Properties

Label 7569.2.a.bm.1.7
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.53422\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53422 q^{2} +4.42225 q^{4} -1.08952 q^{5} +1.73057 q^{7} +6.13851 q^{8} -2.76107 q^{10} +6.29513 q^{11} -1.27948 q^{13} +4.38564 q^{14} +6.71181 q^{16} -5.08291 q^{17} +6.52684 q^{19} -4.81811 q^{20} +15.9532 q^{22} +4.52415 q^{23} -3.81296 q^{25} -3.24249 q^{26} +7.65302 q^{28} +6.85487 q^{31} +4.73216 q^{32} -12.8812 q^{34} -1.88548 q^{35} -6.17424 q^{37} +16.5404 q^{38} -6.68800 q^{40} +4.04550 q^{41} -1.83124 q^{43} +27.8387 q^{44} +11.4652 q^{46} +1.51649 q^{47} -4.00512 q^{49} -9.66286 q^{50} -5.65820 q^{52} +3.77409 q^{53} -6.85864 q^{55} +10.6231 q^{56} +8.72197 q^{59} +3.08764 q^{61} +17.3717 q^{62} -1.43131 q^{64} +1.39402 q^{65} -2.39689 q^{67} -22.4779 q^{68} -4.77822 q^{70} -9.34384 q^{71} +1.79781 q^{73} -15.6469 q^{74} +28.8633 q^{76} +10.8942 q^{77} +2.86562 q^{79} -7.31262 q^{80} +10.2522 q^{82} -6.59352 q^{83} +5.53791 q^{85} -4.64077 q^{86} +38.6427 q^{88} +3.34552 q^{89} -2.21424 q^{91} +20.0069 q^{92} +3.84311 q^{94} -7.11109 q^{95} -2.26753 q^{97} -10.1498 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{4} + 4 q^{5} + 5 q^{7} + 24 q^{8} - q^{11} + q^{13} + 9 q^{14} + 35 q^{16} + 2 q^{17} - 9 q^{19} + 18 q^{20} - 4 q^{22} + 4 q^{23} + q^{25} - 8 q^{26} + 40 q^{28} - 8 q^{31} + 43 q^{32}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.53422 1.79196 0.895981 0.444093i \(-0.146474\pi\)
0.895981 + 0.444093i \(0.146474\pi\)
\(3\) 0 0
\(4\) 4.42225 2.21113
\(5\) −1.08952 −0.487246 −0.243623 0.969870i \(-0.578336\pi\)
−0.243623 + 0.969870i \(0.578336\pi\)
\(6\) 0 0
\(7\) 1.73057 0.654094 0.327047 0.945008i \(-0.393946\pi\)
0.327047 + 0.945008i \(0.393946\pi\)
\(8\) 6.13851 2.17029
\(9\) 0 0
\(10\) −2.76107 −0.873126
\(11\) 6.29513 1.89805 0.949027 0.315195i \(-0.102070\pi\)
0.949027 + 0.315195i \(0.102070\pi\)
\(12\) 0 0
\(13\) −1.27948 −0.354865 −0.177432 0.984133i \(-0.556779\pi\)
−0.177432 + 0.984133i \(0.556779\pi\)
\(14\) 4.38564 1.17211
\(15\) 0 0
\(16\) 6.71181 1.67795
\(17\) −5.08291 −1.23279 −0.616393 0.787439i \(-0.711407\pi\)
−0.616393 + 0.787439i \(0.711407\pi\)
\(18\) 0 0
\(19\) 6.52684 1.49736 0.748680 0.662931i \(-0.230688\pi\)
0.748680 + 0.662931i \(0.230688\pi\)
\(20\) −4.81811 −1.07736
\(21\) 0 0
\(22\) 15.9532 3.40124
\(23\) 4.52415 0.943351 0.471675 0.881772i \(-0.343649\pi\)
0.471675 + 0.881772i \(0.343649\pi\)
\(24\) 0 0
\(25\) −3.81296 −0.762591
\(26\) −3.24249 −0.635904
\(27\) 0 0
\(28\) 7.65302 1.44629
\(29\) 0 0
\(30\) 0 0
\(31\) 6.85487 1.23117 0.615586 0.788070i \(-0.288919\pi\)
0.615586 + 0.788070i \(0.288919\pi\)
\(32\) 4.73216 0.836535
\(33\) 0 0
\(34\) −12.8812 −2.20911
\(35\) −1.88548 −0.318705
\(36\) 0 0
\(37\) −6.17424 −1.01504 −0.507519 0.861640i \(-0.669437\pi\)
−0.507519 + 0.861640i \(0.669437\pi\)
\(38\) 16.5404 2.68321
\(39\) 0 0
\(40\) −6.68800 −1.05747
\(41\) 4.04550 0.631801 0.315901 0.948792i \(-0.397693\pi\)
0.315901 + 0.948792i \(0.397693\pi\)
\(42\) 0 0
\(43\) −1.83124 −0.279262 −0.139631 0.990204i \(-0.544592\pi\)
−0.139631 + 0.990204i \(0.544592\pi\)
\(44\) 27.8387 4.19684
\(45\) 0 0
\(46\) 11.4652 1.69045
\(47\) 1.51649 0.221203 0.110601 0.993865i \(-0.464722\pi\)
0.110601 + 0.993865i \(0.464722\pi\)
\(48\) 0 0
\(49\) −4.00512 −0.572160
\(50\) −9.66286 −1.36653
\(51\) 0 0
\(52\) −5.65820 −0.784651
\(53\) 3.77409 0.518411 0.259206 0.965822i \(-0.416539\pi\)
0.259206 + 0.965822i \(0.416539\pi\)
\(54\) 0 0
\(55\) −6.85864 −0.924819
\(56\) 10.6231 1.41958
\(57\) 0 0
\(58\) 0 0
\(59\) 8.72197 1.13550 0.567752 0.823200i \(-0.307813\pi\)
0.567752 + 0.823200i \(0.307813\pi\)
\(60\) 0 0
\(61\) 3.08764 0.395332 0.197666 0.980269i \(-0.436664\pi\)
0.197666 + 0.980269i \(0.436664\pi\)
\(62\) 17.3717 2.20621
\(63\) 0 0
\(64\) −1.43131 −0.178914
\(65\) 1.39402 0.172906
\(66\) 0 0
\(67\) −2.39689 −0.292826 −0.146413 0.989224i \(-0.546773\pi\)
−0.146413 + 0.989224i \(0.546773\pi\)
\(68\) −22.4779 −2.72585
\(69\) 0 0
\(70\) −4.77822 −0.571107
\(71\) −9.34384 −1.10891 −0.554455 0.832214i \(-0.687073\pi\)
−0.554455 + 0.832214i \(0.687073\pi\)
\(72\) 0 0
\(73\) 1.79781 0.210417 0.105209 0.994450i \(-0.466449\pi\)
0.105209 + 0.994450i \(0.466449\pi\)
\(74\) −15.6469 −1.81891
\(75\) 0 0
\(76\) 28.8633 3.31085
\(77\) 10.8942 1.24151
\(78\) 0 0
\(79\) 2.86562 0.322407 0.161204 0.986921i \(-0.448462\pi\)
0.161204 + 0.986921i \(0.448462\pi\)
\(80\) −7.31262 −0.817576
\(81\) 0 0
\(82\) 10.2522 1.13216
\(83\) −6.59352 −0.723733 −0.361866 0.932230i \(-0.617860\pi\)
−0.361866 + 0.932230i \(0.617860\pi\)
\(84\) 0 0
\(85\) 5.53791 0.600670
\(86\) −4.64077 −0.500427
\(87\) 0 0
\(88\) 38.6427 4.11933
\(89\) 3.34552 0.354624 0.177312 0.984155i \(-0.443260\pi\)
0.177312 + 0.984155i \(0.443260\pi\)
\(90\) 0 0
\(91\) −2.21424 −0.232115
\(92\) 20.0069 2.08587
\(93\) 0 0
\(94\) 3.84311 0.396387
\(95\) −7.11109 −0.729583
\(96\) 0 0
\(97\) −2.26753 −0.230233 −0.115116 0.993352i \(-0.536724\pi\)
−0.115116 + 0.993352i \(0.536724\pi\)
\(98\) −10.1498 −1.02529
\(99\) 0 0
\(100\) −16.8619 −1.68619
\(101\) 12.5571 1.24948 0.624741 0.780832i \(-0.285204\pi\)
0.624741 + 0.780832i \(0.285204\pi\)
\(102\) 0 0
\(103\) 2.77536 0.273464 0.136732 0.990608i \(-0.456340\pi\)
0.136732 + 0.990608i \(0.456340\pi\)
\(104\) −7.85412 −0.770160
\(105\) 0 0
\(106\) 9.56436 0.928973
\(107\) −9.95779 −0.962656 −0.481328 0.876540i \(-0.659845\pi\)
−0.481328 + 0.876540i \(0.659845\pi\)
\(108\) 0 0
\(109\) −4.72545 −0.452616 −0.226308 0.974056i \(-0.572666\pi\)
−0.226308 + 0.974056i \(0.572666\pi\)
\(110\) −17.3813 −1.65724
\(111\) 0 0
\(112\) 11.6153 1.09754
\(113\) −0.548457 −0.0515945 −0.0257973 0.999667i \(-0.508212\pi\)
−0.0257973 + 0.999667i \(0.508212\pi\)
\(114\) 0 0
\(115\) −4.92913 −0.459644
\(116\) 0 0
\(117\) 0 0
\(118\) 22.1034 2.03478
\(119\) −8.79634 −0.806359
\(120\) 0 0
\(121\) 28.6287 2.60261
\(122\) 7.82476 0.708420
\(123\) 0 0
\(124\) 30.3140 2.72228
\(125\) 9.60185 0.858816
\(126\) 0 0
\(127\) −14.2467 −1.26419 −0.632096 0.774890i \(-0.717805\pi\)
−0.632096 + 0.774890i \(0.717805\pi\)
\(128\) −13.0916 −1.15714
\(129\) 0 0
\(130\) 3.53274 0.309842
\(131\) 6.83805 0.597443 0.298722 0.954340i \(-0.403440\pi\)
0.298722 + 0.954340i \(0.403440\pi\)
\(132\) 0 0
\(133\) 11.2952 0.979415
\(134\) −6.07423 −0.524733
\(135\) 0 0
\(136\) −31.2015 −2.67551
\(137\) 13.4742 1.15118 0.575588 0.817740i \(-0.304773\pi\)
0.575588 + 0.817740i \(0.304773\pi\)
\(138\) 0 0
\(139\) 11.7820 0.999334 0.499667 0.866218i \(-0.333456\pi\)
0.499667 + 0.866218i \(0.333456\pi\)
\(140\) −8.33808 −0.704697
\(141\) 0 0
\(142\) −23.6793 −1.98712
\(143\) −8.05451 −0.673552
\(144\) 0 0
\(145\) 0 0
\(146\) 4.55603 0.377060
\(147\) 0 0
\(148\) −27.3040 −2.24438
\(149\) −0.761963 −0.0624224 −0.0312112 0.999513i \(-0.509936\pi\)
−0.0312112 + 0.999513i \(0.509936\pi\)
\(150\) 0 0
\(151\) 18.4366 1.50035 0.750176 0.661238i \(-0.229969\pi\)
0.750176 + 0.661238i \(0.229969\pi\)
\(152\) 40.0651 3.24971
\(153\) 0 0
\(154\) 27.6082 2.22473
\(155\) −7.46849 −0.599883
\(156\) 0 0
\(157\) −10.9681 −0.875353 −0.437676 0.899133i \(-0.644198\pi\)
−0.437676 + 0.899133i \(0.644198\pi\)
\(158\) 7.26210 0.577741
\(159\) 0 0
\(160\) −5.15576 −0.407598
\(161\) 7.82937 0.617041
\(162\) 0 0
\(163\) −23.8504 −1.86811 −0.934054 0.357133i \(-0.883754\pi\)
−0.934054 + 0.357133i \(0.883754\pi\)
\(164\) 17.8902 1.39699
\(165\) 0 0
\(166\) −16.7094 −1.29690
\(167\) 14.3878 1.11336 0.556679 0.830728i \(-0.312075\pi\)
0.556679 + 0.830728i \(0.312075\pi\)
\(168\) 0 0
\(169\) −11.3629 −0.874071
\(170\) 14.0342 1.07638
\(171\) 0 0
\(172\) −8.09822 −0.617484
\(173\) 3.94904 0.300240 0.150120 0.988668i \(-0.452034\pi\)
0.150120 + 0.988668i \(0.452034\pi\)
\(174\) 0 0
\(175\) −6.59859 −0.498807
\(176\) 42.2517 3.18484
\(177\) 0 0
\(178\) 8.47826 0.635473
\(179\) −16.4137 −1.22682 −0.613410 0.789765i \(-0.710203\pi\)
−0.613410 + 0.789765i \(0.710203\pi\)
\(180\) 0 0
\(181\) −16.7532 −1.24525 −0.622626 0.782519i \(-0.713934\pi\)
−0.622626 + 0.782519i \(0.713934\pi\)
\(182\) −5.61135 −0.415941
\(183\) 0 0
\(184\) 27.7716 2.04735
\(185\) 6.72693 0.494574
\(186\) 0 0
\(187\) −31.9976 −2.33989
\(188\) 6.70630 0.489107
\(189\) 0 0
\(190\) −18.0211 −1.30738
\(191\) −2.95004 −0.213457 −0.106729 0.994288i \(-0.534038\pi\)
−0.106729 + 0.994288i \(0.534038\pi\)
\(192\) 0 0
\(193\) 4.88334 0.351511 0.175755 0.984434i \(-0.443763\pi\)
0.175755 + 0.984434i \(0.443763\pi\)
\(194\) −5.74640 −0.412568
\(195\) 0 0
\(196\) −17.7117 −1.26512
\(197\) 2.51855 0.179439 0.0897195 0.995967i \(-0.471403\pi\)
0.0897195 + 0.995967i \(0.471403\pi\)
\(198\) 0 0
\(199\) 25.5517 1.81131 0.905655 0.424015i \(-0.139380\pi\)
0.905655 + 0.424015i \(0.139380\pi\)
\(200\) −23.4059 −1.65505
\(201\) 0 0
\(202\) 31.8225 2.23903
\(203\) 0 0
\(204\) 0 0
\(205\) −4.40764 −0.307843
\(206\) 7.03336 0.490038
\(207\) 0 0
\(208\) −8.58765 −0.595446
\(209\) 41.0873 2.84207
\(210\) 0 0
\(211\) 1.84511 0.127023 0.0635114 0.997981i \(-0.479770\pi\)
0.0635114 + 0.997981i \(0.479770\pi\)
\(212\) 16.6900 1.14627
\(213\) 0 0
\(214\) −25.2352 −1.72504
\(215\) 1.99517 0.136069
\(216\) 0 0
\(217\) 11.8628 0.805303
\(218\) −11.9753 −0.811070
\(219\) 0 0
\(220\) −30.3306 −2.04489
\(221\) 6.50349 0.437472
\(222\) 0 0
\(223\) −24.0492 −1.61045 −0.805225 0.592969i \(-0.797956\pi\)
−0.805225 + 0.592969i \(0.797956\pi\)
\(224\) 8.18933 0.547173
\(225\) 0 0
\(226\) −1.38991 −0.0924554
\(227\) 22.6399 1.50267 0.751333 0.659924i \(-0.229411\pi\)
0.751333 + 0.659924i \(0.229411\pi\)
\(228\) 0 0
\(229\) 13.8021 0.912070 0.456035 0.889962i \(-0.349269\pi\)
0.456035 + 0.889962i \(0.349269\pi\)
\(230\) −12.4915 −0.823664
\(231\) 0 0
\(232\) 0 0
\(233\) 6.69816 0.438811 0.219405 0.975634i \(-0.429588\pi\)
0.219405 + 0.975634i \(0.429588\pi\)
\(234\) 0 0
\(235\) −1.65224 −0.107780
\(236\) 38.5708 2.51074
\(237\) 0 0
\(238\) −22.2918 −1.44496
\(239\) −12.1625 −0.786726 −0.393363 0.919383i \(-0.628688\pi\)
−0.393363 + 0.919383i \(0.628688\pi\)
\(240\) 0 0
\(241\) 2.65618 0.171099 0.0855497 0.996334i \(-0.472735\pi\)
0.0855497 + 0.996334i \(0.472735\pi\)
\(242\) 72.5513 4.66377
\(243\) 0 0
\(244\) 13.6543 0.874129
\(245\) 4.36364 0.278783
\(246\) 0 0
\(247\) −8.35098 −0.531360
\(248\) 42.0787 2.67200
\(249\) 0 0
\(250\) 24.3332 1.53896
\(251\) −22.7654 −1.43694 −0.718471 0.695557i \(-0.755157\pi\)
−0.718471 + 0.695557i \(0.755157\pi\)
\(252\) 0 0
\(253\) 28.4801 1.79053
\(254\) −36.1043 −2.26538
\(255\) 0 0
\(256\) −30.3142 −1.89464
\(257\) −7.70838 −0.480836 −0.240418 0.970669i \(-0.577284\pi\)
−0.240418 + 0.970669i \(0.577284\pi\)
\(258\) 0 0
\(259\) −10.6850 −0.663931
\(260\) 6.16469 0.382318
\(261\) 0 0
\(262\) 17.3291 1.07060
\(263\) −0.769558 −0.0474530 −0.0237265 0.999718i \(-0.507553\pi\)
−0.0237265 + 0.999718i \(0.507553\pi\)
\(264\) 0 0
\(265\) −4.11193 −0.252594
\(266\) 28.6244 1.75507
\(267\) 0 0
\(268\) −10.5996 −0.647476
\(269\) 15.3466 0.935696 0.467848 0.883809i \(-0.345029\pi\)
0.467848 + 0.883809i \(0.345029\pi\)
\(270\) 0 0
\(271\) −15.7301 −0.955538 −0.477769 0.878485i \(-0.658554\pi\)
−0.477769 + 0.878485i \(0.658554\pi\)
\(272\) −34.1155 −2.06856
\(273\) 0 0
\(274\) 34.1465 2.06286
\(275\) −24.0031 −1.44744
\(276\) 0 0
\(277\) −22.6255 −1.35944 −0.679718 0.733473i \(-0.737898\pi\)
−0.679718 + 0.733473i \(0.737898\pi\)
\(278\) 29.8581 1.79077
\(279\) 0 0
\(280\) −11.5741 −0.691682
\(281\) 22.0455 1.31512 0.657561 0.753401i \(-0.271588\pi\)
0.657561 + 0.753401i \(0.271588\pi\)
\(282\) 0 0
\(283\) 5.18145 0.308005 0.154003 0.988070i \(-0.450784\pi\)
0.154003 + 0.988070i \(0.450784\pi\)
\(284\) −41.3208 −2.45194
\(285\) 0 0
\(286\) −20.4119 −1.20698
\(287\) 7.00103 0.413258
\(288\) 0 0
\(289\) 8.83596 0.519762
\(290\) 0 0
\(291\) 0 0
\(292\) 7.95035 0.465259
\(293\) 3.76172 0.219762 0.109881 0.993945i \(-0.464953\pi\)
0.109881 + 0.993945i \(0.464953\pi\)
\(294\) 0 0
\(295\) −9.50272 −0.553270
\(296\) −37.9006 −2.20293
\(297\) 0 0
\(298\) −1.93098 −0.111859
\(299\) −5.78857 −0.334762
\(300\) 0 0
\(301\) −3.16910 −0.182664
\(302\) 46.7224 2.68857
\(303\) 0 0
\(304\) 43.8069 2.51250
\(305\) −3.36403 −0.192624
\(306\) 0 0
\(307\) 4.15007 0.236857 0.118428 0.992963i \(-0.462214\pi\)
0.118428 + 0.992963i \(0.462214\pi\)
\(308\) 48.1768 2.74513
\(309\) 0 0
\(310\) −18.9268 −1.07497
\(311\) −8.20010 −0.464985 −0.232492 0.972598i \(-0.574688\pi\)
−0.232492 + 0.972598i \(0.574688\pi\)
\(312\) 0 0
\(313\) −5.81526 −0.328698 −0.164349 0.986402i \(-0.552552\pi\)
−0.164349 + 0.986402i \(0.552552\pi\)
\(314\) −27.7956 −1.56860
\(315\) 0 0
\(316\) 12.6725 0.712883
\(317\) −11.0951 −0.623161 −0.311581 0.950220i \(-0.600858\pi\)
−0.311581 + 0.950220i \(0.600858\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.55944 0.0871752
\(321\) 0 0
\(322\) 19.8413 1.10571
\(323\) −33.1753 −1.84593
\(324\) 0 0
\(325\) 4.87861 0.270617
\(326\) −60.4421 −3.34758
\(327\) 0 0
\(328\) 24.8334 1.37119
\(329\) 2.62439 0.144687
\(330\) 0 0
\(331\) −16.7926 −0.923002 −0.461501 0.887140i \(-0.652689\pi\)
−0.461501 + 0.887140i \(0.652689\pi\)
\(332\) −29.1582 −1.60026
\(333\) 0 0
\(334\) 36.4617 1.99509
\(335\) 2.61144 0.142678
\(336\) 0 0
\(337\) −21.0778 −1.14818 −0.574091 0.818791i \(-0.694645\pi\)
−0.574091 + 0.818791i \(0.694645\pi\)
\(338\) −28.7961 −1.56630
\(339\) 0 0
\(340\) 24.4900 1.32816
\(341\) 43.1523 2.33683
\(342\) 0 0
\(343\) −19.0452 −1.02834
\(344\) −11.2411 −0.606080
\(345\) 0 0
\(346\) 10.0077 0.538018
\(347\) 31.0309 1.66583 0.832914 0.553402i \(-0.186671\pi\)
0.832914 + 0.553402i \(0.186671\pi\)
\(348\) 0 0
\(349\) −35.7539 −1.91386 −0.956931 0.290315i \(-0.906240\pi\)
−0.956931 + 0.290315i \(0.906240\pi\)
\(350\) −16.7223 −0.893843
\(351\) 0 0
\(352\) 29.7895 1.58779
\(353\) 6.02826 0.320852 0.160426 0.987048i \(-0.448713\pi\)
0.160426 + 0.987048i \(0.448713\pi\)
\(354\) 0 0
\(355\) 10.1803 0.540312
\(356\) 14.7947 0.784118
\(357\) 0 0
\(358\) −41.5959 −2.19841
\(359\) −5.71397 −0.301572 −0.150786 0.988566i \(-0.548180\pi\)
−0.150786 + 0.988566i \(0.548180\pi\)
\(360\) 0 0
\(361\) 23.5997 1.24209
\(362\) −42.4561 −2.23145
\(363\) 0 0
\(364\) −9.79191 −0.513236
\(365\) −1.95874 −0.102525
\(366\) 0 0
\(367\) −27.3435 −1.42732 −0.713658 0.700494i \(-0.752963\pi\)
−0.713658 + 0.700494i \(0.752963\pi\)
\(368\) 30.3652 1.58290
\(369\) 0 0
\(370\) 17.0475 0.886257
\(371\) 6.53133 0.339090
\(372\) 0 0
\(373\) −12.6216 −0.653522 −0.326761 0.945107i \(-0.605957\pi\)
−0.326761 + 0.945107i \(0.605957\pi\)
\(374\) −81.0888 −4.19300
\(375\) 0 0
\(376\) 9.30899 0.480074
\(377\) 0 0
\(378\) 0 0
\(379\) 3.30059 0.169540 0.0847700 0.996401i \(-0.472984\pi\)
0.0847700 + 0.996401i \(0.472984\pi\)
\(380\) −31.4471 −1.61320
\(381\) 0 0
\(382\) −7.47603 −0.382507
\(383\) −9.63804 −0.492481 −0.246240 0.969209i \(-0.579195\pi\)
−0.246240 + 0.969209i \(0.579195\pi\)
\(384\) 0 0
\(385\) −11.8694 −0.604919
\(386\) 12.3754 0.629893
\(387\) 0 0
\(388\) −10.0276 −0.509073
\(389\) 10.7987 0.547518 0.273759 0.961798i \(-0.411733\pi\)
0.273759 + 0.961798i \(0.411733\pi\)
\(390\) 0 0
\(391\) −22.9958 −1.16295
\(392\) −24.5855 −1.24175
\(393\) 0 0
\(394\) 6.38254 0.321548
\(395\) −3.12213 −0.157092
\(396\) 0 0
\(397\) 29.7323 1.49222 0.746111 0.665822i \(-0.231919\pi\)
0.746111 + 0.665822i \(0.231919\pi\)
\(398\) 64.7535 3.24580
\(399\) 0 0
\(400\) −25.5918 −1.27959
\(401\) −11.4349 −0.571030 −0.285515 0.958374i \(-0.592165\pi\)
−0.285515 + 0.958374i \(0.592165\pi\)
\(402\) 0 0
\(403\) −8.77069 −0.436899
\(404\) 55.5309 2.76276
\(405\) 0 0
\(406\) 0 0
\(407\) −38.8677 −1.92660
\(408\) 0 0
\(409\) −29.9586 −1.48136 −0.740679 0.671859i \(-0.765496\pi\)
−0.740679 + 0.671859i \(0.765496\pi\)
\(410\) −11.1699 −0.551642
\(411\) 0 0
\(412\) 12.2733 0.604664
\(413\) 15.0940 0.742727
\(414\) 0 0
\(415\) 7.18374 0.352636
\(416\) −6.05471 −0.296857
\(417\) 0 0
\(418\) 104.124 5.09288
\(419\) 20.3911 0.996168 0.498084 0.867129i \(-0.334037\pi\)
0.498084 + 0.867129i \(0.334037\pi\)
\(420\) 0 0
\(421\) 22.9880 1.12037 0.560183 0.828369i \(-0.310731\pi\)
0.560183 + 0.828369i \(0.310731\pi\)
\(422\) 4.67591 0.227620
\(423\) 0 0
\(424\) 23.1673 1.12510
\(425\) 19.3809 0.940112
\(426\) 0 0
\(427\) 5.34339 0.258585
\(428\) −44.0359 −2.12855
\(429\) 0 0
\(430\) 5.05619 0.243831
\(431\) 4.04708 0.194941 0.0974704 0.995238i \(-0.468925\pi\)
0.0974704 + 0.995238i \(0.468925\pi\)
\(432\) 0 0
\(433\) −2.62955 −0.126368 −0.0631841 0.998002i \(-0.520126\pi\)
−0.0631841 + 0.998002i \(0.520126\pi\)
\(434\) 30.0630 1.44307
\(435\) 0 0
\(436\) −20.8971 −1.00079
\(437\) 29.5284 1.41254
\(438\) 0 0
\(439\) −26.0095 −1.24137 −0.620683 0.784061i \(-0.713145\pi\)
−0.620683 + 0.784061i \(0.713145\pi\)
\(440\) −42.1018 −2.00713
\(441\) 0 0
\(442\) 16.4813 0.783934
\(443\) 18.8152 0.893935 0.446968 0.894550i \(-0.352504\pi\)
0.446968 + 0.894550i \(0.352504\pi\)
\(444\) 0 0
\(445\) −3.64499 −0.172789
\(446\) −60.9458 −2.88587
\(447\) 0 0
\(448\) −2.47699 −0.117027
\(449\) 12.3698 0.583767 0.291883 0.956454i \(-0.405718\pi\)
0.291883 + 0.956454i \(0.405718\pi\)
\(450\) 0 0
\(451\) 25.4670 1.19919
\(452\) −2.42542 −0.114082
\(453\) 0 0
\(454\) 57.3745 2.69272
\(455\) 2.41244 0.113097
\(456\) 0 0
\(457\) −20.1273 −0.941514 −0.470757 0.882263i \(-0.656019\pi\)
−0.470757 + 0.882263i \(0.656019\pi\)
\(458\) 34.9776 1.63440
\(459\) 0 0
\(460\) −21.7979 −1.01633
\(461\) 19.7785 0.921175 0.460587 0.887614i \(-0.347639\pi\)
0.460587 + 0.887614i \(0.347639\pi\)
\(462\) 0 0
\(463\) 2.22268 0.103297 0.0516484 0.998665i \(-0.483552\pi\)
0.0516484 + 0.998665i \(0.483552\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 16.9746 0.786332
\(467\) 4.63380 0.214427 0.107213 0.994236i \(-0.465807\pi\)
0.107213 + 0.994236i \(0.465807\pi\)
\(468\) 0 0
\(469\) −4.14798 −0.191536
\(470\) −4.18713 −0.193138
\(471\) 0 0
\(472\) 53.5399 2.46437
\(473\) −11.5279 −0.530054
\(474\) 0 0
\(475\) −24.8866 −1.14187
\(476\) −38.8996 −1.78296
\(477\) 0 0
\(478\) −30.8224 −1.40978
\(479\) −9.50600 −0.434340 −0.217170 0.976134i \(-0.569683\pi\)
−0.217170 + 0.976134i \(0.569683\pi\)
\(480\) 0 0
\(481\) 7.89983 0.360201
\(482\) 6.73132 0.306603
\(483\) 0 0
\(484\) 126.603 5.75469
\(485\) 2.47051 0.112180
\(486\) 0 0
\(487\) 7.59754 0.344278 0.172139 0.985073i \(-0.444932\pi\)
0.172139 + 0.985073i \(0.444932\pi\)
\(488\) 18.9535 0.857986
\(489\) 0 0
\(490\) 11.0584 0.499568
\(491\) −22.5226 −1.01643 −0.508216 0.861230i \(-0.669695\pi\)
−0.508216 + 0.861230i \(0.669695\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −21.1632 −0.952177
\(495\) 0 0
\(496\) 46.0086 2.06585
\(497\) −16.1702 −0.725332
\(498\) 0 0
\(499\) −28.7796 −1.28835 −0.644176 0.764878i \(-0.722799\pi\)
−0.644176 + 0.764878i \(0.722799\pi\)
\(500\) 42.4618 1.89895
\(501\) 0 0
\(502\) −57.6925 −2.57494
\(503\) −5.00532 −0.223176 −0.111588 0.993755i \(-0.535594\pi\)
−0.111588 + 0.993755i \(0.535594\pi\)
\(504\) 0 0
\(505\) −13.6812 −0.608805
\(506\) 72.1748 3.20856
\(507\) 0 0
\(508\) −63.0026 −2.79529
\(509\) −4.98133 −0.220794 −0.110397 0.993888i \(-0.535212\pi\)
−0.110397 + 0.993888i \(0.535212\pi\)
\(510\) 0 0
\(511\) 3.11123 0.137633
\(512\) −50.6397 −2.23798
\(513\) 0 0
\(514\) −19.5347 −0.861639
\(515\) −3.02380 −0.133244
\(516\) 0 0
\(517\) 9.54650 0.419855
\(518\) −27.0780 −1.18974
\(519\) 0 0
\(520\) 8.55718 0.375257
\(521\) −4.54404 −0.199078 −0.0995389 0.995034i \(-0.531737\pi\)
−0.0995389 + 0.995034i \(0.531737\pi\)
\(522\) 0 0
\(523\) −3.08967 −0.135102 −0.0675510 0.997716i \(-0.521519\pi\)
−0.0675510 + 0.997716i \(0.521519\pi\)
\(524\) 30.2396 1.32102
\(525\) 0 0
\(526\) −1.95023 −0.0850339
\(527\) −34.8427 −1.51777
\(528\) 0 0
\(529\) −2.53205 −0.110089
\(530\) −10.4205 −0.452638
\(531\) 0 0
\(532\) 49.9501 2.16561
\(533\) −5.17615 −0.224204
\(534\) 0 0
\(535\) 10.8492 0.469050
\(536\) −14.7133 −0.635518
\(537\) 0 0
\(538\) 38.8915 1.67673
\(539\) −25.2128 −1.08599
\(540\) 0 0
\(541\) −21.4608 −0.922670 −0.461335 0.887226i \(-0.652629\pi\)
−0.461335 + 0.887226i \(0.652629\pi\)
\(542\) −39.8636 −1.71229
\(543\) 0 0
\(544\) −24.0531 −1.03127
\(545\) 5.14845 0.220535
\(546\) 0 0
\(547\) −14.5151 −0.620619 −0.310309 0.950636i \(-0.600433\pi\)
−0.310309 + 0.950636i \(0.600433\pi\)
\(548\) 59.5862 2.54540
\(549\) 0 0
\(550\) −60.8290 −2.59376
\(551\) 0 0
\(552\) 0 0
\(553\) 4.95916 0.210885
\(554\) −57.3380 −2.43606
\(555\) 0 0
\(556\) 52.1029 2.20965
\(557\) −24.1558 −1.02351 −0.511757 0.859130i \(-0.671005\pi\)
−0.511757 + 0.859130i \(0.671005\pi\)
\(558\) 0 0
\(559\) 2.34305 0.0991003
\(560\) −12.6550 −0.534772
\(561\) 0 0
\(562\) 55.8680 2.35665
\(563\) −7.54185 −0.317851 −0.158926 0.987291i \(-0.550803\pi\)
−0.158926 + 0.987291i \(0.550803\pi\)
\(564\) 0 0
\(565\) 0.597553 0.0251392
\(566\) 13.1309 0.551933
\(567\) 0 0
\(568\) −57.3572 −2.40666
\(569\) −20.0507 −0.840568 −0.420284 0.907393i \(-0.638070\pi\)
−0.420284 + 0.907393i \(0.638070\pi\)
\(570\) 0 0
\(571\) −4.55564 −0.190648 −0.0953239 0.995446i \(-0.530389\pi\)
−0.0953239 + 0.995446i \(0.530389\pi\)
\(572\) −35.6191 −1.48931
\(573\) 0 0
\(574\) 17.7421 0.740542
\(575\) −17.2504 −0.719391
\(576\) 0 0
\(577\) −19.6367 −0.817485 −0.408742 0.912650i \(-0.634033\pi\)
−0.408742 + 0.912650i \(0.634033\pi\)
\(578\) 22.3922 0.931394
\(579\) 0 0
\(580\) 0 0
\(581\) −11.4106 −0.473390
\(582\) 0 0
\(583\) 23.7584 0.983972
\(584\) 11.0358 0.456667
\(585\) 0 0
\(586\) 9.53300 0.393805
\(587\) 40.1991 1.65919 0.829596 0.558364i \(-0.188571\pi\)
0.829596 + 0.558364i \(0.188571\pi\)
\(588\) 0 0
\(589\) 44.7407 1.84351
\(590\) −24.0819 −0.991438
\(591\) 0 0
\(592\) −41.4403 −1.70319
\(593\) −45.9625 −1.88746 −0.943728 0.330724i \(-0.892707\pi\)
−0.943728 + 0.330724i \(0.892707\pi\)
\(594\) 0 0
\(595\) 9.58374 0.392895
\(596\) −3.36959 −0.138024
\(597\) 0 0
\(598\) −14.6695 −0.599880
\(599\) −10.0554 −0.410853 −0.205426 0.978673i \(-0.565858\pi\)
−0.205426 + 0.978673i \(0.565858\pi\)
\(600\) 0 0
\(601\) 1.22427 0.0499390 0.0249695 0.999688i \(-0.492051\pi\)
0.0249695 + 0.999688i \(0.492051\pi\)
\(602\) −8.03118 −0.327327
\(603\) 0 0
\(604\) 81.5315 3.31747
\(605\) −31.1914 −1.26811
\(606\) 0 0
\(607\) −30.7767 −1.24919 −0.624593 0.780950i \(-0.714735\pi\)
−0.624593 + 0.780950i \(0.714735\pi\)
\(608\) 30.8860 1.25259
\(609\) 0 0
\(610\) −8.52519 −0.345175
\(611\) −1.94032 −0.0784970
\(612\) 0 0
\(613\) −7.90846 −0.319420 −0.159710 0.987164i \(-0.551056\pi\)
−0.159710 + 0.987164i \(0.551056\pi\)
\(614\) 10.5172 0.424438
\(615\) 0 0
\(616\) 66.8740 2.69443
\(617\) −12.8000 −0.515308 −0.257654 0.966237i \(-0.582949\pi\)
−0.257654 + 0.966237i \(0.582949\pi\)
\(618\) 0 0
\(619\) 42.4563 1.70646 0.853230 0.521534i \(-0.174640\pi\)
0.853230 + 0.521534i \(0.174640\pi\)
\(620\) −33.0275 −1.32642
\(621\) 0 0
\(622\) −20.7808 −0.833235
\(623\) 5.78965 0.231958
\(624\) 0 0
\(625\) 8.60343 0.344137
\(626\) −14.7371 −0.589014
\(627\) 0 0
\(628\) −48.5039 −1.93552
\(629\) 31.3831 1.25133
\(630\) 0 0
\(631\) 44.0652 1.75421 0.877104 0.480300i \(-0.159472\pi\)
0.877104 + 0.480300i \(0.159472\pi\)
\(632\) 17.5906 0.699718
\(633\) 0 0
\(634\) −28.1173 −1.11668
\(635\) 15.5220 0.615972
\(636\) 0 0
\(637\) 5.12449 0.203040
\(638\) 0 0
\(639\) 0 0
\(640\) 14.2635 0.563813
\(641\) −40.3894 −1.59528 −0.797642 0.603131i \(-0.793920\pi\)
−0.797642 + 0.603131i \(0.793920\pi\)
\(642\) 0 0
\(643\) 7.69076 0.303294 0.151647 0.988435i \(-0.451542\pi\)
0.151647 + 0.988435i \(0.451542\pi\)
\(644\) 34.6234 1.36435
\(645\) 0 0
\(646\) −84.0735 −3.30783
\(647\) 24.5624 0.965649 0.482824 0.875717i \(-0.339611\pi\)
0.482824 + 0.875717i \(0.339611\pi\)
\(648\) 0 0
\(649\) 54.9060 2.15525
\(650\) 12.3635 0.484935
\(651\) 0 0
\(652\) −105.472 −4.13062
\(653\) 26.6658 1.04351 0.521756 0.853095i \(-0.325277\pi\)
0.521756 + 0.853095i \(0.325277\pi\)
\(654\) 0 0
\(655\) −7.45016 −0.291102
\(656\) 27.1526 1.06013
\(657\) 0 0
\(658\) 6.65078 0.259274
\(659\) −12.2372 −0.476692 −0.238346 0.971180i \(-0.576605\pi\)
−0.238346 + 0.971180i \(0.576605\pi\)
\(660\) 0 0
\(661\) 40.4225 1.57225 0.786126 0.618067i \(-0.212084\pi\)
0.786126 + 0.618067i \(0.212084\pi\)
\(662\) −42.5560 −1.65398
\(663\) 0 0
\(664\) −40.4744 −1.57071
\(665\) −12.3063 −0.477216
\(666\) 0 0
\(667\) 0 0
\(668\) 63.6263 2.46178
\(669\) 0 0
\(670\) 6.61796 0.255674
\(671\) 19.4371 0.750362
\(672\) 0 0
\(673\) 48.1741 1.85698 0.928488 0.371362i \(-0.121109\pi\)
0.928488 + 0.371362i \(0.121109\pi\)
\(674\) −53.4158 −2.05750
\(675\) 0 0
\(676\) −50.2497 −1.93268
\(677\) 2.26329 0.0869852 0.0434926 0.999054i \(-0.486152\pi\)
0.0434926 + 0.999054i \(0.486152\pi\)
\(678\) 0 0
\(679\) −3.92412 −0.150594
\(680\) 33.9945 1.30363
\(681\) 0 0
\(682\) 109.357 4.18751
\(683\) 27.9688 1.07020 0.535099 0.844789i \(-0.320274\pi\)
0.535099 + 0.844789i \(0.320274\pi\)
\(684\) 0 0
\(685\) −14.6803 −0.560906
\(686\) −48.2645 −1.84275
\(687\) 0 0
\(688\) −12.2910 −0.468589
\(689\) −4.82889 −0.183966
\(690\) 0 0
\(691\) −11.9344 −0.454006 −0.227003 0.973894i \(-0.572893\pi\)
−0.227003 + 0.973894i \(0.572893\pi\)
\(692\) 17.4636 0.663868
\(693\) 0 0
\(694\) 78.6391 2.98510
\(695\) −12.8366 −0.486921
\(696\) 0 0
\(697\) −20.5629 −0.778876
\(698\) −90.6081 −3.42957
\(699\) 0 0
\(700\) −29.1806 −1.10292
\(701\) 3.43744 0.129830 0.0649152 0.997891i \(-0.479322\pi\)
0.0649152 + 0.997891i \(0.479322\pi\)
\(702\) 0 0
\(703\) −40.2983 −1.51988
\(704\) −9.01030 −0.339589
\(705\) 0 0
\(706\) 15.2769 0.574954
\(707\) 21.7310 0.817280
\(708\) 0 0
\(709\) −26.5487 −0.997058 −0.498529 0.866873i \(-0.666126\pi\)
−0.498529 + 0.866873i \(0.666126\pi\)
\(710\) 25.7990 0.968218
\(711\) 0 0
\(712\) 20.5365 0.769637
\(713\) 31.0125 1.16143
\(714\) 0 0
\(715\) 8.77551 0.328186
\(716\) −72.5857 −2.71265
\(717\) 0 0
\(718\) −14.4804 −0.540405
\(719\) 31.1862 1.16305 0.581524 0.813530i \(-0.302457\pi\)
0.581524 + 0.813530i \(0.302457\pi\)
\(720\) 0 0
\(721\) 4.80296 0.178872
\(722\) 59.8067 2.22578
\(723\) 0 0
\(724\) −74.0867 −2.75341
\(725\) 0 0
\(726\) 0 0
\(727\) −17.1516 −0.636119 −0.318060 0.948071i \(-0.603031\pi\)
−0.318060 + 0.948071i \(0.603031\pi\)
\(728\) −13.5921 −0.503757
\(729\) 0 0
\(730\) −4.96386 −0.183721
\(731\) 9.30805 0.344271
\(732\) 0 0
\(733\) −21.3935 −0.790186 −0.395093 0.918641i \(-0.629288\pi\)
−0.395093 + 0.918641i \(0.629288\pi\)
\(734\) −69.2942 −2.55770
\(735\) 0 0
\(736\) 21.4090 0.789146
\(737\) −15.0887 −0.555800
\(738\) 0 0
\(739\) 17.3296 0.637478 0.318739 0.947842i \(-0.396741\pi\)
0.318739 + 0.947842i \(0.396741\pi\)
\(740\) 29.7482 1.09356
\(741\) 0 0
\(742\) 16.5518 0.607636
\(743\) −52.1369 −1.91272 −0.956358 0.292197i \(-0.905614\pi\)
−0.956358 + 0.292197i \(0.905614\pi\)
\(744\) 0 0
\(745\) 0.830170 0.0304151
\(746\) −31.9859 −1.17109
\(747\) 0 0
\(748\) −141.501 −5.17380
\(749\) −17.2327 −0.629668
\(750\) 0 0
\(751\) −23.9867 −0.875288 −0.437644 0.899148i \(-0.644187\pi\)
−0.437644 + 0.899148i \(0.644187\pi\)
\(752\) 10.1784 0.371168
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0870 −0.731041
\(756\) 0 0
\(757\) −47.4501 −1.72460 −0.862301 0.506395i \(-0.830978\pi\)
−0.862301 + 0.506395i \(0.830978\pi\)
\(758\) 8.36441 0.303809
\(759\) 0 0
\(760\) −43.6515 −1.58341
\(761\) −38.7137 −1.40337 −0.701684 0.712488i \(-0.747568\pi\)
−0.701684 + 0.712488i \(0.747568\pi\)
\(762\) 0 0
\(763\) −8.17772 −0.296053
\(764\) −13.0458 −0.471981
\(765\) 0 0
\(766\) −24.4249 −0.882507
\(767\) −11.1596 −0.402950
\(768\) 0 0
\(769\) −42.9530 −1.54893 −0.774463 0.632619i \(-0.781980\pi\)
−0.774463 + 0.632619i \(0.781980\pi\)
\(770\) −30.0795 −1.08399
\(771\) 0 0
\(772\) 21.5954 0.777234
\(773\) 28.2216 1.01506 0.507531 0.861634i \(-0.330558\pi\)
0.507531 + 0.861634i \(0.330558\pi\)
\(774\) 0 0
\(775\) −26.1373 −0.938881
\(776\) −13.9192 −0.499672
\(777\) 0 0
\(778\) 27.3664 0.981132
\(779\) 26.4044 0.946034
\(780\) 0 0
\(781\) −58.8207 −2.10477
\(782\) −58.2765 −2.08396
\(783\) 0 0
\(784\) −26.8816 −0.960058
\(785\) 11.9500 0.426512
\(786\) 0 0
\(787\) 13.3827 0.477042 0.238521 0.971137i \(-0.423337\pi\)
0.238521 + 0.971137i \(0.423337\pi\)
\(788\) 11.1377 0.396762
\(789\) 0 0
\(790\) −7.91216 −0.281502
\(791\) −0.949145 −0.0337477
\(792\) 0 0
\(793\) −3.95059 −0.140289
\(794\) 75.3481 2.67400
\(795\) 0 0
\(796\) 112.996 4.00503
\(797\) −29.7230 −1.05284 −0.526421 0.850224i \(-0.676466\pi\)
−0.526421 + 0.850224i \(0.676466\pi\)
\(798\) 0 0
\(799\) −7.70818 −0.272696
\(800\) −18.0435 −0.637934
\(801\) 0 0
\(802\) −28.9784 −1.02326
\(803\) 11.3174 0.399383
\(804\) 0 0
\(805\) −8.53021 −0.300651
\(806\) −22.2268 −0.782907
\(807\) 0 0
\(808\) 77.0822 2.71174
\(809\) −46.8802 −1.64822 −0.824111 0.566429i \(-0.808325\pi\)
−0.824111 + 0.566429i \(0.808325\pi\)
\(810\) 0 0
\(811\) 5.86820 0.206060 0.103030 0.994678i \(-0.467146\pi\)
0.103030 + 0.994678i \(0.467146\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −98.4990 −3.45239
\(815\) 25.9854 0.910228
\(816\) 0 0
\(817\) −11.9522 −0.418156
\(818\) −75.9216 −2.65454
\(819\) 0 0
\(820\) −19.4917 −0.680679
\(821\) 22.3264 0.779198 0.389599 0.920985i \(-0.372614\pi\)
0.389599 + 0.920985i \(0.372614\pi\)
\(822\) 0 0
\(823\) 18.4220 0.642152 0.321076 0.947053i \(-0.395955\pi\)
0.321076 + 0.947053i \(0.395955\pi\)
\(824\) 17.0366 0.593497
\(825\) 0 0
\(826\) 38.2514 1.33094
\(827\) 28.3783 0.986809 0.493404 0.869800i \(-0.335752\pi\)
0.493404 + 0.869800i \(0.335752\pi\)
\(828\) 0 0
\(829\) 9.92857 0.344833 0.172417 0.985024i \(-0.444842\pi\)
0.172417 + 0.985024i \(0.444842\pi\)
\(830\) 18.2051 0.631910
\(831\) 0 0
\(832\) 1.83134 0.0634903
\(833\) 20.3577 0.705352
\(834\) 0 0
\(835\) −15.6757 −0.542479
\(836\) 181.699 6.28418
\(837\) 0 0
\(838\) 51.6753 1.78509
\(839\) 52.9639 1.82852 0.914259 0.405130i \(-0.132774\pi\)
0.914259 + 0.405130i \(0.132774\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 58.2565 2.00765
\(843\) 0 0
\(844\) 8.15955 0.280863
\(845\) 12.3801 0.425888
\(846\) 0 0
\(847\) 49.5440 1.70235
\(848\) 25.3310 0.869870
\(849\) 0 0
\(850\) 49.1154 1.68464
\(851\) −27.9332 −0.957538
\(852\) 0 0
\(853\) −44.7737 −1.53302 −0.766512 0.642230i \(-0.778009\pi\)
−0.766512 + 0.642230i \(0.778009\pi\)
\(854\) 13.5413 0.463374
\(855\) 0 0
\(856\) −61.1260 −2.08924
\(857\) −0.211298 −0.00721779 −0.00360889 0.999993i \(-0.501149\pi\)
−0.00360889 + 0.999993i \(0.501149\pi\)
\(858\) 0 0
\(859\) −56.0665 −1.91296 −0.956482 0.291790i \(-0.905749\pi\)
−0.956482 + 0.291790i \(0.905749\pi\)
\(860\) 8.82314 0.300866
\(861\) 0 0
\(862\) 10.2562 0.349326
\(863\) −26.3407 −0.896647 −0.448323 0.893871i \(-0.647979\pi\)
−0.448323 + 0.893871i \(0.647979\pi\)
\(864\) 0 0
\(865\) −4.30253 −0.146291
\(866\) −6.66385 −0.226447
\(867\) 0 0
\(868\) 52.4605 1.78063
\(869\) 18.0394 0.611946
\(870\) 0 0
\(871\) 3.06678 0.103914
\(872\) −29.0072 −0.982308
\(873\) 0 0
\(874\) 74.8314 2.53121
\(875\) 16.6167 0.561746
\(876\) 0 0
\(877\) 33.6648 1.13678 0.568390 0.822759i \(-0.307566\pi\)
0.568390 + 0.822759i \(0.307566\pi\)
\(878\) −65.9138 −2.22448
\(879\) 0 0
\(880\) −46.0339 −1.55180
\(881\) −16.4282 −0.553481 −0.276741 0.960945i \(-0.589254\pi\)
−0.276741 + 0.960945i \(0.589254\pi\)
\(882\) 0 0
\(883\) 4.29020 0.144377 0.0721884 0.997391i \(-0.477002\pi\)
0.0721884 + 0.997391i \(0.477002\pi\)
\(884\) 28.7601 0.967306
\(885\) 0 0
\(886\) 47.6817 1.60190
\(887\) −39.5279 −1.32722 −0.663608 0.748081i \(-0.730976\pi\)
−0.663608 + 0.748081i \(0.730976\pi\)
\(888\) 0 0
\(889\) −24.6550 −0.826901
\(890\) −9.23719 −0.309631
\(891\) 0 0
\(892\) −106.351 −3.56091
\(893\) 9.89789 0.331220
\(894\) 0 0
\(895\) 17.8830 0.597763
\(896\) −22.6559 −0.756880
\(897\) 0 0
\(898\) 31.3477 1.04609
\(899\) 0 0
\(900\) 0 0
\(901\) −19.1834 −0.639090
\(902\) 64.5388 2.14891
\(903\) 0 0
\(904\) −3.36671 −0.111975
\(905\) 18.2528 0.606744
\(906\) 0 0
\(907\) −27.1253 −0.900681 −0.450340 0.892857i \(-0.648697\pi\)
−0.450340 + 0.892857i \(0.648697\pi\)
\(908\) 100.119 3.32258
\(909\) 0 0
\(910\) 6.11365 0.202666
\(911\) −12.8679 −0.426333 −0.213166 0.977016i \(-0.568378\pi\)
−0.213166 + 0.977016i \(0.568378\pi\)
\(912\) 0 0
\(913\) −41.5071 −1.37368
\(914\) −51.0069 −1.68716
\(915\) 0 0
\(916\) 61.0365 2.01670
\(917\) 11.8337 0.390784
\(918\) 0 0
\(919\) −23.3758 −0.771097 −0.385548 0.922688i \(-0.625988\pi\)
−0.385548 + 0.922688i \(0.625988\pi\)
\(920\) −30.2575 −0.997561
\(921\) 0 0
\(922\) 50.1229 1.65071
\(923\) 11.9553 0.393513
\(924\) 0 0
\(925\) 23.5421 0.774060
\(926\) 5.63276 0.185104
\(927\) 0 0
\(928\) 0 0
\(929\) 6.68335 0.219274 0.109637 0.993972i \(-0.465031\pi\)
0.109637 + 0.993972i \(0.465031\pi\)
\(930\) 0 0
\(931\) −26.1408 −0.856731
\(932\) 29.6209 0.970266
\(933\) 0 0
\(934\) 11.7430 0.384244
\(935\) 34.8618 1.14010
\(936\) 0 0
\(937\) −35.4245 −1.15727 −0.578633 0.815588i \(-0.696414\pi\)
−0.578633 + 0.815588i \(0.696414\pi\)
\(938\) −10.5119 −0.343225
\(939\) 0 0
\(940\) −7.30661 −0.238315
\(941\) −54.0181 −1.76094 −0.880470 0.474103i \(-0.842773\pi\)
−0.880470 + 0.474103i \(0.842773\pi\)
\(942\) 0 0
\(943\) 18.3025 0.596010
\(944\) 58.5402 1.90532
\(945\) 0 0
\(946\) −29.2142 −0.949837
\(947\) −46.9883 −1.52691 −0.763457 0.645859i \(-0.776499\pi\)
−0.763457 + 0.645859i \(0.776499\pi\)
\(948\) 0 0
\(949\) −2.30026 −0.0746696
\(950\) −63.0680 −2.04619
\(951\) 0 0
\(952\) −53.9964 −1.75003
\(953\) 39.4554 1.27809 0.639043 0.769171i \(-0.279330\pi\)
0.639043 + 0.769171i \(0.279330\pi\)
\(954\) 0 0
\(955\) 3.21411 0.104006
\(956\) −53.7856 −1.73955
\(957\) 0 0
\(958\) −24.0903 −0.778321
\(959\) 23.3180 0.752978
\(960\) 0 0
\(961\) 15.9893 0.515783
\(962\) 20.0199 0.645467
\(963\) 0 0
\(964\) 11.7463 0.378322
\(965\) −5.32047 −0.171272
\(966\) 0 0
\(967\) 19.1270 0.615082 0.307541 0.951535i \(-0.400494\pi\)
0.307541 + 0.951535i \(0.400494\pi\)
\(968\) 175.737 5.64842
\(969\) 0 0
\(970\) 6.26079 0.201022
\(971\) 18.6748 0.599304 0.299652 0.954049i \(-0.403129\pi\)
0.299652 + 0.954049i \(0.403129\pi\)
\(972\) 0 0
\(973\) 20.3895 0.653659
\(974\) 19.2538 0.616932
\(975\) 0 0
\(976\) 20.7237 0.663349
\(977\) −54.0174 −1.72817 −0.864085 0.503345i \(-0.832102\pi\)
−0.864085 + 0.503345i \(0.832102\pi\)
\(978\) 0 0
\(979\) 21.0605 0.673095
\(980\) 19.2971 0.616424
\(981\) 0 0
\(982\) −57.0772 −1.82141
\(983\) −53.7012 −1.71280 −0.856401 0.516311i \(-0.827305\pi\)
−0.856401 + 0.516311i \(0.827305\pi\)
\(984\) 0 0
\(985\) −2.74399 −0.0874309
\(986\) 0 0
\(987\) 0 0
\(988\) −36.9302 −1.17490
\(989\) −8.28483 −0.263442
\(990\) 0 0
\(991\) −3.10936 −0.0987721 −0.0493861 0.998780i \(-0.515726\pi\)
−0.0493861 + 0.998780i \(0.515726\pi\)
\(992\) 32.4383 1.02992
\(993\) 0 0
\(994\) −40.9787 −1.29977
\(995\) −27.8389 −0.882553
\(996\) 0 0
\(997\) 37.8192 1.19774 0.598872 0.800844i \(-0.295616\pi\)
0.598872 + 0.800844i \(0.295616\pi\)
\(998\) −72.9337 −2.30868
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bm.1.7 9
3.2 odd 2 2523.2.a.o.1.3 9
29.5 even 14 261.2.k.c.199.3 18
29.6 even 14 261.2.k.c.181.3 18
29.28 even 2 7569.2.a.bj.1.3 9
87.5 odd 14 87.2.g.a.25.1 yes 18
87.35 odd 14 87.2.g.a.7.1 18
87.86 odd 2 2523.2.a.r.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.7.1 18 87.35 odd 14
87.2.g.a.25.1 yes 18 87.5 odd 14
261.2.k.c.181.3 18 29.6 even 14
261.2.k.c.199.3 18 29.5 even 14
2523.2.a.o.1.3 9 3.2 odd 2
2523.2.a.r.1.7 9 87.86 odd 2
7569.2.a.bj.1.3 9 29.28 even 2
7569.2.a.bm.1.7 9 1.1 even 1 trivial