Properties

Label 7569.2.a.bl.1.8
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 9x^{6} + 70x^{5} - 23x^{4} - 141x^{3} + 14x^{2} + 84x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.19659\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.19659 q^{2} +2.82501 q^{4} +4.07769 q^{5} +3.64733 q^{7} +1.81221 q^{8} +O(q^{10})\) \(q+2.19659 q^{2} +2.82501 q^{4} +4.07769 q^{5} +3.64733 q^{7} +1.81221 q^{8} +8.95700 q^{10} +3.52776 q^{11} +0.926540 q^{13} +8.01169 q^{14} -1.66934 q^{16} -1.61861 q^{17} -3.98608 q^{19} +11.5195 q^{20} +7.74905 q^{22} -1.54577 q^{23} +11.6275 q^{25} +2.03523 q^{26} +10.3037 q^{28} -1.60775 q^{31} -7.29128 q^{32} -3.55543 q^{34} +14.8727 q^{35} -5.30404 q^{37} -8.75579 q^{38} +7.38960 q^{40} +6.71590 q^{41} +4.42936 q^{43} +9.96596 q^{44} -3.39542 q^{46} -3.33787 q^{47} +6.30302 q^{49} +25.5409 q^{50} +2.61748 q^{52} -2.03823 q^{53} +14.3851 q^{55} +6.60971 q^{56} -7.29049 q^{59} -6.00554 q^{61} -3.53156 q^{62} -12.6773 q^{64} +3.77814 q^{65} +9.48235 q^{67} -4.57260 q^{68} +32.6692 q^{70} -8.44759 q^{71} +7.56757 q^{73} -11.6508 q^{74} -11.2607 q^{76} +12.8669 q^{77} +0.287887 q^{79} -6.80706 q^{80} +14.7521 q^{82} +6.47754 q^{83} -6.60020 q^{85} +9.72949 q^{86} +6.39303 q^{88} -16.5093 q^{89} +3.37940 q^{91} -4.36681 q^{92} -7.33194 q^{94} -16.2540 q^{95} +10.0522 q^{97} +13.8451 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8} - 4 q^{10} + 3 q^{11} + 5 q^{13} + 15 q^{14} - 5 q^{16} + 16 q^{17} + q^{19} - 8 q^{20} + 24 q^{22} + 10 q^{23} + 9 q^{25} + 12 q^{26} - 24 q^{28} + 4 q^{31} + 25 q^{32} + 24 q^{34} + 44 q^{35} - 25 q^{37} + 10 q^{38} - 5 q^{40} + 34 q^{41} - 12 q^{43} - 23 q^{44} - 6 q^{46} + 8 q^{47} + 26 q^{49} + 27 q^{50} - 23 q^{52} + 32 q^{53} + 5 q^{55} - 14 q^{56} - 10 q^{59} - 51 q^{61} - 8 q^{62} - 8 q^{64} + 11 q^{65} + 7 q^{67} + 11 q^{68} + 14 q^{70} - 7 q^{71} - 17 q^{73} + 62 q^{74} + 6 q^{76} + 64 q^{77} - 13 q^{79} - 54 q^{80} + 37 q^{82} + 31 q^{83} - 42 q^{85} + 70 q^{86} - 29 q^{88} - 32 q^{89} + 45 q^{91} - 9 q^{92} + 38 q^{94} - 20 q^{95} - 16 q^{97} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19659 1.55322 0.776612 0.629979i \(-0.216937\pi\)
0.776612 + 0.629979i \(0.216937\pi\)
\(3\) 0 0
\(4\) 2.82501 1.41250
\(5\) 4.07769 1.82360 0.911798 0.410638i \(-0.134694\pi\)
0.911798 + 0.410638i \(0.134694\pi\)
\(6\) 0 0
\(7\) 3.64733 1.37856 0.689281 0.724495i \(-0.257927\pi\)
0.689281 + 0.724495i \(0.257927\pi\)
\(8\) 1.81221 0.640711
\(9\) 0 0
\(10\) 8.95700 2.83245
\(11\) 3.52776 1.06366 0.531830 0.846851i \(-0.321504\pi\)
0.531830 + 0.846851i \(0.321504\pi\)
\(12\) 0 0
\(13\) 0.926540 0.256976 0.128488 0.991711i \(-0.458988\pi\)
0.128488 + 0.991711i \(0.458988\pi\)
\(14\) 8.01169 2.14121
\(15\) 0 0
\(16\) −1.66934 −0.417336
\(17\) −1.61861 −0.392571 −0.196286 0.980547i \(-0.562888\pi\)
−0.196286 + 0.980547i \(0.562888\pi\)
\(18\) 0 0
\(19\) −3.98608 −0.914470 −0.457235 0.889346i \(-0.651160\pi\)
−0.457235 + 0.889346i \(0.651160\pi\)
\(20\) 11.5195 2.57584
\(21\) 0 0
\(22\) 7.74905 1.65210
\(23\) −1.54577 −0.322315 −0.161158 0.986929i \(-0.551523\pi\)
−0.161158 + 0.986929i \(0.551523\pi\)
\(24\) 0 0
\(25\) 11.6275 2.32550
\(26\) 2.03523 0.399141
\(27\) 0 0
\(28\) 10.3037 1.94722
\(29\) 0 0
\(30\) 0 0
\(31\) −1.60775 −0.288760 −0.144380 0.989522i \(-0.546119\pi\)
−0.144380 + 0.989522i \(0.546119\pi\)
\(32\) −7.29128 −1.28893
\(33\) 0 0
\(34\) −3.55543 −0.609751
\(35\) 14.8727 2.51394
\(36\) 0 0
\(37\) −5.30404 −0.871979 −0.435990 0.899952i \(-0.643602\pi\)
−0.435990 + 0.899952i \(0.643602\pi\)
\(38\) −8.75579 −1.42038
\(39\) 0 0
\(40\) 7.38960 1.16840
\(41\) 6.71590 1.04885 0.524423 0.851458i \(-0.324281\pi\)
0.524423 + 0.851458i \(0.324281\pi\)
\(42\) 0 0
\(43\) 4.42936 0.675471 0.337736 0.941241i \(-0.390339\pi\)
0.337736 + 0.941241i \(0.390339\pi\)
\(44\) 9.96596 1.50242
\(45\) 0 0
\(46\) −3.39542 −0.500628
\(47\) −3.33787 −0.486879 −0.243439 0.969916i \(-0.578276\pi\)
−0.243439 + 0.969916i \(0.578276\pi\)
\(48\) 0 0
\(49\) 6.30302 0.900431
\(50\) 25.5409 3.61203
\(51\) 0 0
\(52\) 2.61748 0.362980
\(53\) −2.03823 −0.279972 −0.139986 0.990153i \(-0.544706\pi\)
−0.139986 + 0.990153i \(0.544706\pi\)
\(54\) 0 0
\(55\) 14.3851 1.93969
\(56\) 6.60971 0.883260
\(57\) 0 0
\(58\) 0 0
\(59\) −7.29049 −0.949141 −0.474571 0.880217i \(-0.657397\pi\)
−0.474571 + 0.880217i \(0.657397\pi\)
\(60\) 0 0
\(61\) −6.00554 −0.768930 −0.384465 0.923139i \(-0.625614\pi\)
−0.384465 + 0.923139i \(0.625614\pi\)
\(62\) −3.53156 −0.448509
\(63\) 0 0
\(64\) −12.6773 −1.58466
\(65\) 3.77814 0.468620
\(66\) 0 0
\(67\) 9.48235 1.15845 0.579227 0.815167i \(-0.303355\pi\)
0.579227 + 0.815167i \(0.303355\pi\)
\(68\) −4.57260 −0.554509
\(69\) 0 0
\(70\) 32.6692 3.90471
\(71\) −8.44759 −1.00255 −0.501273 0.865289i \(-0.667135\pi\)
−0.501273 + 0.865289i \(0.667135\pi\)
\(72\) 0 0
\(73\) 7.56757 0.885718 0.442859 0.896591i \(-0.353964\pi\)
0.442859 + 0.896591i \(0.353964\pi\)
\(74\) −11.6508 −1.35438
\(75\) 0 0
\(76\) −11.2607 −1.29169
\(77\) 12.8669 1.46632
\(78\) 0 0
\(79\) 0.287887 0.0323898 0.0161949 0.999869i \(-0.494845\pi\)
0.0161949 + 0.999869i \(0.494845\pi\)
\(80\) −6.80706 −0.761053
\(81\) 0 0
\(82\) 14.7521 1.62909
\(83\) 6.47754 0.711003 0.355501 0.934676i \(-0.384310\pi\)
0.355501 + 0.934676i \(0.384310\pi\)
\(84\) 0 0
\(85\) −6.60020 −0.715892
\(86\) 9.72949 1.04916
\(87\) 0 0
\(88\) 6.39303 0.681499
\(89\) −16.5093 −1.74999 −0.874993 0.484136i \(-0.839134\pi\)
−0.874993 + 0.484136i \(0.839134\pi\)
\(90\) 0 0
\(91\) 3.37940 0.354257
\(92\) −4.36681 −0.455272
\(93\) 0 0
\(94\) −7.33194 −0.756232
\(95\) −16.2540 −1.66762
\(96\) 0 0
\(97\) 10.0522 1.02064 0.510322 0.859983i \(-0.329526\pi\)
0.510322 + 0.859983i \(0.329526\pi\)
\(98\) 13.8451 1.39857
\(99\) 0 0
\(100\) 32.8478 3.28478
\(101\) −8.23922 −0.819833 −0.409917 0.912123i \(-0.634442\pi\)
−0.409917 + 0.912123i \(0.634442\pi\)
\(102\) 0 0
\(103\) 7.62704 0.751515 0.375757 0.926718i \(-0.377383\pi\)
0.375757 + 0.926718i \(0.377383\pi\)
\(104\) 1.67908 0.164647
\(105\) 0 0
\(106\) −4.47715 −0.434859
\(107\) 16.7576 1.62002 0.810011 0.586414i \(-0.199461\pi\)
0.810011 + 0.586414i \(0.199461\pi\)
\(108\) 0 0
\(109\) −12.7116 −1.21755 −0.608775 0.793343i \(-0.708339\pi\)
−0.608775 + 0.793343i \(0.708339\pi\)
\(110\) 31.5982 3.01277
\(111\) 0 0
\(112\) −6.08865 −0.575323
\(113\) 8.46482 0.796303 0.398152 0.917320i \(-0.369652\pi\)
0.398152 + 0.917320i \(0.369652\pi\)
\(114\) 0 0
\(115\) −6.30316 −0.587773
\(116\) 0 0
\(117\) 0 0
\(118\) −16.0142 −1.47423
\(119\) −5.90362 −0.541184
\(120\) 0 0
\(121\) 1.44511 0.131374
\(122\) −13.1917 −1.19432
\(123\) 0 0
\(124\) −4.54190 −0.407875
\(125\) 27.0250 2.41719
\(126\) 0 0
\(127\) −17.8052 −1.57995 −0.789977 0.613137i \(-0.789907\pi\)
−0.789977 + 0.613137i \(0.789907\pi\)
\(128\) −13.2642 −1.17240
\(129\) 0 0
\(130\) 8.29902 0.727872
\(131\) −11.3299 −0.989897 −0.494949 0.868922i \(-0.664813\pi\)
−0.494949 + 0.868922i \(0.664813\pi\)
\(132\) 0 0
\(133\) −14.5386 −1.26065
\(134\) 20.8288 1.79934
\(135\) 0 0
\(136\) −2.93326 −0.251525
\(137\) −8.31246 −0.710182 −0.355091 0.934832i \(-0.615550\pi\)
−0.355091 + 0.934832i \(0.615550\pi\)
\(138\) 0 0
\(139\) −3.11275 −0.264020 −0.132010 0.991248i \(-0.542143\pi\)
−0.132010 + 0.991248i \(0.542143\pi\)
\(140\) 42.0154 3.55095
\(141\) 0 0
\(142\) −18.5559 −1.55718
\(143\) 3.26861 0.273335
\(144\) 0 0
\(145\) 0 0
\(146\) 16.6229 1.37572
\(147\) 0 0
\(148\) −14.9840 −1.23167
\(149\) −15.1558 −1.24161 −0.620807 0.783963i \(-0.713195\pi\)
−0.620807 + 0.783963i \(0.713195\pi\)
\(150\) 0 0
\(151\) 0.678890 0.0552473 0.0276237 0.999618i \(-0.491206\pi\)
0.0276237 + 0.999618i \(0.491206\pi\)
\(152\) −7.22360 −0.585911
\(153\) 0 0
\(154\) 28.2633 2.27752
\(155\) −6.55589 −0.526582
\(156\) 0 0
\(157\) −6.23584 −0.497674 −0.248837 0.968545i \(-0.580048\pi\)
−0.248837 + 0.968545i \(0.580048\pi\)
\(158\) 0.632370 0.0503086
\(159\) 0 0
\(160\) −29.7315 −2.35048
\(161\) −5.63793 −0.444331
\(162\) 0 0
\(163\) −15.3163 −1.19967 −0.599834 0.800124i \(-0.704767\pi\)
−0.599834 + 0.800124i \(0.704767\pi\)
\(164\) 18.9725 1.48150
\(165\) 0 0
\(166\) 14.2285 1.10435
\(167\) 15.7861 1.22156 0.610781 0.791799i \(-0.290855\pi\)
0.610781 + 0.791799i \(0.290855\pi\)
\(168\) 0 0
\(169\) −12.1415 −0.933963
\(170\) −14.4979 −1.11194
\(171\) 0 0
\(172\) 12.5130 0.954106
\(173\) 3.44502 0.261920 0.130960 0.991388i \(-0.458194\pi\)
0.130960 + 0.991388i \(0.458194\pi\)
\(174\) 0 0
\(175\) 42.4094 3.20585
\(176\) −5.88905 −0.443904
\(177\) 0 0
\(178\) −36.2642 −2.71812
\(179\) 12.0378 0.899744 0.449872 0.893093i \(-0.351470\pi\)
0.449872 + 0.893093i \(0.351470\pi\)
\(180\) 0 0
\(181\) 2.41926 0.179823 0.0899113 0.995950i \(-0.471342\pi\)
0.0899113 + 0.995950i \(0.471342\pi\)
\(182\) 7.42315 0.550241
\(183\) 0 0
\(184\) −2.80125 −0.206511
\(185\) −21.6282 −1.59014
\(186\) 0 0
\(187\) −5.71008 −0.417563
\(188\) −9.42952 −0.687719
\(189\) 0 0
\(190\) −35.7034 −2.59019
\(191\) −5.83662 −0.422323 −0.211162 0.977451i \(-0.567725\pi\)
−0.211162 + 0.977451i \(0.567725\pi\)
\(192\) 0 0
\(193\) 19.9903 1.43894 0.719468 0.694525i \(-0.244386\pi\)
0.719468 + 0.694525i \(0.244386\pi\)
\(194\) 22.0805 1.58529
\(195\) 0 0
\(196\) 17.8061 1.27186
\(197\) 11.7126 0.834486 0.417243 0.908795i \(-0.362996\pi\)
0.417243 + 0.908795i \(0.362996\pi\)
\(198\) 0 0
\(199\) −16.6484 −1.18017 −0.590086 0.807340i \(-0.700906\pi\)
−0.590086 + 0.807340i \(0.700906\pi\)
\(200\) 21.0715 1.48998
\(201\) 0 0
\(202\) −18.0982 −1.27338
\(203\) 0 0
\(204\) 0 0
\(205\) 27.3853 1.91267
\(206\) 16.7535 1.16727
\(207\) 0 0
\(208\) −1.54671 −0.107245
\(209\) −14.0620 −0.972686
\(210\) 0 0
\(211\) −24.2435 −1.66899 −0.834496 0.551014i \(-0.814241\pi\)
−0.834496 + 0.551014i \(0.814241\pi\)
\(212\) −5.75801 −0.395462
\(213\) 0 0
\(214\) 36.8097 2.51626
\(215\) 18.0615 1.23179
\(216\) 0 0
\(217\) −5.86399 −0.398073
\(218\) −27.9222 −1.89113
\(219\) 0 0
\(220\) 40.6381 2.73982
\(221\) −1.49971 −0.100881
\(222\) 0 0
\(223\) 28.3179 1.89631 0.948153 0.317814i \(-0.102949\pi\)
0.948153 + 0.317814i \(0.102949\pi\)
\(224\) −26.5937 −1.77687
\(225\) 0 0
\(226\) 18.5937 1.23684
\(227\) −9.86418 −0.654709 −0.327354 0.944902i \(-0.606157\pi\)
−0.327354 + 0.944902i \(0.606157\pi\)
\(228\) 0 0
\(229\) 15.6570 1.03464 0.517322 0.855791i \(-0.326929\pi\)
0.517322 + 0.855791i \(0.326929\pi\)
\(230\) −13.8455 −0.912943
\(231\) 0 0
\(232\) 0 0
\(233\) 19.7879 1.29635 0.648176 0.761491i \(-0.275532\pi\)
0.648176 + 0.761491i \(0.275532\pi\)
\(234\) 0 0
\(235\) −13.6108 −0.887871
\(236\) −20.5957 −1.34067
\(237\) 0 0
\(238\) −12.9678 −0.840579
\(239\) 9.33298 0.603700 0.301850 0.953355i \(-0.402396\pi\)
0.301850 + 0.953355i \(0.402396\pi\)
\(240\) 0 0
\(241\) −24.5737 −1.58293 −0.791464 0.611215i \(-0.790681\pi\)
−0.791464 + 0.611215i \(0.790681\pi\)
\(242\) 3.17432 0.204053
\(243\) 0 0
\(244\) −16.9657 −1.08612
\(245\) 25.7017 1.64202
\(246\) 0 0
\(247\) −3.69327 −0.234997
\(248\) −2.91357 −0.185012
\(249\) 0 0
\(250\) 59.3627 3.75443
\(251\) −4.66182 −0.294252 −0.147126 0.989118i \(-0.547002\pi\)
−0.147126 + 0.989118i \(0.547002\pi\)
\(252\) 0 0
\(253\) −5.45311 −0.342834
\(254\) −39.1107 −2.45402
\(255\) 0 0
\(256\) −3.78146 −0.236341
\(257\) 28.3543 1.76869 0.884345 0.466834i \(-0.154605\pi\)
0.884345 + 0.466834i \(0.154605\pi\)
\(258\) 0 0
\(259\) −19.3456 −1.20208
\(260\) 10.6733 0.661928
\(261\) 0 0
\(262\) −24.8871 −1.53753
\(263\) 26.7811 1.65139 0.825697 0.564114i \(-0.190782\pi\)
0.825697 + 0.564114i \(0.190782\pi\)
\(264\) 0 0
\(265\) −8.31125 −0.510556
\(266\) −31.9353 −1.95808
\(267\) 0 0
\(268\) 26.7877 1.63632
\(269\) 0.785551 0.0478959 0.0239479 0.999713i \(-0.492376\pi\)
0.0239479 + 0.999713i \(0.492376\pi\)
\(270\) 0 0
\(271\) −12.1514 −0.738148 −0.369074 0.929400i \(-0.620325\pi\)
−0.369074 + 0.929400i \(0.620325\pi\)
\(272\) 2.70202 0.163834
\(273\) 0 0
\(274\) −18.2591 −1.10307
\(275\) 41.0191 2.47355
\(276\) 0 0
\(277\) −15.7837 −0.948352 −0.474176 0.880430i \(-0.657254\pi\)
−0.474176 + 0.880430i \(0.657254\pi\)
\(278\) −6.83744 −0.410083
\(279\) 0 0
\(280\) 26.9523 1.61071
\(281\) −20.0723 −1.19741 −0.598705 0.800969i \(-0.704318\pi\)
−0.598705 + 0.800969i \(0.704318\pi\)
\(282\) 0 0
\(283\) −1.95557 −0.116246 −0.0581232 0.998309i \(-0.518512\pi\)
−0.0581232 + 0.998309i \(0.518512\pi\)
\(284\) −23.8645 −1.41610
\(285\) 0 0
\(286\) 7.17980 0.424551
\(287\) 24.4951 1.44590
\(288\) 0 0
\(289\) −14.3801 −0.845888
\(290\) 0 0
\(291\) 0 0
\(292\) 21.3785 1.25108
\(293\) 2.41420 0.141039 0.0705194 0.997510i \(-0.477534\pi\)
0.0705194 + 0.997510i \(0.477534\pi\)
\(294\) 0 0
\(295\) −29.7283 −1.73085
\(296\) −9.61201 −0.558687
\(297\) 0 0
\(298\) −33.2912 −1.92851
\(299\) −1.43222 −0.0828273
\(300\) 0 0
\(301\) 16.1553 0.931178
\(302\) 1.49124 0.0858114
\(303\) 0 0
\(304\) 6.65415 0.381641
\(305\) −24.4887 −1.40222
\(306\) 0 0
\(307\) −1.11367 −0.0635606 −0.0317803 0.999495i \(-0.510118\pi\)
−0.0317803 + 0.999495i \(0.510118\pi\)
\(308\) 36.3491 2.07118
\(309\) 0 0
\(310\) −14.4006 −0.817899
\(311\) −4.42989 −0.251196 −0.125598 0.992081i \(-0.540085\pi\)
−0.125598 + 0.992081i \(0.540085\pi\)
\(312\) 0 0
\(313\) −30.1002 −1.70136 −0.850682 0.525680i \(-0.823811\pi\)
−0.850682 + 0.525680i \(0.823811\pi\)
\(314\) −13.6976 −0.772999
\(315\) 0 0
\(316\) 0.813283 0.0457507
\(317\) 6.21069 0.348827 0.174414 0.984672i \(-0.444197\pi\)
0.174414 + 0.984672i \(0.444197\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −51.6939 −2.88978
\(321\) 0 0
\(322\) −12.3842 −0.690146
\(323\) 6.45193 0.358995
\(324\) 0 0
\(325\) 10.7734 0.597599
\(326\) −33.6437 −1.86335
\(327\) 0 0
\(328\) 12.1706 0.672008
\(329\) −12.1743 −0.671192
\(330\) 0 0
\(331\) 10.0058 0.549967 0.274984 0.961449i \(-0.411328\pi\)
0.274984 + 0.961449i \(0.411328\pi\)
\(332\) 18.2991 1.00429
\(333\) 0 0
\(334\) 34.6755 1.89736
\(335\) 38.6660 2.11255
\(336\) 0 0
\(337\) −27.2955 −1.48688 −0.743440 0.668803i \(-0.766807\pi\)
−0.743440 + 0.668803i \(0.766807\pi\)
\(338\) −26.6700 −1.45065
\(339\) 0 0
\(340\) −18.6456 −1.01120
\(341\) −5.67175 −0.307143
\(342\) 0 0
\(343\) −2.54213 −0.137262
\(344\) 8.02691 0.432782
\(345\) 0 0
\(346\) 7.56729 0.406820
\(347\) −1.19493 −0.0641473 −0.0320736 0.999486i \(-0.510211\pi\)
−0.0320736 + 0.999486i \(0.510211\pi\)
\(348\) 0 0
\(349\) 7.25120 0.388148 0.194074 0.980987i \(-0.437830\pi\)
0.194074 + 0.980987i \(0.437830\pi\)
\(350\) 93.1561 4.97940
\(351\) 0 0
\(352\) −25.7219 −1.37098
\(353\) 5.26353 0.280150 0.140075 0.990141i \(-0.455266\pi\)
0.140075 + 0.990141i \(0.455266\pi\)
\(354\) 0 0
\(355\) −34.4466 −1.82824
\(356\) −46.6390 −2.47186
\(357\) 0 0
\(358\) 26.4420 1.39750
\(359\) 14.6286 0.772067 0.386034 0.922485i \(-0.373845\pi\)
0.386034 + 0.922485i \(0.373845\pi\)
\(360\) 0 0
\(361\) −3.11114 −0.163744
\(362\) 5.31413 0.279305
\(363\) 0 0
\(364\) 9.54682 0.500390
\(365\) 30.8582 1.61519
\(366\) 0 0
\(367\) 5.55318 0.289874 0.144937 0.989441i \(-0.453702\pi\)
0.144937 + 0.989441i \(0.453702\pi\)
\(368\) 2.58042 0.134514
\(369\) 0 0
\(370\) −47.5083 −2.46984
\(371\) −7.43409 −0.385959
\(372\) 0 0
\(373\) 29.7459 1.54019 0.770093 0.637931i \(-0.220210\pi\)
0.770093 + 0.637931i \(0.220210\pi\)
\(374\) −12.5427 −0.648568
\(375\) 0 0
\(376\) −6.04891 −0.311949
\(377\) 0 0
\(378\) 0 0
\(379\) −1.96231 −0.100797 −0.0503986 0.998729i \(-0.516049\pi\)
−0.0503986 + 0.998729i \(0.516049\pi\)
\(380\) −45.9177 −2.35553
\(381\) 0 0
\(382\) −12.8207 −0.655962
\(383\) 11.8165 0.603796 0.301898 0.953340i \(-0.402380\pi\)
0.301898 + 0.953340i \(0.402380\pi\)
\(384\) 0 0
\(385\) 52.4672 2.67398
\(386\) 43.9106 2.23499
\(387\) 0 0
\(388\) 28.3975 1.44166
\(389\) −11.9013 −0.603422 −0.301711 0.953399i \(-0.597558\pi\)
−0.301711 + 0.953399i \(0.597558\pi\)
\(390\) 0 0
\(391\) 2.50200 0.126532
\(392\) 11.4224 0.576916
\(393\) 0 0
\(394\) 25.7277 1.29614
\(395\) 1.17391 0.0590660
\(396\) 0 0
\(397\) 19.6778 0.987603 0.493801 0.869575i \(-0.335607\pi\)
0.493801 + 0.869575i \(0.335607\pi\)
\(398\) −36.5697 −1.83307
\(399\) 0 0
\(400\) −19.4103 −0.970517
\(401\) 20.5264 1.02504 0.512520 0.858675i \(-0.328712\pi\)
0.512520 + 0.858675i \(0.328712\pi\)
\(402\) 0 0
\(403\) −1.48964 −0.0742044
\(404\) −23.2759 −1.15802
\(405\) 0 0
\(406\) 0 0
\(407\) −18.7114 −0.927490
\(408\) 0 0
\(409\) 32.1820 1.59130 0.795648 0.605760i \(-0.207131\pi\)
0.795648 + 0.605760i \(0.207131\pi\)
\(410\) 60.1543 2.97081
\(411\) 0 0
\(412\) 21.5464 1.06152
\(413\) −26.5908 −1.30845
\(414\) 0 0
\(415\) 26.4134 1.29658
\(416\) −6.75566 −0.331223
\(417\) 0 0
\(418\) −30.8884 −1.51080
\(419\) −1.58695 −0.0775275 −0.0387638 0.999248i \(-0.512342\pi\)
−0.0387638 + 0.999248i \(0.512342\pi\)
\(420\) 0 0
\(421\) 5.86317 0.285753 0.142877 0.989741i \(-0.454365\pi\)
0.142877 + 0.989741i \(0.454365\pi\)
\(422\) −53.2530 −2.59232
\(423\) 0 0
\(424\) −3.69369 −0.179381
\(425\) −18.8205 −0.912926
\(426\) 0 0
\(427\) −21.9042 −1.06002
\(428\) 47.3405 2.28829
\(429\) 0 0
\(430\) 39.6738 1.91324
\(431\) 8.46235 0.407617 0.203809 0.979011i \(-0.434668\pi\)
0.203809 + 0.979011i \(0.434668\pi\)
\(432\) 0 0
\(433\) 12.7185 0.611212 0.305606 0.952158i \(-0.401141\pi\)
0.305606 + 0.952158i \(0.401141\pi\)
\(434\) −12.8808 −0.618297
\(435\) 0 0
\(436\) −35.9104 −1.71980
\(437\) 6.16157 0.294748
\(438\) 0 0
\(439\) −7.50539 −0.358213 −0.179106 0.983830i \(-0.557321\pi\)
−0.179106 + 0.983830i \(0.557321\pi\)
\(440\) 26.0688 1.24278
\(441\) 0 0
\(442\) −3.29425 −0.156691
\(443\) 11.6583 0.553902 0.276951 0.960884i \(-0.410676\pi\)
0.276951 + 0.960884i \(0.410676\pi\)
\(444\) 0 0
\(445\) −67.3199 −3.19127
\(446\) 62.2028 2.94539
\(447\) 0 0
\(448\) −46.2381 −2.18455
\(449\) 19.4512 0.917957 0.458978 0.888447i \(-0.348216\pi\)
0.458978 + 0.888447i \(0.348216\pi\)
\(450\) 0 0
\(451\) 23.6921 1.11562
\(452\) 23.9132 1.12478
\(453\) 0 0
\(454\) −21.6676 −1.01691
\(455\) 13.7801 0.646022
\(456\) 0 0
\(457\) 17.1125 0.800489 0.400245 0.916408i \(-0.368925\pi\)
0.400245 + 0.916408i \(0.368925\pi\)
\(458\) 34.3920 1.60703
\(459\) 0 0
\(460\) −17.8065 −0.830232
\(461\) −8.53020 −0.397291 −0.198646 0.980071i \(-0.563654\pi\)
−0.198646 + 0.980071i \(0.563654\pi\)
\(462\) 0 0
\(463\) 1.49772 0.0696050 0.0348025 0.999394i \(-0.488920\pi\)
0.0348025 + 0.999394i \(0.488920\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 43.4660 2.01352
\(467\) 21.4307 0.991695 0.495848 0.868410i \(-0.334857\pi\)
0.495848 + 0.868410i \(0.334857\pi\)
\(468\) 0 0
\(469\) 34.5853 1.59700
\(470\) −29.8974 −1.37906
\(471\) 0 0
\(472\) −13.2119 −0.608126
\(473\) 15.6257 0.718472
\(474\) 0 0
\(475\) −46.3483 −2.12660
\(476\) −16.6778 −0.764424
\(477\) 0 0
\(478\) 20.5007 0.937682
\(479\) 28.5538 1.30465 0.652327 0.757937i \(-0.273793\pi\)
0.652327 + 0.757937i \(0.273793\pi\)
\(480\) 0 0
\(481\) −4.91441 −0.224078
\(482\) −53.9783 −2.45864
\(483\) 0 0
\(484\) 4.08245 0.185566
\(485\) 40.9896 1.86124
\(486\) 0 0
\(487\) 25.1555 1.13991 0.569953 0.821677i \(-0.306961\pi\)
0.569953 + 0.821677i \(0.306961\pi\)
\(488\) −10.8833 −0.492662
\(489\) 0 0
\(490\) 56.4561 2.55043
\(491\) 21.6846 0.978614 0.489307 0.872112i \(-0.337250\pi\)
0.489307 + 0.872112i \(0.337250\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.11259 −0.365003
\(495\) 0 0
\(496\) 2.68388 0.120510
\(497\) −30.8112 −1.38207
\(498\) 0 0
\(499\) 5.68927 0.254687 0.127343 0.991859i \(-0.459355\pi\)
0.127343 + 0.991859i \(0.459355\pi\)
\(500\) 76.3457 3.41428
\(501\) 0 0
\(502\) −10.2401 −0.457039
\(503\) 9.46973 0.422234 0.211117 0.977461i \(-0.432290\pi\)
0.211117 + 0.977461i \(0.432290\pi\)
\(504\) 0 0
\(505\) −33.5970 −1.49505
\(506\) −11.9782 −0.532498
\(507\) 0 0
\(508\) −50.2998 −2.23169
\(509\) 30.5939 1.35605 0.678024 0.735039i \(-0.262836\pi\)
0.678024 + 0.735039i \(0.262836\pi\)
\(510\) 0 0
\(511\) 27.6014 1.22102
\(512\) 18.2220 0.805308
\(513\) 0 0
\(514\) 62.2827 2.74717
\(515\) 31.1007 1.37046
\(516\) 0 0
\(517\) −11.7752 −0.517874
\(518\) −42.4943 −1.86709
\(519\) 0 0
\(520\) 6.84676 0.300250
\(521\) −8.99098 −0.393902 −0.196951 0.980413i \(-0.563104\pi\)
−0.196951 + 0.980413i \(0.563104\pi\)
\(522\) 0 0
\(523\) −1.43930 −0.0629362 −0.0314681 0.999505i \(-0.510018\pi\)
−0.0314681 + 0.999505i \(0.510018\pi\)
\(524\) −32.0070 −1.39823
\(525\) 0 0
\(526\) 58.8271 2.56498
\(527\) 2.60232 0.113359
\(528\) 0 0
\(529\) −20.6106 −0.896113
\(530\) −18.2564 −0.793008
\(531\) 0 0
\(532\) −41.0715 −1.78068
\(533\) 6.22255 0.269528
\(534\) 0 0
\(535\) 68.3324 2.95427
\(536\) 17.1840 0.742234
\(537\) 0 0
\(538\) 1.72553 0.0743930
\(539\) 22.2355 0.957753
\(540\) 0 0
\(541\) −27.0344 −1.16230 −0.581150 0.813796i \(-0.697397\pi\)
−0.581150 + 0.813796i \(0.697397\pi\)
\(542\) −26.6917 −1.14651
\(543\) 0 0
\(544\) 11.8018 0.505996
\(545\) −51.8339 −2.22032
\(546\) 0 0
\(547\) −37.2739 −1.59372 −0.796858 0.604166i \(-0.793506\pi\)
−0.796858 + 0.604166i \(0.793506\pi\)
\(548\) −23.4828 −1.00313
\(549\) 0 0
\(550\) 90.1022 3.84197
\(551\) 0 0
\(552\) 0 0
\(553\) 1.05002 0.0446513
\(554\) −34.6704 −1.47300
\(555\) 0 0
\(556\) −8.79356 −0.372930
\(557\) −31.7679 −1.34605 −0.673026 0.739619i \(-0.735006\pi\)
−0.673026 + 0.739619i \(0.735006\pi\)
\(558\) 0 0
\(559\) 4.10398 0.173580
\(560\) −24.8276 −1.04916
\(561\) 0 0
\(562\) −44.0905 −1.85985
\(563\) −13.4735 −0.567842 −0.283921 0.958848i \(-0.591635\pi\)
−0.283921 + 0.958848i \(0.591635\pi\)
\(564\) 0 0
\(565\) 34.5169 1.45214
\(566\) −4.29558 −0.180557
\(567\) 0 0
\(568\) −15.3088 −0.642342
\(569\) 5.53839 0.232181 0.116091 0.993239i \(-0.462964\pi\)
0.116091 + 0.993239i \(0.462964\pi\)
\(570\) 0 0
\(571\) 41.3036 1.72850 0.864250 0.503062i \(-0.167793\pi\)
0.864250 + 0.503062i \(0.167793\pi\)
\(572\) 9.23386 0.386087
\(573\) 0 0
\(574\) 53.8057 2.24581
\(575\) −17.9735 −0.749546
\(576\) 0 0
\(577\) −39.7871 −1.65636 −0.828180 0.560463i \(-0.810623\pi\)
−0.828180 + 0.560463i \(0.810623\pi\)
\(578\) −31.5872 −1.31385
\(579\) 0 0
\(580\) 0 0
\(581\) 23.6257 0.980161
\(582\) 0 0
\(583\) −7.19039 −0.297795
\(584\) 13.7140 0.567489
\(585\) 0 0
\(586\) 5.30300 0.219065
\(587\) −38.7105 −1.59775 −0.798877 0.601495i \(-0.794572\pi\)
−0.798877 + 0.601495i \(0.794572\pi\)
\(588\) 0 0
\(589\) 6.40861 0.264062
\(590\) −65.3010 −2.68840
\(591\) 0 0
\(592\) 8.85427 0.363908
\(593\) 1.40712 0.0577833 0.0288916 0.999583i \(-0.490802\pi\)
0.0288916 + 0.999583i \(0.490802\pi\)
\(594\) 0 0
\(595\) −24.0731 −0.986901
\(596\) −42.8154 −1.75379
\(597\) 0 0
\(598\) −3.14599 −0.128649
\(599\) −30.7455 −1.25623 −0.628113 0.778122i \(-0.716173\pi\)
−0.628113 + 0.778122i \(0.716173\pi\)
\(600\) 0 0
\(601\) −13.2534 −0.540616 −0.270308 0.962774i \(-0.587125\pi\)
−0.270308 + 0.962774i \(0.587125\pi\)
\(602\) 35.4867 1.44633
\(603\) 0 0
\(604\) 1.91787 0.0780371
\(605\) 5.89271 0.239573
\(606\) 0 0
\(607\) 9.85282 0.399914 0.199957 0.979805i \(-0.435920\pi\)
0.199957 + 0.979805i \(0.435920\pi\)
\(608\) 29.0636 1.17869
\(609\) 0 0
\(610\) −53.7916 −2.17796
\(611\) −3.09267 −0.125116
\(612\) 0 0
\(613\) −23.0646 −0.931571 −0.465785 0.884898i \(-0.654228\pi\)
−0.465785 + 0.884898i \(0.654228\pi\)
\(614\) −2.44628 −0.0987238
\(615\) 0 0
\(616\) 23.3175 0.939488
\(617\) 2.14430 0.0863262 0.0431631 0.999068i \(-0.486256\pi\)
0.0431631 + 0.999068i \(0.486256\pi\)
\(618\) 0 0
\(619\) 29.7463 1.19560 0.597802 0.801644i \(-0.296041\pi\)
0.597802 + 0.801644i \(0.296041\pi\)
\(620\) −18.5204 −0.743799
\(621\) 0 0
\(622\) −9.73065 −0.390163
\(623\) −60.2150 −2.41246
\(624\) 0 0
\(625\) 52.0617 2.08247
\(626\) −66.1178 −2.64260
\(627\) 0 0
\(628\) −17.6163 −0.702966
\(629\) 8.58519 0.342314
\(630\) 0 0
\(631\) −4.52395 −0.180096 −0.0900478 0.995937i \(-0.528702\pi\)
−0.0900478 + 0.995937i \(0.528702\pi\)
\(632\) 0.521710 0.0207525
\(633\) 0 0
\(634\) 13.6423 0.541807
\(635\) −72.6039 −2.88120
\(636\) 0 0
\(637\) 5.84000 0.231389
\(638\) 0 0
\(639\) 0 0
\(640\) −54.0872 −2.13798
\(641\) 30.7540 1.21471 0.607354 0.794431i \(-0.292231\pi\)
0.607354 + 0.794431i \(0.292231\pi\)
\(642\) 0 0
\(643\) 16.8712 0.665337 0.332668 0.943044i \(-0.392051\pi\)
0.332668 + 0.943044i \(0.392051\pi\)
\(644\) −15.9272 −0.627620
\(645\) 0 0
\(646\) 14.1722 0.557599
\(647\) −14.1310 −0.555548 −0.277774 0.960646i \(-0.589597\pi\)
−0.277774 + 0.960646i \(0.589597\pi\)
\(648\) 0 0
\(649\) −25.7191 −1.00956
\(650\) 23.6647 0.928205
\(651\) 0 0
\(652\) −43.2688 −1.69454
\(653\) 38.7238 1.51538 0.757689 0.652615i \(-0.226328\pi\)
0.757689 + 0.652615i \(0.226328\pi\)
\(654\) 0 0
\(655\) −46.1997 −1.80517
\(656\) −11.2111 −0.437722
\(657\) 0 0
\(658\) −26.7420 −1.04251
\(659\) −17.3822 −0.677116 −0.338558 0.940945i \(-0.609939\pi\)
−0.338558 + 0.940945i \(0.609939\pi\)
\(660\) 0 0
\(661\) 0.959081 0.0373039 0.0186520 0.999826i \(-0.494063\pi\)
0.0186520 + 0.999826i \(0.494063\pi\)
\(662\) 21.9786 0.854222
\(663\) 0 0
\(664\) 11.7386 0.455547
\(665\) −59.2837 −2.29892
\(666\) 0 0
\(667\) 0 0
\(668\) 44.5958 1.72546
\(669\) 0 0
\(670\) 84.9334 3.28127
\(671\) −21.1861 −0.817881
\(672\) 0 0
\(673\) −30.1107 −1.16068 −0.580341 0.814374i \(-0.697081\pi\)
−0.580341 + 0.814374i \(0.697081\pi\)
\(674\) −59.9570 −2.30946
\(675\) 0 0
\(676\) −34.2999 −1.31923
\(677\) −41.7661 −1.60520 −0.802602 0.596515i \(-0.796552\pi\)
−0.802602 + 0.596515i \(0.796552\pi\)
\(678\) 0 0
\(679\) 36.6636 1.40702
\(680\) −11.9609 −0.458680
\(681\) 0 0
\(682\) −12.4585 −0.477061
\(683\) −40.2674 −1.54079 −0.770396 0.637566i \(-0.779941\pi\)
−0.770396 + 0.637566i \(0.779941\pi\)
\(684\) 0 0
\(685\) −33.8956 −1.29508
\(686\) −5.58402 −0.213199
\(687\) 0 0
\(688\) −7.39413 −0.281899
\(689\) −1.88850 −0.0719461
\(690\) 0 0
\(691\) 41.3791 1.57414 0.787069 0.616866i \(-0.211598\pi\)
0.787069 + 0.616866i \(0.211598\pi\)
\(692\) 9.73221 0.369963
\(693\) 0 0
\(694\) −2.62477 −0.0996351
\(695\) −12.6928 −0.481467
\(696\) 0 0
\(697\) −10.8704 −0.411747
\(698\) 15.9279 0.602881
\(699\) 0 0
\(700\) 119.807 4.52828
\(701\) −2.28878 −0.0864459 −0.0432230 0.999065i \(-0.513763\pi\)
−0.0432230 + 0.999065i \(0.513763\pi\)
\(702\) 0 0
\(703\) 21.1423 0.797399
\(704\) −44.7224 −1.68554
\(705\) 0 0
\(706\) 11.5618 0.435135
\(707\) −30.0512 −1.13019
\(708\) 0 0
\(709\) −27.3080 −1.02557 −0.512786 0.858516i \(-0.671387\pi\)
−0.512786 + 0.858516i \(0.671387\pi\)
\(710\) −75.6651 −2.83966
\(711\) 0 0
\(712\) −29.9183 −1.12124
\(713\) 2.48521 0.0930717
\(714\) 0 0
\(715\) 13.3284 0.498453
\(716\) 34.0068 1.27089
\(717\) 0 0
\(718\) 32.1330 1.19919
\(719\) 19.0751 0.711383 0.355691 0.934604i \(-0.384245\pi\)
0.355691 + 0.934604i \(0.384245\pi\)
\(720\) 0 0
\(721\) 27.8183 1.03601
\(722\) −6.83391 −0.254332
\(723\) 0 0
\(724\) 6.83444 0.254000
\(725\) 0 0
\(726\) 0 0
\(727\) −29.2574 −1.08510 −0.542548 0.840024i \(-0.682541\pi\)
−0.542548 + 0.840024i \(0.682541\pi\)
\(728\) 6.12416 0.226976
\(729\) 0 0
\(730\) 67.7828 2.50875
\(731\) −7.16942 −0.265171
\(732\) 0 0
\(733\) 20.9488 0.773760 0.386880 0.922130i \(-0.373553\pi\)
0.386880 + 0.922130i \(0.373553\pi\)
\(734\) 12.1981 0.450239
\(735\) 0 0
\(736\) 11.2706 0.415441
\(737\) 33.4515 1.23220
\(738\) 0 0
\(739\) −33.7623 −1.24197 −0.620983 0.783824i \(-0.713266\pi\)
−0.620983 + 0.783824i \(0.713266\pi\)
\(740\) −61.0999 −2.24608
\(741\) 0 0
\(742\) −16.3297 −0.599480
\(743\) 44.2943 1.62500 0.812500 0.582962i \(-0.198106\pi\)
0.812500 + 0.582962i \(0.198106\pi\)
\(744\) 0 0
\(745\) −61.8007 −2.26420
\(746\) 65.3396 2.39225
\(747\) 0 0
\(748\) −16.1310 −0.589809
\(749\) 61.1207 2.23330
\(750\) 0 0
\(751\) −7.65239 −0.279240 −0.139620 0.990205i \(-0.544588\pi\)
−0.139620 + 0.990205i \(0.544588\pi\)
\(752\) 5.57206 0.203192
\(753\) 0 0
\(754\) 0 0
\(755\) 2.76830 0.100749
\(756\) 0 0
\(757\) 16.2856 0.591911 0.295955 0.955202i \(-0.404362\pi\)
0.295955 + 0.955202i \(0.404362\pi\)
\(758\) −4.31040 −0.156561
\(759\) 0 0
\(760\) −29.4556 −1.06847
\(761\) 28.5492 1.03491 0.517453 0.855711i \(-0.326880\pi\)
0.517453 + 0.855711i \(0.326880\pi\)
\(762\) 0 0
\(763\) −46.3634 −1.67847
\(764\) −16.4885 −0.596533
\(765\) 0 0
\(766\) 25.9560 0.937830
\(767\) −6.75493 −0.243907
\(768\) 0 0
\(769\) 49.8716 1.79842 0.899208 0.437521i \(-0.144143\pi\)
0.899208 + 0.437521i \(0.144143\pi\)
\(770\) 115.249 4.15329
\(771\) 0 0
\(772\) 56.4729 2.03250
\(773\) −4.99992 −0.179835 −0.0899173 0.995949i \(-0.528660\pi\)
−0.0899173 + 0.995949i \(0.528660\pi\)
\(774\) 0 0
\(775\) −18.6941 −0.671513
\(776\) 18.2166 0.653938
\(777\) 0 0
\(778\) −26.1424 −0.937249
\(779\) −26.7701 −0.959139
\(780\) 0 0
\(781\) −29.8011 −1.06637
\(782\) 5.49588 0.196532
\(783\) 0 0
\(784\) −10.5219 −0.375782
\(785\) −25.4278 −0.907556
\(786\) 0 0
\(787\) 19.1052 0.681027 0.340513 0.940240i \(-0.389399\pi\)
0.340513 + 0.940240i \(0.389399\pi\)
\(788\) 33.0881 1.17872
\(789\) 0 0
\(790\) 2.57860 0.0917426
\(791\) 30.8740 1.09775
\(792\) 0 0
\(793\) −5.56437 −0.197597
\(794\) 43.2242 1.53397
\(795\) 0 0
\(796\) −47.0318 −1.66700
\(797\) 23.2432 0.823318 0.411659 0.911338i \(-0.364950\pi\)
0.411659 + 0.911338i \(0.364950\pi\)
\(798\) 0 0
\(799\) 5.40273 0.191135
\(800\) −84.7795 −2.99741
\(801\) 0 0
\(802\) 45.0881 1.59212
\(803\) 26.6966 0.942103
\(804\) 0 0
\(805\) −22.9897 −0.810281
\(806\) −3.27213 −0.115256
\(807\) 0 0
\(808\) −14.9312 −0.525276
\(809\) 7.53860 0.265043 0.132521 0.991180i \(-0.457693\pi\)
0.132521 + 0.991180i \(0.457693\pi\)
\(810\) 0 0
\(811\) −48.2745 −1.69515 −0.847573 0.530679i \(-0.821937\pi\)
−0.847573 + 0.530679i \(0.821937\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −41.1013 −1.44060
\(815\) −62.4552 −2.18771
\(816\) 0 0
\(817\) −17.6558 −0.617698
\(818\) 70.6906 2.47164
\(819\) 0 0
\(820\) 77.3637 2.70166
\(821\) −6.07390 −0.211980 −0.105990 0.994367i \(-0.533801\pi\)
−0.105990 + 0.994367i \(0.533801\pi\)
\(822\) 0 0
\(823\) 40.0147 1.39483 0.697413 0.716670i \(-0.254334\pi\)
0.697413 + 0.716670i \(0.254334\pi\)
\(824\) 13.8218 0.481504
\(825\) 0 0
\(826\) −58.4092 −2.03231
\(827\) 28.8632 1.00367 0.501837 0.864962i \(-0.332658\pi\)
0.501837 + 0.864962i \(0.332658\pi\)
\(828\) 0 0
\(829\) −41.9301 −1.45629 −0.728147 0.685421i \(-0.759618\pi\)
−0.728147 + 0.685421i \(0.759618\pi\)
\(830\) 58.0194 2.01388
\(831\) 0 0
\(832\) −11.7460 −0.407219
\(833\) −10.2021 −0.353483
\(834\) 0 0
\(835\) 64.3706 2.22764
\(836\) −39.7251 −1.37392
\(837\) 0 0
\(838\) −3.48588 −0.120418
\(839\) 30.7540 1.06175 0.530873 0.847451i \(-0.321864\pi\)
0.530873 + 0.847451i \(0.321864\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 12.8790 0.443839
\(843\) 0 0
\(844\) −68.4881 −2.35746
\(845\) −49.5093 −1.70317
\(846\) 0 0
\(847\) 5.27079 0.181107
\(848\) 3.40251 0.116843
\(849\) 0 0
\(850\) −41.3408 −1.41798
\(851\) 8.19883 0.281052
\(852\) 0 0
\(853\) −14.3499 −0.491330 −0.245665 0.969355i \(-0.579006\pi\)
−0.245665 + 0.969355i \(0.579006\pi\)
\(854\) −48.1145 −1.64644
\(855\) 0 0
\(856\) 30.3683 1.03797
\(857\) −12.0892 −0.412959 −0.206479 0.978451i \(-0.566201\pi\)
−0.206479 + 0.978451i \(0.566201\pi\)
\(858\) 0 0
\(859\) 22.5722 0.770154 0.385077 0.922885i \(-0.374175\pi\)
0.385077 + 0.922885i \(0.374175\pi\)
\(860\) 51.0240 1.73990
\(861\) 0 0
\(862\) 18.5883 0.633121
\(863\) 20.0243 0.681637 0.340818 0.940129i \(-0.389296\pi\)
0.340818 + 0.940129i \(0.389296\pi\)
\(864\) 0 0
\(865\) 14.0477 0.477636
\(866\) 27.9373 0.949348
\(867\) 0 0
\(868\) −16.5658 −0.562280
\(869\) 1.01560 0.0344518
\(870\) 0 0
\(871\) 8.78578 0.297695
\(872\) −23.0360 −0.780098
\(873\) 0 0
\(874\) 13.5344 0.457809
\(875\) 98.5689 3.33224
\(876\) 0 0
\(877\) −42.0059 −1.41844 −0.709219 0.704988i \(-0.750952\pi\)
−0.709219 + 0.704988i \(0.750952\pi\)
\(878\) −16.4863 −0.556384
\(879\) 0 0
\(880\) −24.0137 −0.809502
\(881\) −56.1769 −1.89265 −0.946323 0.323221i \(-0.895234\pi\)
−0.946323 + 0.323221i \(0.895234\pi\)
\(882\) 0 0
\(883\) −54.5727 −1.83652 −0.918259 0.395980i \(-0.870405\pi\)
−0.918259 + 0.395980i \(0.870405\pi\)
\(884\) −4.23669 −0.142495
\(885\) 0 0
\(886\) 25.6085 0.860334
\(887\) −39.2007 −1.31623 −0.658115 0.752917i \(-0.728646\pi\)
−0.658115 + 0.752917i \(0.728646\pi\)
\(888\) 0 0
\(889\) −64.9413 −2.17806
\(890\) −147.874 −4.95675
\(891\) 0 0
\(892\) 79.9983 2.67854
\(893\) 13.3050 0.445236
\(894\) 0 0
\(895\) 49.0862 1.64077
\(896\) −48.3789 −1.61622
\(897\) 0 0
\(898\) 42.7262 1.42579
\(899\) 0 0
\(900\) 0 0
\(901\) 3.29910 0.109909
\(902\) 52.0418 1.73280
\(903\) 0 0
\(904\) 15.3400 0.510200
\(905\) 9.86500 0.327924
\(906\) 0 0
\(907\) 3.36661 0.111786 0.0558932 0.998437i \(-0.482199\pi\)
0.0558932 + 0.998437i \(0.482199\pi\)
\(908\) −27.8664 −0.924779
\(909\) 0 0
\(910\) 30.2693 1.00342
\(911\) −54.9714 −1.82128 −0.910641 0.413198i \(-0.864412\pi\)
−0.910641 + 0.413198i \(0.864412\pi\)
\(912\) 0 0
\(913\) 22.8512 0.756265
\(914\) 37.5892 1.24334
\(915\) 0 0
\(916\) 44.2312 1.46144
\(917\) −41.3238 −1.36463
\(918\) 0 0
\(919\) 26.6983 0.880696 0.440348 0.897827i \(-0.354855\pi\)
0.440348 + 0.897827i \(0.354855\pi\)
\(920\) −11.4226 −0.376593
\(921\) 0 0
\(922\) −18.7374 −0.617082
\(923\) −7.82703 −0.257630
\(924\) 0 0
\(925\) −61.6729 −2.02779
\(926\) 3.28988 0.108112
\(927\) 0 0
\(928\) 0 0
\(929\) −34.4983 −1.13185 −0.565926 0.824456i \(-0.691481\pi\)
−0.565926 + 0.824456i \(0.691481\pi\)
\(930\) 0 0
\(931\) −25.1243 −0.823417
\(932\) 55.9011 1.83110
\(933\) 0 0
\(934\) 47.0745 1.54032
\(935\) −23.2839 −0.761466
\(936\) 0 0
\(937\) −36.3860 −1.18868 −0.594340 0.804214i \(-0.702587\pi\)
−0.594340 + 0.804214i \(0.702587\pi\)
\(938\) 75.9696 2.48050
\(939\) 0 0
\(940\) −38.4506 −1.25412
\(941\) −10.4980 −0.342226 −0.171113 0.985251i \(-0.554736\pi\)
−0.171113 + 0.985251i \(0.554736\pi\)
\(942\) 0 0
\(943\) −10.3812 −0.338059
\(944\) 12.1703 0.396111
\(945\) 0 0
\(946\) 34.3233 1.11595
\(947\) 8.01774 0.260542 0.130271 0.991478i \(-0.458415\pi\)
0.130271 + 0.991478i \(0.458415\pi\)
\(948\) 0 0
\(949\) 7.01166 0.227608
\(950\) −101.808 −3.30309
\(951\) 0 0
\(952\) −10.6986 −0.346742
\(953\) 23.8505 0.772594 0.386297 0.922374i \(-0.373754\pi\)
0.386297 + 0.922374i \(0.373754\pi\)
\(954\) 0 0
\(955\) −23.7999 −0.770147
\(956\) 26.3658 0.852729
\(957\) 0 0
\(958\) 62.7209 2.02642
\(959\) −30.3183 −0.979029
\(960\) 0 0
\(961\) −28.4151 −0.916618
\(962\) −10.7949 −0.348043
\(963\) 0 0
\(964\) −69.4208 −2.23589
\(965\) 81.5143 2.62404
\(966\) 0 0
\(967\) −1.65641 −0.0532667 −0.0266333 0.999645i \(-0.508479\pi\)
−0.0266333 + 0.999645i \(0.508479\pi\)
\(968\) 2.61884 0.0841726
\(969\) 0 0
\(970\) 90.0374 2.89093
\(971\) 30.7444 0.986635 0.493317 0.869849i \(-0.335784\pi\)
0.493317 + 0.869849i \(0.335784\pi\)
\(972\) 0 0
\(973\) −11.3532 −0.363968
\(974\) 55.2564 1.77053
\(975\) 0 0
\(976\) 10.0253 0.320902
\(977\) 45.2764 1.44852 0.724260 0.689527i \(-0.242181\pi\)
0.724260 + 0.689527i \(0.242181\pi\)
\(978\) 0 0
\(979\) −58.2410 −1.86139
\(980\) 72.6076 2.31936
\(981\) 0 0
\(982\) 47.6323 1.52001
\(983\) 54.0341 1.72342 0.861711 0.507400i \(-0.169393\pi\)
0.861711 + 0.507400i \(0.169393\pi\)
\(984\) 0 0
\(985\) 47.7602 1.52177
\(986\) 0 0
\(987\) 0 0
\(988\) −10.4335 −0.331934
\(989\) −6.84677 −0.217715
\(990\) 0 0
\(991\) 2.45456 0.0779718 0.0389859 0.999240i \(-0.487587\pi\)
0.0389859 + 0.999240i \(0.487587\pi\)
\(992\) 11.7225 0.372191
\(993\) 0 0
\(994\) −67.6795 −2.14666
\(995\) −67.8868 −2.15216
\(996\) 0 0
\(997\) −18.5499 −0.587480 −0.293740 0.955885i \(-0.594900\pi\)
−0.293740 + 0.955885i \(0.594900\pi\)
\(998\) 12.4970 0.395586
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bl.1.8 9
3.2 odd 2 2523.2.a.p.1.2 9
29.16 even 7 261.2.k.b.82.3 18
29.20 even 7 261.2.k.b.226.3 18
29.28 even 2 7569.2.a.bk.1.2 9
87.20 odd 14 87.2.g.b.52.1 18
87.74 odd 14 87.2.g.b.82.1 yes 18
87.86 odd 2 2523.2.a.q.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.52.1 18 87.20 odd 14
87.2.g.b.82.1 yes 18 87.74 odd 14
261.2.k.b.82.3 18 29.16 even 7
261.2.k.b.226.3 18 29.20 even 7
2523.2.a.p.1.2 9 3.2 odd 2
2523.2.a.q.1.8 9 87.86 odd 2
7569.2.a.bk.1.2 9 29.28 even 2
7569.2.a.bl.1.8 9 1.1 even 1 trivial