Properties

Label 7569.2.a.bl.1.9
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 9x^{6} + 70x^{5} - 23x^{4} - 141x^{3} + 14x^{2} + 84x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(2.68096\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.68096 q^{2} +5.18756 q^{4} -3.11062 q^{5} -2.37023 q^{7} +8.54571 q^{8} +O(q^{10})\) \(q+2.68096 q^{2} +5.18756 q^{4} -3.11062 q^{5} -2.37023 q^{7} +8.54571 q^{8} -8.33945 q^{10} -2.60272 q^{11} -2.30853 q^{13} -6.35450 q^{14} +12.5356 q^{16} +4.83107 q^{17} +1.63818 q^{19} -16.1365 q^{20} -6.97779 q^{22} +1.18327 q^{23} +4.67594 q^{25} -6.18908 q^{26} -12.2957 q^{28} +5.78321 q^{31} +16.5161 q^{32} +12.9519 q^{34} +7.37288 q^{35} +6.89817 q^{37} +4.39190 q^{38} -26.5824 q^{40} +7.66791 q^{41} +1.88741 q^{43} -13.5017 q^{44} +3.17231 q^{46} +9.30167 q^{47} -1.38200 q^{49} +12.5360 q^{50} -11.9756 q^{52} +5.17313 q^{53} +8.09606 q^{55} -20.2553 q^{56} +4.90494 q^{59} -11.5358 q^{61} +15.5046 q^{62} +19.2078 q^{64} +7.18096 q^{65} -6.97413 q^{67} +25.0615 q^{68} +19.7664 q^{70} -3.73571 q^{71} +2.39344 q^{73} +18.4937 q^{74} +8.49816 q^{76} +6.16905 q^{77} +3.75941 q^{79} -38.9935 q^{80} +20.5574 q^{82} +10.5949 q^{83} -15.0276 q^{85} +5.06009 q^{86} -22.2421 q^{88} +5.70261 q^{89} +5.47175 q^{91} +6.13830 q^{92} +24.9374 q^{94} -5.09576 q^{95} +16.7931 q^{97} -3.70510 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8} - 4 q^{10} + 3 q^{11} + 5 q^{13} + 15 q^{14} - 5 q^{16} + 16 q^{17} + q^{19} - 8 q^{20} + 24 q^{22} + 10 q^{23} + 9 q^{25} + 12 q^{26} - 24 q^{28} + 4 q^{31} + 25 q^{32} + 24 q^{34} + 44 q^{35} - 25 q^{37} + 10 q^{38} - 5 q^{40} + 34 q^{41} - 12 q^{43} - 23 q^{44} - 6 q^{46} + 8 q^{47} + 26 q^{49} + 27 q^{50} - 23 q^{52} + 32 q^{53} + 5 q^{55} - 14 q^{56} - 10 q^{59} - 51 q^{61} - 8 q^{62} - 8 q^{64} + 11 q^{65} + 7 q^{67} + 11 q^{68} + 14 q^{70} - 7 q^{71} - 17 q^{73} + 62 q^{74} + 6 q^{76} + 64 q^{77} - 13 q^{79} - 54 q^{80} + 37 q^{82} + 31 q^{83} - 42 q^{85} + 70 q^{86} - 29 q^{88} - 32 q^{89} + 45 q^{91} - 9 q^{92} + 38 q^{94} - 20 q^{95} - 16 q^{97} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.68096 1.89573 0.947863 0.318678i \(-0.103239\pi\)
0.947863 + 0.318678i \(0.103239\pi\)
\(3\) 0 0
\(4\) 5.18756 2.59378
\(5\) −3.11062 −1.39111 −0.695555 0.718473i \(-0.744842\pi\)
−0.695555 + 0.718473i \(0.744842\pi\)
\(6\) 0 0
\(7\) −2.37023 −0.895863 −0.447932 0.894068i \(-0.647839\pi\)
−0.447932 + 0.894068i \(0.647839\pi\)
\(8\) 8.54571 3.02137
\(9\) 0 0
\(10\) −8.33945 −2.63716
\(11\) −2.60272 −0.784749 −0.392375 0.919805i \(-0.628346\pi\)
−0.392375 + 0.919805i \(0.628346\pi\)
\(12\) 0 0
\(13\) −2.30853 −0.640271 −0.320136 0.947372i \(-0.603729\pi\)
−0.320136 + 0.947372i \(0.603729\pi\)
\(14\) −6.35450 −1.69831
\(15\) 0 0
\(16\) 12.5356 3.13391
\(17\) 4.83107 1.17171 0.585854 0.810417i \(-0.300759\pi\)
0.585854 + 0.810417i \(0.300759\pi\)
\(18\) 0 0
\(19\) 1.63818 0.375825 0.187912 0.982186i \(-0.439828\pi\)
0.187912 + 0.982186i \(0.439828\pi\)
\(20\) −16.1365 −3.60823
\(21\) 0 0
\(22\) −6.97779 −1.48767
\(23\) 1.18327 0.246730 0.123365 0.992361i \(-0.460631\pi\)
0.123365 + 0.992361i \(0.460631\pi\)
\(24\) 0 0
\(25\) 4.67594 0.935188
\(26\) −6.18908 −1.21378
\(27\) 0 0
\(28\) −12.2957 −2.32367
\(29\) 0 0
\(30\) 0 0
\(31\) 5.78321 1.03869 0.519347 0.854563i \(-0.326175\pi\)
0.519347 + 0.854563i \(0.326175\pi\)
\(32\) 16.5161 2.91966
\(33\) 0 0
\(34\) 12.9519 2.22124
\(35\) 7.37288 1.24624
\(36\) 0 0
\(37\) 6.89817 1.13405 0.567026 0.823700i \(-0.308094\pi\)
0.567026 + 0.823700i \(0.308094\pi\)
\(38\) 4.39190 0.712461
\(39\) 0 0
\(40\) −26.5824 −4.20305
\(41\) 7.66791 1.19753 0.598763 0.800926i \(-0.295659\pi\)
0.598763 + 0.800926i \(0.295659\pi\)
\(42\) 0 0
\(43\) 1.88741 0.287828 0.143914 0.989590i \(-0.454031\pi\)
0.143914 + 0.989590i \(0.454031\pi\)
\(44\) −13.5017 −2.03547
\(45\) 0 0
\(46\) 3.17231 0.467732
\(47\) 9.30167 1.35679 0.678394 0.734698i \(-0.262676\pi\)
0.678394 + 0.734698i \(0.262676\pi\)
\(48\) 0 0
\(49\) −1.38200 −0.197429
\(50\) 12.5360 1.77286
\(51\) 0 0
\(52\) −11.9756 −1.66072
\(53\) 5.17313 0.710584 0.355292 0.934755i \(-0.384381\pi\)
0.355292 + 0.934755i \(0.384381\pi\)
\(54\) 0 0
\(55\) 8.09606 1.09167
\(56\) −20.2553 −2.70673
\(57\) 0 0
\(58\) 0 0
\(59\) 4.90494 0.638569 0.319285 0.947659i \(-0.396557\pi\)
0.319285 + 0.947659i \(0.396557\pi\)
\(60\) 0 0
\(61\) −11.5358 −1.47701 −0.738507 0.674246i \(-0.764469\pi\)
−0.738507 + 0.674246i \(0.764469\pi\)
\(62\) 15.5046 1.96908
\(63\) 0 0
\(64\) 19.2078 2.40097
\(65\) 7.18096 0.890688
\(66\) 0 0
\(67\) −6.97413 −0.852026 −0.426013 0.904717i \(-0.640082\pi\)
−0.426013 + 0.904717i \(0.640082\pi\)
\(68\) 25.0615 3.03915
\(69\) 0 0
\(70\) 19.7664 2.36254
\(71\) −3.73571 −0.443347 −0.221674 0.975121i \(-0.571152\pi\)
−0.221674 + 0.975121i \(0.571152\pi\)
\(72\) 0 0
\(73\) 2.39344 0.280132 0.140066 0.990142i \(-0.455269\pi\)
0.140066 + 0.990142i \(0.455269\pi\)
\(74\) 18.4937 2.14985
\(75\) 0 0
\(76\) 8.49816 0.974806
\(77\) 6.16905 0.703028
\(78\) 0 0
\(79\) 3.75941 0.422967 0.211483 0.977382i \(-0.432171\pi\)
0.211483 + 0.977382i \(0.432171\pi\)
\(80\) −38.9935 −4.35961
\(81\) 0 0
\(82\) 20.5574 2.27018
\(83\) 10.5949 1.16294 0.581472 0.813566i \(-0.302477\pi\)
0.581472 + 0.813566i \(0.302477\pi\)
\(84\) 0 0
\(85\) −15.0276 −1.62997
\(86\) 5.06009 0.545643
\(87\) 0 0
\(88\) −22.2421 −2.37101
\(89\) 5.70261 0.604475 0.302238 0.953233i \(-0.402266\pi\)
0.302238 + 0.953233i \(0.402266\pi\)
\(90\) 0 0
\(91\) 5.47175 0.573596
\(92\) 6.13830 0.639962
\(93\) 0 0
\(94\) 24.9374 2.57210
\(95\) −5.09576 −0.522814
\(96\) 0 0
\(97\) 16.7931 1.70508 0.852539 0.522663i \(-0.175061\pi\)
0.852539 + 0.522663i \(0.175061\pi\)
\(98\) −3.70510 −0.374271
\(99\) 0 0
\(100\) 24.2567 2.42567
\(101\) −4.58223 −0.455949 −0.227974 0.973667i \(-0.573210\pi\)
−0.227974 + 0.973667i \(0.573210\pi\)
\(102\) 0 0
\(103\) 10.5312 1.03767 0.518834 0.854875i \(-0.326366\pi\)
0.518834 + 0.854875i \(0.326366\pi\)
\(104\) −19.7281 −1.93449
\(105\) 0 0
\(106\) 13.8690 1.34707
\(107\) −13.7534 −1.32959 −0.664794 0.747026i \(-0.731481\pi\)
−0.664794 + 0.747026i \(0.731481\pi\)
\(108\) 0 0
\(109\) −5.35230 −0.512657 −0.256329 0.966590i \(-0.582513\pi\)
−0.256329 + 0.966590i \(0.582513\pi\)
\(110\) 21.7052 2.06951
\(111\) 0 0
\(112\) −29.7123 −2.80755
\(113\) 10.7979 1.01578 0.507892 0.861421i \(-0.330425\pi\)
0.507892 + 0.861421i \(0.330425\pi\)
\(114\) 0 0
\(115\) −3.68071 −0.343228
\(116\) 0 0
\(117\) 0 0
\(118\) 13.1500 1.21055
\(119\) −11.4508 −1.04969
\(120\) 0 0
\(121\) −4.22585 −0.384169
\(122\) −30.9272 −2.80001
\(123\) 0 0
\(124\) 30.0007 2.69414
\(125\) 1.00803 0.0901609
\(126\) 0 0
\(127\) 16.8611 1.49618 0.748088 0.663599i \(-0.230972\pi\)
0.748088 + 0.663599i \(0.230972\pi\)
\(128\) 18.4631 1.63192
\(129\) 0 0
\(130\) 19.2519 1.68850
\(131\) −4.55312 −0.397808 −0.198904 0.980019i \(-0.563738\pi\)
−0.198904 + 0.980019i \(0.563738\pi\)
\(132\) 0 0
\(133\) −3.88287 −0.336688
\(134\) −18.6974 −1.61521
\(135\) 0 0
\(136\) 41.2850 3.54016
\(137\) 22.0092 1.88038 0.940188 0.340657i \(-0.110650\pi\)
0.940188 + 0.340657i \(0.110650\pi\)
\(138\) 0 0
\(139\) −8.09367 −0.686496 −0.343248 0.939245i \(-0.611527\pi\)
−0.343248 + 0.939245i \(0.611527\pi\)
\(140\) 38.2472 3.23248
\(141\) 0 0
\(142\) −10.0153 −0.840465
\(143\) 6.00846 0.502453
\(144\) 0 0
\(145\) 0 0
\(146\) 6.41673 0.531053
\(147\) 0 0
\(148\) 35.7846 2.94148
\(149\) −0.743685 −0.0609251 −0.0304625 0.999536i \(-0.509698\pi\)
−0.0304625 + 0.999536i \(0.509698\pi\)
\(150\) 0 0
\(151\) −17.2880 −1.40688 −0.703440 0.710755i \(-0.748354\pi\)
−0.703440 + 0.710755i \(0.748354\pi\)
\(152\) 13.9994 1.13550
\(153\) 0 0
\(154\) 16.5390 1.33275
\(155\) −17.9893 −1.44494
\(156\) 0 0
\(157\) −0.399286 −0.0318665 −0.0159332 0.999873i \(-0.505072\pi\)
−0.0159332 + 0.999873i \(0.505072\pi\)
\(158\) 10.0788 0.801829
\(159\) 0 0
\(160\) −51.3752 −4.06157
\(161\) −2.80463 −0.221036
\(162\) 0 0
\(163\) 9.91343 0.776479 0.388240 0.921558i \(-0.373083\pi\)
0.388240 + 0.921558i \(0.373083\pi\)
\(164\) 39.7777 3.10612
\(165\) 0 0
\(166\) 28.4046 2.20462
\(167\) 11.7190 0.906842 0.453421 0.891297i \(-0.350203\pi\)
0.453421 + 0.891297i \(0.350203\pi\)
\(168\) 0 0
\(169\) −7.67068 −0.590052
\(170\) −40.2885 −3.08999
\(171\) 0 0
\(172\) 9.79107 0.746562
\(173\) −8.14339 −0.619131 −0.309565 0.950878i \(-0.600184\pi\)
−0.309565 + 0.950878i \(0.600184\pi\)
\(174\) 0 0
\(175\) −11.0831 −0.837800
\(176\) −32.6267 −2.45933
\(177\) 0 0
\(178\) 15.2885 1.14592
\(179\) −10.7785 −0.805625 −0.402812 0.915283i \(-0.631967\pi\)
−0.402812 + 0.915283i \(0.631967\pi\)
\(180\) 0 0
\(181\) 20.6125 1.53211 0.766057 0.642773i \(-0.222216\pi\)
0.766057 + 0.642773i \(0.222216\pi\)
\(182\) 14.6696 1.08738
\(183\) 0 0
\(184\) 10.1119 0.745461
\(185\) −21.4576 −1.57759
\(186\) 0 0
\(187\) −12.5739 −0.919497
\(188\) 48.2529 3.51921
\(189\) 0 0
\(190\) −13.6615 −0.991112
\(191\) 24.4869 1.77181 0.885906 0.463865i \(-0.153538\pi\)
0.885906 + 0.463865i \(0.153538\pi\)
\(192\) 0 0
\(193\) −15.8432 −1.14042 −0.570208 0.821501i \(-0.693137\pi\)
−0.570208 + 0.821501i \(0.693137\pi\)
\(194\) 45.0216 3.23236
\(195\) 0 0
\(196\) −7.16922 −0.512087
\(197\) −12.7505 −0.908436 −0.454218 0.890891i \(-0.650081\pi\)
−0.454218 + 0.890891i \(0.650081\pi\)
\(198\) 0 0
\(199\) −8.12481 −0.575952 −0.287976 0.957638i \(-0.592982\pi\)
−0.287976 + 0.957638i \(0.592982\pi\)
\(200\) 39.9592 2.82555
\(201\) 0 0
\(202\) −12.2848 −0.864354
\(203\) 0 0
\(204\) 0 0
\(205\) −23.8519 −1.66589
\(206\) 28.2337 1.96713
\(207\) 0 0
\(208\) −28.9389 −2.00655
\(209\) −4.26373 −0.294928
\(210\) 0 0
\(211\) −20.9954 −1.44538 −0.722692 0.691170i \(-0.757096\pi\)
−0.722692 + 0.691170i \(0.757096\pi\)
\(212\) 26.8359 1.84310
\(213\) 0 0
\(214\) −36.8723 −2.52054
\(215\) −5.87102 −0.400401
\(216\) 0 0
\(217\) −13.7075 −0.930528
\(218\) −14.3493 −0.971857
\(219\) 0 0
\(220\) 41.9988 2.83156
\(221\) −11.1527 −0.750211
\(222\) 0 0
\(223\) 21.2070 1.42013 0.710064 0.704137i \(-0.248666\pi\)
0.710064 + 0.704137i \(0.248666\pi\)
\(224\) −39.1470 −2.61562
\(225\) 0 0
\(226\) 28.9488 1.92565
\(227\) −10.7043 −0.710469 −0.355234 0.934777i \(-0.615599\pi\)
−0.355234 + 0.934777i \(0.615599\pi\)
\(228\) 0 0
\(229\) −14.0058 −0.925531 −0.462765 0.886481i \(-0.653143\pi\)
−0.462765 + 0.886481i \(0.653143\pi\)
\(230\) −9.86785 −0.650667
\(231\) 0 0
\(232\) 0 0
\(233\) 12.3851 0.811377 0.405688 0.914011i \(-0.367032\pi\)
0.405688 + 0.914011i \(0.367032\pi\)
\(234\) 0 0
\(235\) −28.9339 −1.88744
\(236\) 25.4447 1.65631
\(237\) 0 0
\(238\) −30.6991 −1.98992
\(239\) −8.90340 −0.575913 −0.287956 0.957644i \(-0.592976\pi\)
−0.287956 + 0.957644i \(0.592976\pi\)
\(240\) 0 0
\(241\) −26.1498 −1.68446 −0.842228 0.539121i \(-0.818757\pi\)
−0.842228 + 0.539121i \(0.818757\pi\)
\(242\) −11.3294 −0.728278
\(243\) 0 0
\(244\) −59.8429 −3.83105
\(245\) 4.29888 0.274645
\(246\) 0 0
\(247\) −3.78180 −0.240630
\(248\) 49.4216 3.13828
\(249\) 0 0
\(250\) 2.70249 0.170920
\(251\) −3.87652 −0.244683 −0.122342 0.992488i \(-0.539040\pi\)
−0.122342 + 0.992488i \(0.539040\pi\)
\(252\) 0 0
\(253\) −3.07973 −0.193621
\(254\) 45.2038 2.83634
\(255\) 0 0
\(256\) 11.0833 0.692709
\(257\) 1.61631 0.100823 0.0504114 0.998729i \(-0.483947\pi\)
0.0504114 + 0.998729i \(0.483947\pi\)
\(258\) 0 0
\(259\) −16.3503 −1.01596
\(260\) 37.2516 2.31025
\(261\) 0 0
\(262\) −12.2067 −0.754135
\(263\) 22.6623 1.39741 0.698707 0.715408i \(-0.253759\pi\)
0.698707 + 0.715408i \(0.253759\pi\)
\(264\) 0 0
\(265\) −16.0916 −0.988500
\(266\) −10.4098 −0.638267
\(267\) 0 0
\(268\) −36.1787 −2.20997
\(269\) 5.22022 0.318283 0.159141 0.987256i \(-0.449127\pi\)
0.159141 + 0.987256i \(0.449127\pi\)
\(270\) 0 0
\(271\) 1.49938 0.0910808 0.0455404 0.998962i \(-0.485499\pi\)
0.0455404 + 0.998962i \(0.485499\pi\)
\(272\) 60.5605 3.67202
\(273\) 0 0
\(274\) 59.0059 3.56468
\(275\) −12.1702 −0.733888
\(276\) 0 0
\(277\) 2.18118 0.131055 0.0655273 0.997851i \(-0.479127\pi\)
0.0655273 + 0.997851i \(0.479127\pi\)
\(278\) −21.6988 −1.30141
\(279\) 0 0
\(280\) 63.0066 3.76536
\(281\) 17.2274 1.02770 0.513850 0.857880i \(-0.328219\pi\)
0.513850 + 0.857880i \(0.328219\pi\)
\(282\) 0 0
\(283\) −11.4305 −0.679470 −0.339735 0.940521i \(-0.610337\pi\)
−0.339735 + 0.940521i \(0.610337\pi\)
\(284\) −19.3792 −1.14994
\(285\) 0 0
\(286\) 16.1084 0.952512
\(287\) −18.1747 −1.07282
\(288\) 0 0
\(289\) 6.33927 0.372898
\(290\) 0 0
\(291\) 0 0
\(292\) 12.4161 0.726599
\(293\) 5.12453 0.299378 0.149689 0.988733i \(-0.452173\pi\)
0.149689 + 0.988733i \(0.452173\pi\)
\(294\) 0 0
\(295\) −15.2574 −0.888320
\(296\) 58.9498 3.42639
\(297\) 0 0
\(298\) −1.99379 −0.115497
\(299\) −2.73163 −0.157974
\(300\) 0 0
\(301\) −4.47361 −0.257855
\(302\) −46.3486 −2.66706
\(303\) 0 0
\(304\) 20.5356 1.17780
\(305\) 35.8836 2.05469
\(306\) 0 0
\(307\) 3.39033 0.193496 0.0967482 0.995309i \(-0.469156\pi\)
0.0967482 + 0.995309i \(0.469156\pi\)
\(308\) 32.0023 1.82350
\(309\) 0 0
\(310\) −48.2287 −2.73921
\(311\) −17.1182 −0.970687 −0.485343 0.874324i \(-0.661305\pi\)
−0.485343 + 0.874324i \(0.661305\pi\)
\(312\) 0 0
\(313\) −1.44818 −0.0818559 −0.0409280 0.999162i \(-0.513031\pi\)
−0.0409280 + 0.999162i \(0.513031\pi\)
\(314\) −1.07047 −0.0604101
\(315\) 0 0
\(316\) 19.5022 1.09708
\(317\) 17.5169 0.983849 0.491925 0.870638i \(-0.336294\pi\)
0.491925 + 0.870638i \(0.336294\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −59.7480 −3.34002
\(321\) 0 0
\(322\) −7.51912 −0.419024
\(323\) 7.91418 0.440357
\(324\) 0 0
\(325\) −10.7946 −0.598774
\(326\) 26.5775 1.47199
\(327\) 0 0
\(328\) 65.5278 3.61817
\(329\) −22.0471 −1.21550
\(330\) 0 0
\(331\) 10.4276 0.573155 0.286577 0.958057i \(-0.407482\pi\)
0.286577 + 0.958057i \(0.407482\pi\)
\(332\) 54.9618 3.01642
\(333\) 0 0
\(334\) 31.4181 1.71912
\(335\) 21.6939 1.18526
\(336\) 0 0
\(337\) −32.2012 −1.75411 −0.877056 0.480387i \(-0.840496\pi\)
−0.877056 + 0.480387i \(0.840496\pi\)
\(338\) −20.5648 −1.11858
\(339\) 0 0
\(340\) −77.9566 −4.22779
\(341\) −15.0521 −0.815115
\(342\) 0 0
\(343\) 19.8673 1.07273
\(344\) 16.1293 0.869634
\(345\) 0 0
\(346\) −21.8321 −1.17370
\(347\) −6.96578 −0.373942 −0.186971 0.982365i \(-0.559867\pi\)
−0.186971 + 0.982365i \(0.559867\pi\)
\(348\) 0 0
\(349\) 13.9714 0.747871 0.373935 0.927455i \(-0.378008\pi\)
0.373935 + 0.927455i \(0.378008\pi\)
\(350\) −29.7133 −1.58824
\(351\) 0 0
\(352\) −42.9867 −2.29120
\(353\) −25.8422 −1.37544 −0.687722 0.725974i \(-0.741389\pi\)
−0.687722 + 0.725974i \(0.741389\pi\)
\(354\) 0 0
\(355\) 11.6204 0.616745
\(356\) 29.5826 1.56787
\(357\) 0 0
\(358\) −28.8968 −1.52724
\(359\) 17.5435 0.925909 0.462955 0.886382i \(-0.346789\pi\)
0.462955 + 0.886382i \(0.346789\pi\)
\(360\) 0 0
\(361\) −16.3164 −0.858756
\(362\) 55.2613 2.90447
\(363\) 0 0
\(364\) 28.3850 1.48778
\(365\) −7.44509 −0.389694
\(366\) 0 0
\(367\) 29.7629 1.55361 0.776805 0.629741i \(-0.216839\pi\)
0.776805 + 0.629741i \(0.216839\pi\)
\(368\) 14.8331 0.773228
\(369\) 0 0
\(370\) −57.5269 −2.99068
\(371\) −12.2615 −0.636586
\(372\) 0 0
\(373\) 19.2955 0.999082 0.499541 0.866290i \(-0.333502\pi\)
0.499541 + 0.866290i \(0.333502\pi\)
\(374\) −33.7102 −1.74311
\(375\) 0 0
\(376\) 79.4894 4.09936
\(377\) 0 0
\(378\) 0 0
\(379\) −8.58926 −0.441200 −0.220600 0.975364i \(-0.570802\pi\)
−0.220600 + 0.975364i \(0.570802\pi\)
\(380\) −26.4345 −1.35606
\(381\) 0 0
\(382\) 65.6485 3.35887
\(383\) 28.2918 1.44564 0.722822 0.691034i \(-0.242845\pi\)
0.722822 + 0.691034i \(0.242845\pi\)
\(384\) 0 0
\(385\) −19.1895 −0.977990
\(386\) −42.4749 −2.16191
\(387\) 0 0
\(388\) 87.1150 4.42260
\(389\) 27.1843 1.37830 0.689149 0.724619i \(-0.257984\pi\)
0.689149 + 0.724619i \(0.257984\pi\)
\(390\) 0 0
\(391\) 5.71649 0.289095
\(392\) −11.8102 −0.596505
\(393\) 0 0
\(394\) −34.1836 −1.72215
\(395\) −11.6941 −0.588394
\(396\) 0 0
\(397\) 4.95624 0.248747 0.124373 0.992235i \(-0.460308\pi\)
0.124373 + 0.992235i \(0.460308\pi\)
\(398\) −21.7823 −1.09185
\(399\) 0 0
\(400\) 58.6158 2.93079
\(401\) −6.21952 −0.310588 −0.155294 0.987868i \(-0.549632\pi\)
−0.155294 + 0.987868i \(0.549632\pi\)
\(402\) 0 0
\(403\) −13.3507 −0.665046
\(404\) −23.7706 −1.18263
\(405\) 0 0
\(406\) 0 0
\(407\) −17.9540 −0.889946
\(408\) 0 0
\(409\) 4.63871 0.229369 0.114685 0.993402i \(-0.463414\pi\)
0.114685 + 0.993402i \(0.463414\pi\)
\(410\) −63.9461 −3.15807
\(411\) 0 0
\(412\) 54.6311 2.69148
\(413\) −11.6259 −0.572071
\(414\) 0 0
\(415\) −32.9568 −1.61778
\(416\) −38.1279 −1.86938
\(417\) 0 0
\(418\) −11.4309 −0.559103
\(419\) −13.6679 −0.667722 −0.333861 0.942622i \(-0.608352\pi\)
−0.333861 + 0.942622i \(0.608352\pi\)
\(420\) 0 0
\(421\) −11.9030 −0.580118 −0.290059 0.957009i \(-0.593675\pi\)
−0.290059 + 0.957009i \(0.593675\pi\)
\(422\) −56.2879 −2.74005
\(423\) 0 0
\(424\) 44.2081 2.14693
\(425\) 22.5898 1.09577
\(426\) 0 0
\(427\) 27.3426 1.32320
\(428\) −71.3464 −3.44866
\(429\) 0 0
\(430\) −15.7400 −0.759050
\(431\) 22.7320 1.09496 0.547480 0.836819i \(-0.315587\pi\)
0.547480 + 0.836819i \(0.315587\pi\)
\(432\) 0 0
\(433\) −5.51061 −0.264823 −0.132412 0.991195i \(-0.542272\pi\)
−0.132412 + 0.991195i \(0.542272\pi\)
\(434\) −36.7494 −1.76403
\(435\) 0 0
\(436\) −27.7653 −1.32972
\(437\) 1.93842 0.0927271
\(438\) 0 0
\(439\) 20.2638 0.967140 0.483570 0.875306i \(-0.339340\pi\)
0.483570 + 0.875306i \(0.339340\pi\)
\(440\) 69.1866 3.29834
\(441\) 0 0
\(442\) −29.8999 −1.42219
\(443\) −33.8979 −1.61054 −0.805269 0.592910i \(-0.797979\pi\)
−0.805269 + 0.592910i \(0.797979\pi\)
\(444\) 0 0
\(445\) −17.7386 −0.840892
\(446\) 56.8553 2.69217
\(447\) 0 0
\(448\) −45.5269 −2.15094
\(449\) −32.2546 −1.52219 −0.761095 0.648640i \(-0.775338\pi\)
−0.761095 + 0.648640i \(0.775338\pi\)
\(450\) 0 0
\(451\) −19.9574 −0.939758
\(452\) 56.0148 2.63472
\(453\) 0 0
\(454\) −28.6978 −1.34685
\(455\) −17.0205 −0.797935
\(456\) 0 0
\(457\) −26.1317 −1.22239 −0.611194 0.791480i \(-0.709311\pi\)
−0.611194 + 0.791480i \(0.709311\pi\)
\(458\) −37.5491 −1.75455
\(459\) 0 0
\(460\) −19.0939 −0.890258
\(461\) 12.5362 0.583867 0.291933 0.956439i \(-0.405701\pi\)
0.291933 + 0.956439i \(0.405701\pi\)
\(462\) 0 0
\(463\) −38.0989 −1.77061 −0.885303 0.465014i \(-0.846049\pi\)
−0.885303 + 0.465014i \(0.846049\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 33.2041 1.53815
\(467\) 6.90918 0.319719 0.159859 0.987140i \(-0.448896\pi\)
0.159859 + 0.987140i \(0.448896\pi\)
\(468\) 0 0
\(469\) 16.5303 0.763299
\(470\) −77.5708 −3.57807
\(471\) 0 0
\(472\) 41.9163 1.92935
\(473\) −4.91241 −0.225873
\(474\) 0 0
\(475\) 7.66004 0.351467
\(476\) −59.4015 −2.72266
\(477\) 0 0
\(478\) −23.8697 −1.09177
\(479\) 15.2304 0.695894 0.347947 0.937514i \(-0.386879\pi\)
0.347947 + 0.937514i \(0.386879\pi\)
\(480\) 0 0
\(481\) −15.9246 −0.726101
\(482\) −70.1066 −3.19327
\(483\) 0 0
\(484\) −21.9219 −0.996448
\(485\) −52.2368 −2.37195
\(486\) 0 0
\(487\) −31.6610 −1.43470 −0.717350 0.696713i \(-0.754645\pi\)
−0.717350 + 0.696713i \(0.754645\pi\)
\(488\) −98.5821 −4.46260
\(489\) 0 0
\(490\) 11.5251 0.520653
\(491\) −10.7278 −0.484137 −0.242068 0.970259i \(-0.577826\pi\)
−0.242068 + 0.970259i \(0.577826\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −10.1388 −0.456168
\(495\) 0 0
\(496\) 72.4961 3.25517
\(497\) 8.85450 0.397179
\(498\) 0 0
\(499\) −9.76966 −0.437350 −0.218675 0.975798i \(-0.570173\pi\)
−0.218675 + 0.975798i \(0.570173\pi\)
\(500\) 5.22921 0.233857
\(501\) 0 0
\(502\) −10.3928 −0.463853
\(503\) 24.2897 1.08302 0.541512 0.840693i \(-0.317852\pi\)
0.541512 + 0.840693i \(0.317852\pi\)
\(504\) 0 0
\(505\) 14.2536 0.634275
\(506\) −8.25664 −0.367052
\(507\) 0 0
\(508\) 87.4677 3.88075
\(509\) 4.04253 0.179182 0.0895910 0.995979i \(-0.471444\pi\)
0.0895910 + 0.995979i \(0.471444\pi\)
\(510\) 0 0
\(511\) −5.67302 −0.250960
\(512\) −7.21219 −0.318737
\(513\) 0 0
\(514\) 4.33327 0.191133
\(515\) −32.7585 −1.44351
\(516\) 0 0
\(517\) −24.2096 −1.06474
\(518\) −43.8344 −1.92597
\(519\) 0 0
\(520\) 61.3664 2.69110
\(521\) 20.3240 0.890412 0.445206 0.895428i \(-0.353130\pi\)
0.445206 + 0.895428i \(0.353130\pi\)
\(522\) 0 0
\(523\) 0.181906 0.00795418 0.00397709 0.999992i \(-0.498734\pi\)
0.00397709 + 0.999992i \(0.498734\pi\)
\(524\) −23.6196 −1.03183
\(525\) 0 0
\(526\) 60.7566 2.64911
\(527\) 27.9391 1.21705
\(528\) 0 0
\(529\) −21.5999 −0.939124
\(530\) −43.1410 −1.87393
\(531\) 0 0
\(532\) −20.1426 −0.873293
\(533\) −17.7016 −0.766742
\(534\) 0 0
\(535\) 42.7815 1.84960
\(536\) −59.5989 −2.57428
\(537\) 0 0
\(538\) 13.9952 0.603377
\(539\) 3.59696 0.154932
\(540\) 0 0
\(541\) −26.9847 −1.16016 −0.580082 0.814558i \(-0.696979\pi\)
−0.580082 + 0.814558i \(0.696979\pi\)
\(542\) 4.01978 0.172664
\(543\) 0 0
\(544\) 79.7905 3.42099
\(545\) 16.6489 0.713162
\(546\) 0 0
\(547\) 8.74053 0.373718 0.186859 0.982387i \(-0.440169\pi\)
0.186859 + 0.982387i \(0.440169\pi\)
\(548\) 114.174 4.87728
\(549\) 0 0
\(550\) −32.6277 −1.39125
\(551\) 0 0
\(552\) 0 0
\(553\) −8.91068 −0.378920
\(554\) 5.84767 0.248444
\(555\) 0 0
\(556\) −41.9864 −1.78062
\(557\) 28.3288 1.20033 0.600166 0.799876i \(-0.295101\pi\)
0.600166 + 0.799876i \(0.295101\pi\)
\(558\) 0 0
\(559\) −4.35716 −0.184288
\(560\) 92.4237 3.90561
\(561\) 0 0
\(562\) 46.1860 1.94824
\(563\) 1.24481 0.0524623 0.0262312 0.999656i \(-0.491649\pi\)
0.0262312 + 0.999656i \(0.491649\pi\)
\(564\) 0 0
\(565\) −33.5882 −1.41307
\(566\) −30.6446 −1.28809
\(567\) 0 0
\(568\) −31.9243 −1.33951
\(569\) 8.25260 0.345967 0.172983 0.984925i \(-0.444659\pi\)
0.172983 + 0.984925i \(0.444659\pi\)
\(570\) 0 0
\(571\) 27.8020 1.16348 0.581738 0.813376i \(-0.302373\pi\)
0.581738 + 0.813376i \(0.302373\pi\)
\(572\) 31.1692 1.30325
\(573\) 0 0
\(574\) −48.7258 −2.03377
\(575\) 5.53292 0.230739
\(576\) 0 0
\(577\) 7.19670 0.299602 0.149801 0.988716i \(-0.452137\pi\)
0.149801 + 0.988716i \(0.452137\pi\)
\(578\) 16.9954 0.706913
\(579\) 0 0
\(580\) 0 0
\(581\) −25.1124 −1.04184
\(582\) 0 0
\(583\) −13.4642 −0.557630
\(584\) 20.4537 0.846380
\(585\) 0 0
\(586\) 13.7387 0.567539
\(587\) −8.46040 −0.349198 −0.174599 0.984640i \(-0.555863\pi\)
−0.174599 + 0.984640i \(0.555863\pi\)
\(588\) 0 0
\(589\) 9.47394 0.390367
\(590\) −40.9045 −1.68401
\(591\) 0 0
\(592\) 86.4728 3.55401
\(593\) 28.7932 1.18239 0.591197 0.806527i \(-0.298656\pi\)
0.591197 + 0.806527i \(0.298656\pi\)
\(594\) 0 0
\(595\) 35.6189 1.46023
\(596\) −3.85791 −0.158026
\(597\) 0 0
\(598\) −7.32338 −0.299475
\(599\) 2.47991 0.101327 0.0506633 0.998716i \(-0.483866\pi\)
0.0506633 + 0.998716i \(0.483866\pi\)
\(600\) 0 0
\(601\) −39.7004 −1.61941 −0.809706 0.586836i \(-0.800373\pi\)
−0.809706 + 0.586836i \(0.800373\pi\)
\(602\) −11.9936 −0.488822
\(603\) 0 0
\(604\) −89.6826 −3.64913
\(605\) 13.1450 0.534421
\(606\) 0 0
\(607\) 35.3535 1.43495 0.717476 0.696583i \(-0.245297\pi\)
0.717476 + 0.696583i \(0.245297\pi\)
\(608\) 27.0564 1.09728
\(609\) 0 0
\(610\) 96.2026 3.89513
\(611\) −21.4732 −0.868713
\(612\) 0 0
\(613\) 8.09395 0.326912 0.163456 0.986551i \(-0.447736\pi\)
0.163456 + 0.986551i \(0.447736\pi\)
\(614\) 9.08935 0.366816
\(615\) 0 0
\(616\) 52.7189 2.12411
\(617\) −27.3619 −1.10155 −0.550775 0.834654i \(-0.685668\pi\)
−0.550775 + 0.834654i \(0.685668\pi\)
\(618\) 0 0
\(619\) 27.1831 1.09258 0.546291 0.837596i \(-0.316039\pi\)
0.546291 + 0.837596i \(0.316039\pi\)
\(620\) −93.3207 −3.74785
\(621\) 0 0
\(622\) −45.8934 −1.84016
\(623\) −13.5165 −0.541527
\(624\) 0 0
\(625\) −26.5153 −1.06061
\(626\) −3.88251 −0.155176
\(627\) 0 0
\(628\) −2.07132 −0.0826545
\(629\) 33.3256 1.32878
\(630\) 0 0
\(631\) 19.6997 0.784231 0.392116 0.919916i \(-0.371743\pi\)
0.392116 + 0.919916i \(0.371743\pi\)
\(632\) 32.1269 1.27794
\(633\) 0 0
\(634\) 46.9622 1.86511
\(635\) −52.4483 −2.08135
\(636\) 0 0
\(637\) 3.19040 0.126408
\(638\) 0 0
\(639\) 0 0
\(640\) −57.4317 −2.27019
\(641\) −0.280270 −0.0110700 −0.00553501 0.999985i \(-0.501762\pi\)
−0.00553501 + 0.999985i \(0.501762\pi\)
\(642\) 0 0
\(643\) −47.1001 −1.85745 −0.928724 0.370773i \(-0.879093\pi\)
−0.928724 + 0.370773i \(0.879093\pi\)
\(644\) −14.5492 −0.573319
\(645\) 0 0
\(646\) 21.2176 0.834796
\(647\) 1.09365 0.0429956 0.0214978 0.999769i \(-0.493157\pi\)
0.0214978 + 0.999769i \(0.493157\pi\)
\(648\) 0 0
\(649\) −12.7662 −0.501117
\(650\) −28.9398 −1.13511
\(651\) 0 0
\(652\) 51.4264 2.01402
\(653\) 29.8076 1.16646 0.583230 0.812307i \(-0.301788\pi\)
0.583230 + 0.812307i \(0.301788\pi\)
\(654\) 0 0
\(655\) 14.1630 0.553395
\(656\) 96.1221 3.75294
\(657\) 0 0
\(658\) −59.1075 −2.30425
\(659\) 33.3371 1.29863 0.649315 0.760519i \(-0.275056\pi\)
0.649315 + 0.760519i \(0.275056\pi\)
\(660\) 0 0
\(661\) 2.44877 0.0952462 0.0476231 0.998865i \(-0.484835\pi\)
0.0476231 + 0.998865i \(0.484835\pi\)
\(662\) 27.9561 1.08654
\(663\) 0 0
\(664\) 90.5412 3.51368
\(665\) 12.0781 0.468370
\(666\) 0 0
\(667\) 0 0
\(668\) 60.7929 2.35215
\(669\) 0 0
\(670\) 58.1604 2.24693
\(671\) 30.0246 1.15909
\(672\) 0 0
\(673\) 11.2261 0.432734 0.216367 0.976312i \(-0.430579\pi\)
0.216367 + 0.976312i \(0.430579\pi\)
\(674\) −86.3303 −3.32532
\(675\) 0 0
\(676\) −39.7921 −1.53046
\(677\) 5.12465 0.196956 0.0984781 0.995139i \(-0.468603\pi\)
0.0984781 + 0.995139i \(0.468603\pi\)
\(678\) 0 0
\(679\) −39.8035 −1.52752
\(680\) −128.422 −4.92475
\(681\) 0 0
\(682\) −40.3540 −1.54523
\(683\) −29.5618 −1.13115 −0.565575 0.824697i \(-0.691346\pi\)
−0.565575 + 0.824697i \(0.691346\pi\)
\(684\) 0 0
\(685\) −68.4623 −2.61581
\(686\) 53.2634 2.03361
\(687\) 0 0
\(688\) 23.6599 0.902026
\(689\) −11.9423 −0.454966
\(690\) 0 0
\(691\) 44.2064 1.68169 0.840845 0.541275i \(-0.182058\pi\)
0.840845 + 0.541275i \(0.182058\pi\)
\(692\) −42.2443 −1.60589
\(693\) 0 0
\(694\) −18.6750 −0.708892
\(695\) 25.1763 0.954992
\(696\) 0 0
\(697\) 37.0443 1.40315
\(698\) 37.4567 1.41776
\(699\) 0 0
\(700\) −57.4940 −2.17307
\(701\) 25.6911 0.970341 0.485171 0.874420i \(-0.338758\pi\)
0.485171 + 0.874420i \(0.338758\pi\)
\(702\) 0 0
\(703\) 11.3005 0.426205
\(704\) −49.9924 −1.88416
\(705\) 0 0
\(706\) −69.2821 −2.60747
\(707\) 10.8609 0.408468
\(708\) 0 0
\(709\) 18.1323 0.680972 0.340486 0.940250i \(-0.389408\pi\)
0.340486 + 0.940250i \(0.389408\pi\)
\(710\) 31.1538 1.16918
\(711\) 0 0
\(712\) 48.7329 1.82634
\(713\) 6.84312 0.256277
\(714\) 0 0
\(715\) −18.6900 −0.698967
\(716\) −55.9142 −2.08961
\(717\) 0 0
\(718\) 47.0334 1.75527
\(719\) −5.50638 −0.205353 −0.102677 0.994715i \(-0.532741\pi\)
−0.102677 + 0.994715i \(0.532741\pi\)
\(720\) 0 0
\(721\) −24.9613 −0.929608
\(722\) −43.7435 −1.62797
\(723\) 0 0
\(724\) 106.928 3.97396
\(725\) 0 0
\(726\) 0 0
\(727\) −27.5811 −1.02293 −0.511463 0.859305i \(-0.670896\pi\)
−0.511463 + 0.859305i \(0.670896\pi\)
\(728\) 46.7601 1.73304
\(729\) 0 0
\(730\) −19.9600 −0.738753
\(731\) 9.11824 0.337250
\(732\) 0 0
\(733\) −42.7886 −1.58043 −0.790217 0.612828i \(-0.790032\pi\)
−0.790217 + 0.612828i \(0.790032\pi\)
\(734\) 79.7932 2.94522
\(735\) 0 0
\(736\) 19.5431 0.720367
\(737\) 18.1517 0.668627
\(738\) 0 0
\(739\) 29.9595 1.10208 0.551040 0.834479i \(-0.314231\pi\)
0.551040 + 0.834479i \(0.314231\pi\)
\(740\) −111.312 −4.09192
\(741\) 0 0
\(742\) −32.8726 −1.20679
\(743\) −1.55470 −0.0570363 −0.0285181 0.999593i \(-0.509079\pi\)
−0.0285181 + 0.999593i \(0.509079\pi\)
\(744\) 0 0
\(745\) 2.31332 0.0847535
\(746\) 51.7304 1.89399
\(747\) 0 0
\(748\) −65.2279 −2.38497
\(749\) 32.5987 1.19113
\(750\) 0 0
\(751\) −42.0480 −1.53435 −0.767177 0.641436i \(-0.778339\pi\)
−0.767177 + 0.641436i \(0.778339\pi\)
\(752\) 116.602 4.25205
\(753\) 0 0
\(754\) 0 0
\(755\) 53.7765 1.95713
\(756\) 0 0
\(757\) −27.1592 −0.987117 −0.493559 0.869713i \(-0.664304\pi\)
−0.493559 + 0.869713i \(0.664304\pi\)
\(758\) −23.0275 −0.836395
\(759\) 0 0
\(760\) −43.5469 −1.57961
\(761\) 35.0279 1.26976 0.634881 0.772610i \(-0.281049\pi\)
0.634881 + 0.772610i \(0.281049\pi\)
\(762\) 0 0
\(763\) 12.6862 0.459271
\(764\) 127.027 4.59569
\(765\) 0 0
\(766\) 75.8493 2.74055
\(767\) −11.3232 −0.408858
\(768\) 0 0
\(769\) 21.5891 0.778523 0.389261 0.921127i \(-0.372730\pi\)
0.389261 + 0.921127i \(0.372730\pi\)
\(770\) −51.4464 −1.85400
\(771\) 0 0
\(772\) −82.1872 −2.95798
\(773\) −44.3882 −1.59653 −0.798265 0.602306i \(-0.794249\pi\)
−0.798265 + 0.602306i \(0.794249\pi\)
\(774\) 0 0
\(775\) 27.0419 0.971374
\(776\) 143.509 5.15167
\(777\) 0 0
\(778\) 72.8801 2.61288
\(779\) 12.5614 0.450060
\(780\) 0 0
\(781\) 9.72301 0.347917
\(782\) 15.3257 0.548045
\(783\) 0 0
\(784\) −17.3243 −0.618724
\(785\) 1.24202 0.0443298
\(786\) 0 0
\(787\) 20.7242 0.738739 0.369369 0.929283i \(-0.379574\pi\)
0.369369 + 0.929283i \(0.379574\pi\)
\(788\) −66.1440 −2.35628
\(789\) 0 0
\(790\) −31.3514 −1.11543
\(791\) −25.5936 −0.910003
\(792\) 0 0
\(793\) 26.6309 0.945690
\(794\) 13.2875 0.471556
\(795\) 0 0
\(796\) −42.1479 −1.49389
\(797\) 4.93609 0.174845 0.0874227 0.996171i \(-0.472137\pi\)
0.0874227 + 0.996171i \(0.472137\pi\)
\(798\) 0 0
\(799\) 44.9371 1.58976
\(800\) 77.2282 2.73043
\(801\) 0 0
\(802\) −16.6743 −0.588790
\(803\) −6.22946 −0.219833
\(804\) 0 0
\(805\) 8.72414 0.307486
\(806\) −35.7928 −1.26075
\(807\) 0 0
\(808\) −39.1584 −1.37759
\(809\) −1.19173 −0.0418990 −0.0209495 0.999781i \(-0.506669\pi\)
−0.0209495 + 0.999781i \(0.506669\pi\)
\(810\) 0 0
\(811\) 46.6639 1.63859 0.819296 0.573370i \(-0.194364\pi\)
0.819296 + 0.573370i \(0.194364\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −48.1340 −1.68709
\(815\) −30.8369 −1.08017
\(816\) 0 0
\(817\) 3.09193 0.108173
\(818\) 12.4362 0.434822
\(819\) 0 0
\(820\) −123.733 −4.32095
\(821\) −31.7367 −1.10762 −0.553808 0.832644i \(-0.686826\pi\)
−0.553808 + 0.832644i \(0.686826\pi\)
\(822\) 0 0
\(823\) −38.3538 −1.33693 −0.668464 0.743744i \(-0.733048\pi\)
−0.668464 + 0.743744i \(0.733048\pi\)
\(824\) 89.9964 3.13517
\(825\) 0 0
\(826\) −31.1685 −1.08449
\(827\) 17.1249 0.595491 0.297745 0.954645i \(-0.403765\pi\)
0.297745 + 0.954645i \(0.403765\pi\)
\(828\) 0 0
\(829\) 50.9294 1.76885 0.884425 0.466682i \(-0.154551\pi\)
0.884425 + 0.466682i \(0.154551\pi\)
\(830\) −88.3558 −3.06688
\(831\) 0 0
\(832\) −44.3417 −1.53727
\(833\) −6.67656 −0.231329
\(834\) 0 0
\(835\) −36.4533 −1.26152
\(836\) −22.1183 −0.764978
\(837\) 0 0
\(838\) −36.6432 −1.26582
\(839\) −38.4991 −1.32914 −0.664568 0.747228i \(-0.731384\pi\)
−0.664568 + 0.747228i \(0.731384\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −31.9116 −1.09974
\(843\) 0 0
\(844\) −108.915 −3.74901
\(845\) 23.8606 0.820828
\(846\) 0 0
\(847\) 10.0163 0.344163
\(848\) 64.8484 2.22690
\(849\) 0 0
\(850\) 60.5624 2.07727
\(851\) 8.16242 0.279804
\(852\) 0 0
\(853\) −19.5496 −0.669364 −0.334682 0.942331i \(-0.608629\pi\)
−0.334682 + 0.942331i \(0.608629\pi\)
\(854\) 73.3045 2.50843
\(855\) 0 0
\(856\) −117.532 −4.01717
\(857\) 6.02847 0.205929 0.102964 0.994685i \(-0.467167\pi\)
0.102964 + 0.994685i \(0.467167\pi\)
\(858\) 0 0
\(859\) 15.2968 0.521921 0.260961 0.965349i \(-0.415961\pi\)
0.260961 + 0.965349i \(0.415961\pi\)
\(860\) −30.4563 −1.03855
\(861\) 0 0
\(862\) 60.9435 2.07574
\(863\) 5.09773 0.173529 0.0867643 0.996229i \(-0.472347\pi\)
0.0867643 + 0.996229i \(0.472347\pi\)
\(864\) 0 0
\(865\) 25.3310 0.861279
\(866\) −14.7737 −0.502032
\(867\) 0 0
\(868\) −71.1086 −2.41358
\(869\) −9.78469 −0.331923
\(870\) 0 0
\(871\) 16.1000 0.545528
\(872\) −45.7392 −1.54892
\(873\) 0 0
\(874\) 5.19683 0.175785
\(875\) −2.38926 −0.0807718
\(876\) 0 0
\(877\) 56.3739 1.90361 0.951805 0.306704i \(-0.0992262\pi\)
0.951805 + 0.306704i \(0.0992262\pi\)
\(878\) 54.3266 1.83343
\(879\) 0 0
\(880\) 101.489 3.42120
\(881\) −8.76452 −0.295284 −0.147642 0.989041i \(-0.547168\pi\)
−0.147642 + 0.989041i \(0.547168\pi\)
\(882\) 0 0
\(883\) −44.5671 −1.49980 −0.749902 0.661549i \(-0.769899\pi\)
−0.749902 + 0.661549i \(0.769899\pi\)
\(884\) −57.8552 −1.94588
\(885\) 0 0
\(886\) −90.8790 −3.05314
\(887\) −50.8916 −1.70877 −0.854386 0.519639i \(-0.826067\pi\)
−0.854386 + 0.519639i \(0.826067\pi\)
\(888\) 0 0
\(889\) −39.9646 −1.34037
\(890\) −47.5566 −1.59410
\(891\) 0 0
\(892\) 110.013 3.68350
\(893\) 15.2378 0.509915
\(894\) 0 0
\(895\) 33.5279 1.12071
\(896\) −43.7618 −1.46198
\(897\) 0 0
\(898\) −86.4734 −2.88566
\(899\) 0 0
\(900\) 0 0
\(901\) 24.9918 0.832596
\(902\) −53.5051 −1.78152
\(903\) 0 0
\(904\) 92.2760 3.06905
\(905\) −64.1176 −2.13134
\(906\) 0 0
\(907\) −22.1563 −0.735689 −0.367844 0.929887i \(-0.619904\pi\)
−0.367844 + 0.929887i \(0.619904\pi\)
\(908\) −55.5291 −1.84280
\(909\) 0 0
\(910\) −45.6314 −1.51267
\(911\) −2.98463 −0.0988851 −0.0494425 0.998777i \(-0.515744\pi\)
−0.0494425 + 0.998777i \(0.515744\pi\)
\(912\) 0 0
\(913\) −27.5756 −0.912620
\(914\) −70.0581 −2.31731
\(915\) 0 0
\(916\) −72.6560 −2.40062
\(917\) 10.7919 0.356382
\(918\) 0 0
\(919\) −4.29559 −0.141698 −0.0708492 0.997487i \(-0.522571\pi\)
−0.0708492 + 0.997487i \(0.522571\pi\)
\(920\) −31.4543 −1.03702
\(921\) 0 0
\(922\) 33.6089 1.10685
\(923\) 8.62401 0.283863
\(924\) 0 0
\(925\) 32.2554 1.06055
\(926\) −102.142 −3.35659
\(927\) 0 0
\(928\) 0 0
\(929\) −33.6586 −1.10430 −0.552152 0.833743i \(-0.686193\pi\)
−0.552152 + 0.833743i \(0.686193\pi\)
\(930\) 0 0
\(931\) −2.26397 −0.0741987
\(932\) 64.2485 2.10453
\(933\) 0 0
\(934\) 18.5232 0.606099
\(935\) 39.1127 1.27912
\(936\) 0 0
\(937\) 24.1673 0.789511 0.394755 0.918786i \(-0.370829\pi\)
0.394755 + 0.918786i \(0.370829\pi\)
\(938\) 44.3171 1.44701
\(939\) 0 0
\(940\) −150.096 −4.89561
\(941\) 25.2276 0.822395 0.411197 0.911546i \(-0.365111\pi\)
0.411197 + 0.911546i \(0.365111\pi\)
\(942\) 0 0
\(943\) 9.07324 0.295465
\(944\) 61.4865 2.00122
\(945\) 0 0
\(946\) −13.1700 −0.428193
\(947\) −48.1298 −1.56401 −0.782004 0.623274i \(-0.785802\pi\)
−0.782004 + 0.623274i \(0.785802\pi\)
\(948\) 0 0
\(949\) −5.52534 −0.179360
\(950\) 20.5363 0.666285
\(951\) 0 0
\(952\) −97.8550 −3.17150
\(953\) −10.3433 −0.335052 −0.167526 0.985868i \(-0.553578\pi\)
−0.167526 + 0.985868i \(0.553578\pi\)
\(954\) 0 0
\(955\) −76.1694 −2.46479
\(956\) −46.1869 −1.49379
\(957\) 0 0
\(958\) 40.8321 1.31922
\(959\) −52.1670 −1.68456
\(960\) 0 0
\(961\) 2.44547 0.0788862
\(962\) −42.6933 −1.37649
\(963\) 0 0
\(964\) −135.654 −4.36911
\(965\) 49.2820 1.58644
\(966\) 0 0
\(967\) −19.7278 −0.634404 −0.317202 0.948358i \(-0.602743\pi\)
−0.317202 + 0.948358i \(0.602743\pi\)
\(968\) −36.1129 −1.16071
\(969\) 0 0
\(970\) −140.045 −4.49657
\(971\) 8.37868 0.268885 0.134442 0.990921i \(-0.457076\pi\)
0.134442 + 0.990921i \(0.457076\pi\)
\(972\) 0 0
\(973\) 19.1839 0.615007
\(974\) −84.8821 −2.71980
\(975\) 0 0
\(976\) −144.609 −4.62882
\(977\) −27.6767 −0.885457 −0.442728 0.896656i \(-0.645989\pi\)
−0.442728 + 0.896656i \(0.645989\pi\)
\(978\) 0 0
\(979\) −14.8423 −0.474362
\(980\) 22.3007 0.712369
\(981\) 0 0
\(982\) −28.7607 −0.917791
\(983\) 1.80073 0.0574344 0.0287172 0.999588i \(-0.490858\pi\)
0.0287172 + 0.999588i \(0.490858\pi\)
\(984\) 0 0
\(985\) 39.6619 1.26373
\(986\) 0 0
\(987\) 0 0
\(988\) −19.6183 −0.624140
\(989\) 2.23333 0.0710157
\(990\) 0 0
\(991\) 16.7954 0.533525 0.266762 0.963762i \(-0.414046\pi\)
0.266762 + 0.963762i \(0.414046\pi\)
\(992\) 95.5160 3.03264
\(993\) 0 0
\(994\) 23.7386 0.752942
\(995\) 25.2732 0.801213
\(996\) 0 0
\(997\) 26.6523 0.844087 0.422043 0.906576i \(-0.361313\pi\)
0.422043 + 0.906576i \(0.361313\pi\)
\(998\) −26.1921 −0.829096
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bl.1.9 9
3.2 odd 2 2523.2.a.p.1.1 9
29.23 even 7 261.2.k.b.181.1 18
29.24 even 7 261.2.k.b.199.1 18
29.28 even 2 7569.2.a.bk.1.1 9
87.23 odd 14 87.2.g.b.7.3 18
87.53 odd 14 87.2.g.b.25.3 yes 18
87.86 odd 2 2523.2.a.q.1.9 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.7.3 18 87.23 odd 14
87.2.g.b.25.3 yes 18 87.53 odd 14
261.2.k.b.181.1 18 29.23 even 7
261.2.k.b.199.1 18 29.24 even 7
2523.2.a.p.1.1 9 3.2 odd 2
2523.2.a.q.1.9 9 87.86 odd 2
7569.2.a.bk.1.1 9 29.28 even 2
7569.2.a.bl.1.9 9 1.1 even 1 trivial