.23290 −0.616448 0.787395i \(-0.711429\pi\)
−0.616448 + 0.787395i \(0.711429\pi\)
\(450\) 0 0
\(451\) −5.32624 −0.250803
\(452\) −12.8541 −0.604606
\(453\) 0 0
\(454\) 12.9098 0.605888
\(455\) −2.03444 −0.0953761
\(456\) 0 0
\(457\) 18.7082 0.875133 0.437566 0.899186i \(-0.355840\pi\)
0.437566 + 0.899186i \(0.355840\pi\)
\(458\) −1.41641 −0.0661844
\(459\) 0 0
\(460\) 7.70820 0.359397
\(461\) −38.9787 −1.81542 −0.907710 0.419598i \(-0.862171\pi\)
−0.907710 + 0.419598i \(0.862171\pi\)
\(462\) 0 0
\(463\) 10.7082 0.497652 0.248826 0.968548i \(-0.419955\pi\)
0.248826 + 0.968548i \(0.419955\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −9.41641 −0.436207
\(467\) −17.9443 −0.830362 −0.415181 0.909739i \(-0.636282\pi\)
−0.415181 + 0.909739i \(0.636282\pi\)
\(468\) 0 0
\(469\) 3.41641 0.157755
\(470\) 16.6738 0.769103
\(471\) 0 0
\(472\) 13.6180 0.626821
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) 47.8328 2.19472
\(476\) −15.8541 −0.726672
\(477\) 0 0
\(478\) 17.1459 0.784235
\(479\) −11.1803 −0.510843 −0.255421 0.966830i \(-0.582214\pi\)
−0.255421 + 0.966830i \(0.582214\pi\)
\(480\) 0 0
\(481\) 1.11146 0.0506780
\(482\) −2.87539 −0.130970
\(483\) 0 0
\(484\) 14.7082 0.668555
\(485\) 13.7295 0.623424
\(486\) 0 0
\(487\) 42.5623 1.92868 0.964341 0.264663i \(-0.0852606\pi\)
0.964341 + 0.264663i \(0.0852606\pi\)
\(488\) −1.38197 −0.0625587
\(489\) 0 0
\(490\) 4.76393 0.215213
\(491\) −15.1246 −0.682564 −0.341282 0.939961i \(-0.610861\pi\)
−0.341282 + 0.939961i \(0.610861\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.708204 −0.0318636
\(495\) 0 0
\(496\) 18.7082 0.840023
\(497\) 23.4164 1.05037
\(498\) 0 0
\(499\) 24.6869 1.10514 0.552569 0.833467i \(-0.313648\pi\)
0.552569 + 0.833467i \(0.313648\pi\)
\(500\) 30.2705 1.35374
\(501\) 0 0
\(502\) −12.1459 −0.542098
\(503\) 14.2705 0.636291 0.318145 0.948042i \(-0.396940\pi\)
0.318145 + 0.948042i \(0.396940\pi\)
\(504\) 0 0
\(505\) 2.38197 0.105996
\(506\) −1.05573 −0.0469328
\(507\) 0 0
\(508\) 25.7984 1.14462
\(509\) −31.5623 −1.39897 −0.699487 0.714645i \(-0.746588\pi\)
−0.699487 + 0.714645i \(0.746588\pi\)
\(510\) 0 0
\(511\) −30.6525 −1.35599
\(512\) 18.7082 0.826794
\(513\) 0 0
\(514\) 14.3262 0.631903
\(515\) −35.3820 −1.55912
\(516\) 0 0
\(517\) 9.67376 0.425452
\(518\) 6.50658 0.285883
\(519\) 0 0
\(520\) −2.03444 −0.0892162
\(521\) −4.09017 −0.179194 −0.0895968 0.995978i \(-0.528558\pi\)
−0.0895968 + 0.995978i \(0.528558\pi\)
\(522\) 0 0
\(523\) −20.3820 −0.891241 −0.445621 0.895222i \(-0.647017\pi\)
−0.445621 + 0.895222i \(0.647017\pi\)
\(524\) −23.1803 −1.01264
\(525\) 0 0
\(526\) −10.3262 −0.450245
\(527\) −44.2148 −1.92603
\(528\) 0 0
\(529\) −21.4721 −0.933571
\(530\) −4.76393 −0.206932
\(531\) 0 0
\(532\) 17.5623 0.761423
\(533\) −0.909830 −0.0394091
\(534\) 0 0
\(535\) 26.0689 1.12706
\(536\) 3.41641 0.147566
\(537\) 0 0
\(538\) −3.70820 −0.159872
\(539\) 2.76393 0.119051
\(540\) 0 0
\(541\) 14.5967 0.627563 0.313782 0.949495i \(-0.398404\pi\)
0.313782 + 0.949495i \(0.398404\pi\)
\(542\) −6.29180 −0.270256
\(543\) 0 0
\(544\) −24.6180 −1.05549
\(545\) 55.4296 2.37434
\(546\) 0 0
\(547\) 7.38197 0.315630 0.157815 0.987469i \(-0.449555\pi\)
0.157815 + 0.987469i \(0.449555\pi\)
\(548\) −11.5623 −0.493917
\(549\) 0 0
\(550\) −8.41641 −0.358877
\(551\) 0 0
\(552\) 0 0
\(553\) −13.6180 −0.579098
\(554\) −13.2148 −0.561442
\(555\) 0 0
\(556\) −2.09017 −0.0886430
\(557\) 5.50658 0.233321 0.116661 0.993172i \(-0.462781\pi\)
0.116661 + 0.993172i \(0.462781\pi\)
\(558\) 0 0
\(559\) −1.70820 −0.0722493
\(560\) 15.9787 0.675224
\(561\) 0 0
\(562\) −14.2918 −0.602863
\(563\) 28.3951 1.19671 0.598356 0.801230i \(-0.295821\pi\)
0.598356 + 0.801230i \(0.295821\pi\)
\(564\) 0 0
\(565\) −30.6180 −1.28811
\(566\) −3.23607 −0.136022
\(567\) 0 0
\(568\) 23.4164 0.982531
\(569\) −1.94427 −0.0815081 −0.0407541 0.999169i \(-0.512976\pi\)
−0.0407541 + 0.999169i \(0.512976\pi\)
\(570\) 0 0
\(571\) −34.5066 −1.44406 −0.722028 0.691864i \(-0.756790\pi\)
−0.722028 + 0.691864i \(0.756790\pi\)
\(572\) −0.527864 −0.0220711
\(573\) 0 0
\(574\) −5.32624 −0.222313
\(575\) 12.1803 0.507955
\(576\) 0 0
\(577\) 2.76393 0.115064 0.0575320 0.998344i \(-0.481677\pi\)
0.0575320 + 0.998344i \(0.481677\pi\)
\(578\) 1.36068 0.0565968
\(579\) 0 0
\(580\) 0 0
\(581\) −22.2361 −0.922508
\(582\) 0 0
\(583\) −2.76393 −0.114470
\(584\) −30.6525 −1.26841
\(585\) 0 0
\(586\) 5.27051 0.217723
\(587\) −46.6180 −1.92413 −0.962066 0.272816i \(-0.912045\pi\)
−0.962066 + 0.272816i \(0.912045\pi\)
\(588\) 0 0
\(589\) 48.9787 2.01813
\(590\) 14.5066 0.597226
\(591\) 0 0
\(592\) −8.72949 −0.358780
\(593\) 14.4377 0.592885 0.296443 0.955051i \(-0.404200\pi\)
0.296443 + 0.955051i \(0.404200\pi\)
\(594\) 0 0
\(595\) −37.7639 −1.54817
\(596\) 15.5623 0.637457
\(597\) 0 0
\(598\) −0.180340 −0.00737465
\(599\) 13.0689 0.533980 0.266990 0.963699i \(-0.413971\pi\)
0.266990 + 0.963699i \(0.413971\pi\)
\(600\) 0 0
\(601\) −29.1591 −1.18942 −0.594711 0.803939i \(-0.702734\pi\)
−0.594711 + 0.803939i \(0.702734\pi\)
\(602\) −10.0000 −0.407570
\(603\) 0 0
\(604\) −4.32624 −0.176032
\(605\) 35.0344 1.42435
\(606\) 0 0
\(607\) −10.9787 −0.445612 −0.222806 0.974863i \(-0.571522\pi\)
−0.222806 + 0.974863i \(0.571522\pi\)
\(608\) 27.2705 1.10597
\(609\) 0 0
\(610\) −1.47214 −0.0596050
\(611\) 1.65248 0.0668520
\(612\) 0 0
\(613\) 27.5410 1.11237 0.556186 0.831058i \(-0.312264\pi\)
0.556186 + 0.831058i \(0.312264\pi\)
\(614\) 11.8541 0.478393
\(615\) 0 0
\(616\) −6.90983 −0.278405
\(617\) −14.1803 −0.570879 −0.285439 0.958397i \(-0.592140\pi\)
−0.285439 + 0.958397i \(0.592140\pi\)
\(618\) 0 0
\(619\) −7.05573 −0.283594 −0.141797 0.989896i \(-0.545288\pi\)
−0.141797 + 0.989896i \(0.545288\pi\)
\(620\) 62.9230 2.52705
\(621\) 0 0
\(622\) 1.29180 0.0517963
\(623\) −10.5279 −0.421790
\(624\) 0 0
\(625\) 22.8328 0.913313
\(626\) −7.97871 −0.318894
\(627\) 0 0
\(628\) 23.5623 0.940238
\(629\) 20.6312 0.822619
\(630\) 0 0
\(631\) −28.2148 −1.12321 −0.561606 0.827405i \(-0.689816\pi\)
−0.561606 + 0.827405i \(0.689816\pi\)
\(632\) −13.6180 −0.541696
\(633\) 0 0
\(634\) 17.1246 0.680105
\(635\) 61.4508 2.43860
\(636\) 0 0
\(637\) 0.472136 0.0187067
\(638\) 0 0
\(639\) 0 0
\(640\) 43.8673 1.73401
\(641\) 11.0557 0.436675 0.218338 0.975873i \(-0.429937\pi\)
0.218338 + 0.975873i \(0.429937\pi\)
\(642\) 0 0
\(643\) −37.4164 −1.47556 −0.737780 0.675042i \(-0.764126\pi\)
−0.737780 + 0.675042i \(0.764126\pi\)
\(644\) 4.47214 0.176227
\(645\) 0 0
\(646\) −13.1459 −0.517218
\(647\) 30.5279 1.20017 0.600087 0.799935i \(-0.295133\pi\)
0.600087 + 0.799935i \(0.295133\pi\)
\(648\) 0 0
\(649\) 8.41641 0.330373
\(650\) −1.43769 −0.0563910
\(651\) 0 0
\(652\) −9.76393 −0.382385
\(653\) 48.0132 1.87890 0.939450 0.342686i \(-0.111337\pi\)
0.939450 + 0.342686i \(0.111337\pi\)
\(654\) 0 0
\(655\) −55.2148 −2.15742
\(656\) 7.14590 0.279000
\(657\) 0 0
\(658\) 9.67376 0.377123
\(659\) −7.05573 −0.274852 −0.137426 0.990512i \(-0.543883\pi\)
−0.137426 + 0.990512i \(0.543883\pi\)
\(660\) 0 0
\(661\) −37.4508 −1.45667 −0.728335 0.685222i \(-0.759705\pi\)
−0.728335 + 0.685222i \(0.759705\pi\)
\(662\) −13.0902 −0.508764
\(663\) 0 0
\(664\) −22.2361 −0.862927
\(665\) 41.8328 1.62221
\(666\) 0 0
\(667\) 0 0
\(668\) 17.0344 0.659082
\(669\) 0 0
\(670\) 3.63932 0.140599
\(671\) −0.854102 −0.0329722
\(672\) 0 0
\(673\) −6.47214 −0.249483 −0.124741 0.992189i \(-0.539810\pi\)
−0.124741 + 0.992189i \(0.539810\pi\)
\(674\) 21.0557 0.811036
\(675\) 0 0
\(676\) 20.9443 0.805549
\(677\) −40.8328 −1.56933 −0.784666 0.619918i \(-0.787166\pi\)
−0.784666 + 0.619918i \(0.787166\pi\)
\(678\) 0 0
\(679\) 7.96556 0.305690
\(680\) −37.7639 −1.44818
\(681\) 0 0
\(682\) −8.61803 −0.330002
\(683\) −20.8541 −0.797960 −0.398980 0.916960i \(-0.630636\pi\)
−0.398980 + 0.916960i \(0.630636\pi\)
\(684\) 0 0
\(685\) −27.5410 −1.05229
\(686\) 12.4377 0.474873
\(687\) 0 0
\(688\) 13.4164 0.511496
\(689\) −0.472136 −0.0179869
\(690\) 0 0
\(691\) 11.8328 0.450142 0.225071 0.974342i \(-0.427739\pi\)
0.225071 + 0.974342i \(0.427739\pi\)
\(692\) 6.61803 0.251580
\(693\) 0 0
\(694\) 19.8541 0.753651
\(695\) −4.97871 −0.188853
\(696\) 0 0
\(697\) −16.8885 −0.639699
\(698\) 2.79837 0.105920
\(699\) 0 0
\(700\) 35.6525 1.34754
\(701\) 21.0557 0.795264 0.397632 0.917545i \(-0.369832\pi\)
0.397632 + 0.917545i \(0.369832\pi\)
\(702\) 0 0
\(703\) −22.8541 −0.861959
\(704\) 0.326238 0.0122956
\(705\) 0 0
\(706\) 11.8197 0.444839
\(707\) 1.38197 0.0519742
\(708\) 0 0
\(709\) −41.5066 −1.55881 −0.779406 0.626519i \(-0.784479\pi\)
−0.779406 + 0.626519i \(0.784479\pi\)
\(710\) 24.9443 0.936142
\(711\) 0 0
\(712\) −10.5279 −0.394548
\(713\) 12.4721 0.467085
\(714\) 0 0
\(715\) −1.25735 −0.0470224
\(716\) −25.8885 −0.967500
\(717\) 0 0
\(718\) −14.6869 −0.548111
\(719\) −8.50658 −0.317242 −0.158621 0.987340i \(-0.550705\pi\)
−0.158621 + 0.987340i \(0.550705\pi\)
\(720\) 0 0
\(721\) −20.5279 −0.764498
\(722\) 2.81966 0.104937
\(723\) 0 0
\(724\) −9.61803 −0.357451
\(725\) 0 0
\(726\) 0 0
\(727\) −28.0557 −1.04053 −0.520265 0.854005i \(-0.674167\pi\)
−0.520265 + 0.854005i \(0.674167\pi\)
\(728\) −1.18034 −0.0437463
\(729\) 0 0
\(730\) −32.6525 −1.20852
\(731\) −31.7082 −1.17277
\(732\) 0 0
\(733\) −14.8197 −0.547377 −0.273688 0.961818i \(-0.588244\pi\)
−0.273688 + 0.961818i \(0.588244\pi\)
\(734\) −16.8541 −0.622096
\(735\) 0 0
\(736\) 6.94427 0.255969
\(737\) 2.11146 0.0777765
\(738\) 0 0
\(739\) 50.0689 1.84181 0.920907 0.389783i \(-0.127450\pi\)
0.920907 + 0.389783i \(0.127450\pi\)
\(740\) −29.3607 −1.07932
\(741\) 0 0
\(742\) −2.76393 −0.101467
\(743\) 35.2361 1.29269 0.646343 0.763047i \(-0.276298\pi\)
0.646343 + 0.763047i \(0.276298\pi\)
\(744\) 0 0
\(745\) 37.0689 1.35810
\(746\) 12.7426 0.466541
\(747\) 0 0
\(748\) −9.79837 −0.358264
\(749\) 15.1246 0.552641
\(750\) 0 0
\(751\) 18.5279 0.676091 0.338046 0.941130i \(-0.390234\pi\)
0.338046 + 0.941130i \(0.390234\pi\)
\(752\) −12.9787 −0.473285
\(753\) 0 0
\(754\) 0 0
\(755\) −10.3050 −0.375036
\(756\) 0 0
\(757\) 0.0212862 0.000773661 0 0.000386831 1.00000i \(-0.499877\pi\)
0.000386831 1.00000i \(0.499877\pi\)
\(758\) 15.0132 0.545302
\(759\) 0 0
\(760\) 41.8328 1.51744
\(761\) −25.2016 −0.913558 −0.456779 0.889580i \(-0.650997\pi\)
−0.456779 + 0.889580i \(0.650997\pi\)
\(762\) 0 0
\(763\) 32.1591 1.16424
\(764\) −27.5623 −0.997169
\(765\) 0 0
\(766\) 17.8328 0.644326
\(767\) 1.43769 0.0519121
\(768\) 0 0
\(769\) 19.3607 0.698164 0.349082 0.937092i \(-0.386493\pi\)
0.349082 + 0.937092i \(0.386493\pi\)
\(770\) −7.36068 −0.265260
\(771\) 0 0
\(772\) 20.1803 0.726306
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) 99.4296 3.57162
\(776\) 7.96556 0.285947
\(777\) 0 0
\(778\) −11.8197 −0.423755
\(779\) 18.7082 0.670291
\(780\) 0 0
\(781\) 14.4721 0.517854
\(782\) −3.34752 −0.119707
\(783\) 0 0
\(784\) −3.70820 −0.132436
\(785\) 56.1246 2.00317
\(786\) 0 0
\(787\) 19.3607 0.690134 0.345067 0.938578i \(-0.387856\pi\)
0.345067 + 0.938578i \(0.387856\pi\)
\(788\) −10.1803 −0.362660
\(789\) 0 0
\(790\) −14.5066 −0.516121
\(791\) −17.7639 −0.631613
\(792\) 0 0
\(793\) −0.145898 −0.00518099
\(794\) −8.68692 −0.308287
\(795\) 0 0
\(796\) 9.47214 0.335731
\(797\) 43.1803 1.52953 0.764763 0.644312i \(-0.222856\pi\)
0.764763 + 0.644312i \(0.222856\pi\)
\(798\) 0 0
\(799\) 30.6738 1.08516
\(800\) 55.3607 1.95730
\(801\) 0 0
\(802\) −15.4934 −0.547092
\(803\) −18.9443 −0.668529
\(804\) 0 0
\(805\) 10.6525 0.375450
\(806\) −1.47214 −0.0518538
\(807\) 0 0
\(808\) 1.38197 0.0486174
\(809\) −43.0689 −1.51422 −0.757111 0.653287i \(-0.773390\pi\)
−0.757111 + 0.653287i \(0.773390\pi\)
\(810\) 0 0
\(811\) 5.65248 0.198485 0.0992426 0.995063i \(-0.468358\pi\)
0.0992426 + 0.995063i \(0.468358\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.02129 0.140946
\(815\) −23.2574 −0.814670
\(816\) 0 0
\(817\) 35.1246 1.22885
\(818\) −16.9443 −0.592443
\(819\) 0 0
\(820\) 24.0344 0.839319
\(821\) −8.58359 −0.299569 −0.149785 0.988719i \(-0.547858\pi\)
−0.149785 + 0.988719i \(0.547858\pi\)
\(822\) 0 0
\(823\) 5.47214 0.190747 0.0953733 0.995442i \(-0.469596\pi\)
0.0953733 + 0.995442i \(0.469596\pi\)
\(824\) −20.5279 −0.715122
\(825\) 0 0
\(826\) 8.41641 0.292844
\(827\) 26.9656 0.937684 0.468842 0.883282i \(-0.344671\pi\)
0.468842 + 0.883282i \(0.344671\pi\)
\(828\) 0 0
\(829\) −32.7984 −1.13913 −0.569567 0.821945i \(-0.692889\pi\)
−0.569567 + 0.821945i \(0.692889\pi\)
\(830\) −23.6869 −0.822185
\(831\) 0 0
\(832\) 0.0557281 0.00193202
\(833\) 8.76393 0.303652
\(834\) 0 0
\(835\) 40.5755 1.40417
\(836\) 10.8541 0.375397
\(837\) 0 0
\(838\) 10.8541 0.374949
\(839\) −48.2148 −1.66456 −0.832280 0.554356i \(-0.812965\pi\)
−0.832280 + 0.554356i \(0.812965\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 19.1803 0.660998
\(843\) 0 0
\(844\) −18.8541 −0.648985
\(845\) 49.8885 1.71622
\(846\) 0 0
\(847\) 20.3262 0.698418
\(848\) 3.70820 0.127340
\(849\) 0 0
\(850\) −26.6869 −0.915354
\(851\) −5.81966 −0.199495
\(852\) 0 0
\(853\) 45.0000 1.54077 0.770385 0.637579i \(-0.220064\pi\)
0.770385 + 0.637579i \(0.220064\pi\)
\(854\) −0.854102 −0.0292268
\(855\) 0 0
\(856\) 15.1246 0.516949
\(857\) 45.3262 1.54831 0.774157 0.632993i \(-0.218174\pi\)
0.774157 + 0.632993i \(0.218174\pi\)
\(858\) 0 0
\(859\) −32.7082 −1.11599 −0.557995 0.829844i \(-0.688429\pi\)
−0.557995 + 0.829844i \(0.688429\pi\)
\(860\) 45.1246 1.53874
\(861\) 0 0
\(862\) −9.02129 −0.307266
\(863\) −17.7426 −0.603967 −0.301983 0.953313i \(-0.597649\pi\)
−0.301983 + 0.953313i \(0.597649\pi\)
\(864\) 0 0
\(865\) 15.7639 0.535990
\(866\) −6.41641 −0.218038
\(867\) 0 0
\(868\) 36.5066 1.23911
\(869\) −8.41641 −0.285507
\(870\) 0 0
\(871\) 0.360680 0.0122212
\(872\) 32.1591 1.08904
\(873\) 0 0
\(874\) 3.70820 0.125432
\(875\) 41.8328 1.41421
\(876\) 0 0
\(877\) 4.38197 0.147968 0.0739842 0.997259i \(-0.476429\pi\)
0.0739842 + 0.997259i \(0.476429\pi\)
\(878\) −12.9443 −0.436848
\(879\) 0 0
\(880\) 9.87539 0.332899
\(881\) 4.27051 0.143877 0.0719386 0.997409i \(-0.477081\pi\)
0.0719386 + 0.997409i \(0.477081\pi\)
\(882\) 0 0
\(883\) −20.6869 −0.696170 −0.348085 0.937463i \(-0.613168\pi\)
−0.348085 + 0.937463i \(0.613168\pi\)
\(884\) −1.67376 −0.0562947
\(885\) 0 0
\(886\) −1.18034 −0.0396543
\(887\) −38.0689 −1.27823 −0.639114 0.769112i \(-0.720699\pi\)
−0.639114 + 0.769112i \(0.720699\pi\)
\(888\) 0 0
\(889\) 35.6525 1.19575
\(890\) −11.2148 −0.375920
\(891\) 0 0
\(892\) −4.32624 −0.144853
\(893\) −33.9787 −1.13705
\(894\) 0 0
\(895\) −61.6656 −2.06125
\(896\) 25.4508 0.850253
\(897\) 0 0
\(898\) −16.1459 −0.538796
\(899\) 0 0
\(900\) 0 0
\(901\) −8.76393 −0.291969
\(902\) −3.29180 −0.109605
\(903\) 0 0
\(904\) −17.7639 −0.590820
\(905\) −22.9098 −0.761549
\(906\) 0 0
\(907\) −9.76393 −0.324206 −0.162103 0.986774i \(-0.551828\pi\)
−0.162103 + 0.986774i \(0.551828\pi\)
\(908\) −33.7984 −1.12164
\(909\) 0 0
\(910\) −1.25735 −0.0416809
\(911\) −10.9443 −0.362600 −0.181300 0.983428i \(-0.558030\pi\)
−0.181300 + 0.983428i \(0.558030\pi\)
\(912\) 0 0
\(913\) −13.7426 −0.454815
\(914\) 11.5623 0.382447
\(915\) 0 0
\(916\) 3.70820 0.122523
\(917\) −32.0344 −1.05787
\(918\) 0 0
\(919\) 31.3050 1.03266 0.516328 0.856391i \(-0.327299\pi\)
0.516328 + 0.856391i \(0.327299\pi\)
\(920\) 10.6525 0.351202
\(921\) 0 0
\(922\) −24.0902 −0.793367
\(923\) 2.47214 0.0813713
\(924\) 0 0
\(925\) −46.3951 −1.52546
\(926\) 6.61803 0.217482
\(927\) 0 0
\(928\) 0 0
\(929\) 3.65248 0.119834 0.0599169 0.998203i \(-0.480916\pi\)
0.0599169 + 0.998203i \(0.480916\pi\)
\(930\) 0 0
\(931\) −9.70820 −0.318174
\(932\) 24.6525 0.807519
\(933\) 0 0
\(934\) −11.0902 −0.362881
\(935\) −23.3394 −0.763280
\(936\) 0 0
\(937\) 6.65248 0.217327 0.108663 0.994079i \(-0.465343\pi\)
0.108663 + 0.994079i \(0.465343\pi\)
\(938\) 2.11146 0.0689415
\(939\) 0 0
\(940\) −43.6525 −1.42379
\(941\) 34.8885 1.13733 0.568667 0.822568i \(-0.307459\pi\)
0.568667 + 0.822568i \(0.307459\pi\)
\(942\) 0 0
\(943\) 4.76393 0.155135
\(944\) −11.2918 −0.367517
\(945\) 0 0
\(946\) −6.18034 −0.200940
\(947\) 43.0344 1.39843 0.699216 0.714911i \(-0.253533\pi\)
0.699216 + 0.714911i \(0.253533\pi\)
\(948\) 0 0
\(949\) −3.23607 −0.105047
\(950\) 29.5623 0.959128
\(951\) 0 0
\(952\) −21.9098 −0.710102
\(953\) −42.6312 −1.38096 −0.690480 0.723352i \(-0.742601\pi\)
−0.690480 + 0.723352i \(0.742601\pi\)
\(954\) 0 0
\(955\) −65.6525 −2.12446
\(956\) −44.8885 −1.45180
\(957\) 0 0
\(958\) −6.90983 −0.223246
\(959\) −15.9787 −0.515980
\(960\) 0 0
\(961\) 70.8115 2.28424
\(962\) 0.686918 0.0221471
\(963\) 0 0
\(964\) 7.52786 0.242456
\(965\) 48.0689 1.54739
\(966\) 0 0
\(967\) −3.56231 −0.114556 −0.0572780 0.998358i \(-0.518242\pi\)
−0.0572780 + 0.998358i \(0.518242\pi\)
\(968\) 20.3262 0.653310
\(969\) 0 0
\(970\) 8.48529 0.272446
\(971\) −19.5066 −0.625996 −0.312998 0.949754i \(-0.601333\pi\)
−0.312998 + 0.949754i \(0.601333\pi\)
\(972\) 0 0
\(973\) −2.88854 −0.0926025
\(974\) 26.3050 0.842865
\(975\) 0 0
\(976\) 1.14590 0.0366793
\(977\) 45.2148 1.44655 0.723275 0.690561i \(-0.242636\pi\)
0.723275 + 0.690561i \(0.242636\pi\)
\(978\) 0 0
\(979\) −6.50658 −0.207951
\(980\) −12.4721 −0.398408
\(981\) 0 0
\(982\) −9.34752 −0.298291
\(983\) −10.9443 −0.349068 −0.174534 0.984651i \(-0.555842\pi\)
−0.174534 + 0.984651i \(0.555842\pi\)
\(984\) 0 0
\(985\) −24.2492 −0.772645
\(986\) 0 0
\(987\) 0 0
\(988\) 1.85410 0.0589868
\(989\) 8.94427 0.284411
\(990\) 0 0
\(991\) 7.34752 0.233402 0.116701 0.993167i \(-0.462768\pi\)
0.116701 + 0.993167i \(0.462768\pi\)
\(992\) 56.6869 1.79981
\(993\) 0 0
\(994\) 14.4721 0.459028
\(995\) 22.5623 0.715273
\(996\) 0 0
\(997\) −16.9098 −0.535540 −0.267770 0.963483i \(-0.586287\pi\)
−0.267770 + 0.963483i \(0.586287\pi\)
\(998\) 15.2574 0.482963
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.d.1.2 2
3.2 odd 2 841.2.a.c.1.1 yes 2
29.28 even 2 7569.2.a.l.1.1 2
87.2 even 28 841.2.e.j.236.2 24
87.5 odd 14 841.2.d.i.605.1 12
87.8 even 28 841.2.e.j.267.2 24
87.11 even 28 841.2.e.j.63.2 24
87.14 even 28 841.2.e.j.196.3 24
87.17 even 4 841.2.b.b.840.3 4
87.20 odd 14 841.2.d.g.574.1 12
87.23 odd 14 841.2.d.g.645.2 12
87.26 even 28 841.2.e.j.270.3 24
87.32 even 28 841.2.e.j.270.2 24
87.35 odd 14 841.2.d.i.645.1 12
87.38 odd 14 841.2.d.i.574.2 12
87.41 even 4 841.2.b.b.840.2 4
87.44 even 28 841.2.e.j.196.2 24
87.47 even 28 841.2.e.j.63.3 24
87.50 even 28 841.2.e.j.267.3 24
87.53 odd 14 841.2.d.g.605.2 12
87.56 even 28 841.2.e.j.236.3 24
87.62 odd 14 841.2.d.i.190.1 12
87.65 odd 14 841.2.d.g.571.2 12
87.68 even 28 841.2.e.j.651.2 24
87.71 odd 14 841.2.d.i.778.2 12
87.74 odd 14 841.2.d.g.778.1 12
87.77 even 28 841.2.e.j.651.3 24
87.80 odd 14 841.2.d.i.571.1 12
87.83 odd 14 841.2.d.g.190.2 12
87.86 odd 2 841.2.a.a.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.a.1.2 2 87.86 odd 2
841.2.a.c.1.1 yes 2 3.2 odd 2
841.2.b.b.840.2 4 87.41 even 4
841.2.b.b.840.3 4 87.17 even 4
841.2.d.g.190.2 12 87.83 odd 14
841.2.d.g.571.2 12 87.65 odd 14
841.2.d.g.574.1 12 87.20 odd 14
841.2.d.g.605.2 12 87.53 odd 14
841.2.d.g.645.2 12 87.23 odd 14
841.2.d.g.778.1 12 87.74 odd 14
841.2.d.i.190.1 12 87.62 odd 14
841.2.d.i.571.1 12 87.80 odd 14
841.2.d.i.574.2 12 87.38 odd 14
841.2.d.i.605.1 12 87.5 odd 14
841.2.d.i.645.1 12 87.35 odd 14
841.2.d.i.778.2 12 87.71 odd 14
841.2.e.j.63.2 24 87.11 even 28
841.2.e.j.63.3 24 87.47 even 28
841.2.e.j.196.2 24 87.44 even 28
841.2.e.j.196.3 24 87.14 even 28
841.2.e.j.236.2 24 87.2 even 28
841.2.e.j.236.3 24 87.56 even 28
841.2.e.j.267.2 24 87.8 even 28
841.2.e.j.267.3 24 87.50 even 28
841.2.e.j.270.2 24 87.32 even 28
841.2.e.j.270.3 24 87.26 even 28
841.2.e.j.651.2 24 87.68 even 28
841.2.e.j.651.3 24 87.77 even 28
7569.2.a.d.1.2 2 1.1 even 1 trivial
7569.2.a.l.1.1 2 29.28 even 2