# Properties

 Label 7569.2.a.c Level $7569$ Weight $2$ Character orbit 7569.a Self dual yes Analytic conductor $60.439$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7569 = 3^{2} \cdot 29^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7569.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$60.4387692899$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ Defining polynomial: $$x^{2} - 2$$ x^2 - 2 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 29) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta - 1) q^{2} + ( - 2 \beta + 1) q^{4} + q^{5} + 2 \beta q^{7} + (\beta - 3) q^{8}+O(q^{10})$$ q + (b - 1) * q^2 + (-2*b + 1) * q^4 + q^5 + 2*b * q^7 + (b - 3) * q^8 $$q + (\beta - 1) q^{2} + ( - 2 \beta + 1) q^{4} + q^{5} + 2 \beta q^{7} + (\beta - 3) q^{8} + (\beta - 1) q^{10} + (\beta + 1) q^{11} + (2 \beta - 1) q^{13} + ( - 2 \beta + 4) q^{14} + 3 q^{16} + ( - 2 \beta - 2) q^{17} - 6 q^{19} + ( - 2 \beta + 1) q^{20} + q^{22} + (4 \beta + 2) q^{23} - 4 q^{25} + ( - 3 \beta + 5) q^{26} + (2 \beta - 8) q^{28} + (5 \beta - 3) q^{31} + (\beta + 3) q^{32} - 2 q^{34} + 2 \beta q^{35} + 4 q^{37} + ( - 6 \beta + 6) q^{38} + (\beta - 3) q^{40} + (6 \beta + 4) q^{41} + ( - \beta - 5) q^{43} + ( - \beta - 3) q^{44} + ( - 2 \beta + 6) q^{46} + (3 \beta + 1) q^{47} + q^{49} + ( - 4 \beta + 4) q^{50} + (4 \beta - 9) q^{52} + (6 \beta - 1) q^{53} + (\beta + 1) q^{55} + ( - 6 \beta + 4) q^{56} + ( - 4 \beta - 2) q^{59} + ( - 2 \beta + 2) q^{61} + ( - 8 \beta + 13) q^{62} + (2 \beta - 7) q^{64} + (2 \beta - 1) q^{65} - 4 \beta q^{67} + (2 \beta + 6) q^{68} + ( - 2 \beta + 4) q^{70} + ( - 2 \beta + 6) q^{71} - 4 q^{73} + (4 \beta - 4) q^{74} + (12 \beta - 6) q^{76} + (2 \beta + 4) q^{77} + ( - \beta + 1) q^{79} + 3 q^{80} + ( - 2 \beta + 8) q^{82} + (4 \beta - 2) q^{83} + ( - 2 \beta - 2) q^{85} + ( - 4 \beta + 3) q^{86} + ( - 2 \beta - 1) q^{88} + (6 \beta - 4) q^{89} + ( - 2 \beta + 8) q^{91} - 14 q^{92} + ( - 2 \beta + 5) q^{94} - 6 q^{95} + (6 \beta + 4) q^{97} + (\beta - 1) q^{98} +O(q^{100})$$ q + (b - 1) * q^2 + (-2*b + 1) * q^4 + q^5 + 2*b * q^7 + (b - 3) * q^8 + (b - 1) * q^10 + (b + 1) * q^11 + (2*b - 1) * q^13 + (-2*b + 4) * q^14 + 3 * q^16 + (-2*b - 2) * q^17 - 6 * q^19 + (-2*b + 1) * q^20 + q^22 + (4*b + 2) * q^23 - 4 * q^25 + (-3*b + 5) * q^26 + (2*b - 8) * q^28 + (5*b - 3) * q^31 + (b + 3) * q^32 - 2 * q^34 + 2*b * q^35 + 4 * q^37 + (-6*b + 6) * q^38 + (b - 3) * q^40 + (6*b + 4) * q^41 + (-b - 5) * q^43 + (-b - 3) * q^44 + (-2*b + 6) * q^46 + (3*b + 1) * q^47 + q^49 + (-4*b + 4) * q^50 + (4*b - 9) * q^52 + (6*b - 1) * q^53 + (b + 1) * q^55 + (-6*b + 4) * q^56 + (-4*b - 2) * q^59 + (-2*b + 2) * q^61 + (-8*b + 13) * q^62 + (2*b - 7) * q^64 + (2*b - 1) * q^65 - 4*b * q^67 + (2*b + 6) * q^68 + (-2*b + 4) * q^70 + (-2*b + 6) * q^71 - 4 * q^73 + (4*b - 4) * q^74 + (12*b - 6) * q^76 + (2*b + 4) * q^77 + (-b + 1) * q^79 + 3 * q^80 + (-2*b + 8) * q^82 + (4*b - 2) * q^83 + (-2*b - 2) * q^85 + (-4*b + 3) * q^86 + (-2*b - 1) * q^88 + (6*b - 4) * q^89 + (-2*b + 8) * q^91 - 14 * q^92 + (-2*b + 5) * q^94 - 6 * q^95 + (6*b + 4) * q^97 + (b - 1) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 6 q^{8}+O(q^{10})$$ 2 * q - 2 * q^2 + 2 * q^4 + 2 * q^5 - 6 * q^8 $$2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 6 q^{8} - 2 q^{10} + 2 q^{11} - 2 q^{13} + 8 q^{14} + 6 q^{16} - 4 q^{17} - 12 q^{19} + 2 q^{20} + 2 q^{22} + 4 q^{23} - 8 q^{25} + 10 q^{26} - 16 q^{28} - 6 q^{31} + 6 q^{32} - 4 q^{34} + 8 q^{37} + 12 q^{38} - 6 q^{40} + 8 q^{41} - 10 q^{43} - 6 q^{44} + 12 q^{46} + 2 q^{47} + 2 q^{49} + 8 q^{50} - 18 q^{52} - 2 q^{53} + 2 q^{55} + 8 q^{56} - 4 q^{59} + 4 q^{61} + 26 q^{62} - 14 q^{64} - 2 q^{65} + 12 q^{68} + 8 q^{70} + 12 q^{71} - 8 q^{73} - 8 q^{74} - 12 q^{76} + 8 q^{77} + 2 q^{79} + 6 q^{80} + 16 q^{82} - 4 q^{83} - 4 q^{85} + 6 q^{86} - 2 q^{88} - 8 q^{89} + 16 q^{91} - 28 q^{92} + 10 q^{94} - 12 q^{95} + 8 q^{97} - 2 q^{98}+O(q^{100})$$ 2 * q - 2 * q^2 + 2 * q^4 + 2 * q^5 - 6 * q^8 - 2 * q^10 + 2 * q^11 - 2 * q^13 + 8 * q^14 + 6 * q^16 - 4 * q^17 - 12 * q^19 + 2 * q^20 + 2 * q^22 + 4 * q^23 - 8 * q^25 + 10 * q^26 - 16 * q^28 - 6 * q^31 + 6 * q^32 - 4 * q^34 + 8 * q^37 + 12 * q^38 - 6 * q^40 + 8 * q^41 - 10 * q^43 - 6 * q^44 + 12 * q^46 + 2 * q^47 + 2 * q^49 + 8 * q^50 - 18 * q^52 - 2 * q^53 + 2 * q^55 + 8 * q^56 - 4 * q^59 + 4 * q^61 + 26 * q^62 - 14 * q^64 - 2 * q^65 + 12 * q^68 + 8 * q^70 + 12 * q^71 - 8 * q^73 - 8 * q^74 - 12 * q^76 + 8 * q^77 + 2 * q^79 + 6 * q^80 + 16 * q^82 - 4 * q^83 - 4 * q^85 + 6 * q^86 - 2 * q^88 - 8 * q^89 + 16 * q^91 - 28 * q^92 + 10 * q^94 - 12 * q^95 + 8 * q^97 - 2 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
−2.41421 0 3.82843 1.00000 0 −2.82843 −4.41421 0 −2.41421
1.2 0.414214 0 −1.82843 1.00000 0 2.82843 −1.58579 0 0.414214
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$29$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7569.2.a.c 2
3.b odd 2 1 841.2.a.d 2
29.b even 2 1 261.2.a.d 2
87.d odd 2 1 29.2.a.a 2
87.f even 4 2 841.2.b.a 4
87.h odd 14 6 841.2.d.j 12
87.j odd 14 6 841.2.d.f 12
87.k even 28 12 841.2.e.k 24
116.d odd 2 1 4176.2.a.bq 2
145.d even 2 1 6525.2.a.o 2
348.b even 2 1 464.2.a.h 2
435.b odd 2 1 725.2.a.b 2
435.p even 4 2 725.2.b.b 4
609.h even 2 1 1421.2.a.j 2
696.l even 2 1 1856.2.a.w 2
696.n odd 2 1 1856.2.a.r 2
957.b even 2 1 3509.2.a.j 2
1131.d odd 2 1 4901.2.a.g 2
1479.h odd 2 1 8381.2.a.e 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
29.2.a.a 2 87.d odd 2 1
261.2.a.d 2 29.b even 2 1
464.2.a.h 2 348.b even 2 1
725.2.a.b 2 435.b odd 2 1
725.2.b.b 4 435.p even 4 2
841.2.a.d 2 3.b odd 2 1
841.2.b.a 4 87.f even 4 2
841.2.d.f 12 87.j odd 14 6
841.2.d.j 12 87.h odd 14 6
841.2.e.k 24 87.k even 28 12
1421.2.a.j 2 609.h even 2 1
1856.2.a.r 2 696.n odd 2 1
1856.2.a.w 2 696.l even 2 1
3509.2.a.j 2 957.b even 2 1
4176.2.a.bq 2 116.d odd 2 1
4901.2.a.g 2 1131.d odd 2 1
6525.2.a.o 2 145.d even 2 1
7569.2.a.c 2 1.a even 1 1 trivial
8381.2.a.e 2 1479.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7569))$$:

 $$T_{2}^{2} + 2T_{2} - 1$$ T2^2 + 2*T2 - 1 $$T_{5} - 1$$ T5 - 1 $$T_{7}^{2} - 8$$ T7^2 - 8 $$T_{19} + 6$$ T19 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 2T - 1$$
$3$ $$T^{2}$$
$5$ $$(T - 1)^{2}$$
$7$ $$T^{2} - 8$$
$11$ $$T^{2} - 2T - 1$$
$13$ $$T^{2} + 2T - 7$$
$17$ $$T^{2} + 4T - 4$$
$19$ $$(T + 6)^{2}$$
$23$ $$T^{2} - 4T - 28$$
$29$ $$T^{2}$$
$31$ $$T^{2} + 6T - 41$$
$37$ $$(T - 4)^{2}$$
$41$ $$T^{2} - 8T - 56$$
$43$ $$T^{2} + 10T + 23$$
$47$ $$T^{2} - 2T - 17$$
$53$ $$T^{2} + 2T - 71$$
$59$ $$T^{2} + 4T - 28$$
$61$ $$T^{2} - 4T - 4$$
$67$ $$T^{2} - 32$$
$71$ $$T^{2} - 12T + 28$$
$73$ $$(T + 4)^{2}$$
$79$ $$T^{2} - 2T - 1$$
$83$ $$T^{2} + 4T - 28$$
$89$ $$T^{2} + 8T - 56$$
$97$ $$T^{2} - 8T - 56$$