Properties

Label 7569.2.a.bl.1.7
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 9x^{6} + 70x^{5} - 23x^{4} - 141x^{3} + 14x^{2} + 84x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.98078\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.98078 q^{2} +1.92348 q^{4} -1.21902 q^{5} +0.393238 q^{7} -0.151564 q^{8} +O(q^{10})\) \(q+1.98078 q^{2} +1.92348 q^{4} -1.21902 q^{5} +0.393238 q^{7} -0.151564 q^{8} -2.41460 q^{10} +2.49378 q^{11} +3.30428 q^{13} +0.778916 q^{14} -4.14718 q^{16} +4.30028 q^{17} +5.37118 q^{19} -2.34476 q^{20} +4.93963 q^{22} -3.00189 q^{23} -3.51400 q^{25} +6.54504 q^{26} +0.756386 q^{28} -10.0037 q^{31} -7.91152 q^{32} +8.51790 q^{34} -0.479363 q^{35} +3.64927 q^{37} +10.6391 q^{38} +0.184759 q^{40} +7.82011 q^{41} +2.34873 q^{43} +4.79675 q^{44} -5.94608 q^{46} +8.54106 q^{47} -6.84536 q^{49} -6.96045 q^{50} +6.35572 q^{52} +10.9212 q^{53} -3.03996 q^{55} -0.0596006 q^{56} -10.2851 q^{59} +3.72270 q^{61} -19.8151 q^{62} -7.37660 q^{64} -4.02797 q^{65} +5.14680 q^{67} +8.27152 q^{68} -0.949512 q^{70} +8.09127 q^{71} +8.75660 q^{73} +7.22839 q^{74} +10.3314 q^{76} +0.980649 q^{77} +7.29925 q^{79} +5.05548 q^{80} +15.4899 q^{82} +3.74978 q^{83} -5.24211 q^{85} +4.65232 q^{86} -0.377968 q^{88} -10.4120 q^{89} +1.29936 q^{91} -5.77409 q^{92} +16.9179 q^{94} -6.54755 q^{95} -16.2019 q^{97} -13.5591 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8} - 4 q^{10} + 3 q^{11} + 5 q^{13} + 15 q^{14} - 5 q^{16} + 16 q^{17} + q^{19} - 8 q^{20} + 24 q^{22} + 10 q^{23} + 9 q^{25} + 12 q^{26} - 24 q^{28} + 4 q^{31} + 25 q^{32} + 24 q^{34} + 44 q^{35} - 25 q^{37} + 10 q^{38} - 5 q^{40} + 34 q^{41} - 12 q^{43} - 23 q^{44} - 6 q^{46} + 8 q^{47} + 26 q^{49} + 27 q^{50} - 23 q^{52} + 32 q^{53} + 5 q^{55} - 14 q^{56} - 10 q^{59} - 51 q^{61} - 8 q^{62} - 8 q^{64} + 11 q^{65} + 7 q^{67} + 11 q^{68} + 14 q^{70} - 7 q^{71} - 17 q^{73} + 62 q^{74} + 6 q^{76} + 64 q^{77} - 13 q^{79} - 54 q^{80} + 37 q^{82} + 31 q^{83} - 42 q^{85} + 70 q^{86} - 29 q^{88} - 32 q^{89} + 45 q^{91} - 9 q^{92} + 38 q^{94} - 20 q^{95} - 16 q^{97} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.98078 1.40062 0.700311 0.713838i \(-0.253045\pi\)
0.700311 + 0.713838i \(0.253045\pi\)
\(3\) 0 0
\(4\) 1.92348 0.961741
\(5\) −1.21902 −0.545161 −0.272580 0.962133i \(-0.587877\pi\)
−0.272580 + 0.962133i \(0.587877\pi\)
\(6\) 0 0
\(7\) 0.393238 0.148630 0.0743149 0.997235i \(-0.476323\pi\)
0.0743149 + 0.997235i \(0.476323\pi\)
\(8\) −0.151564 −0.0535860
\(9\) 0 0
\(10\) −2.41460 −0.763564
\(11\) 2.49378 0.751904 0.375952 0.926639i \(-0.377316\pi\)
0.375952 + 0.926639i \(0.377316\pi\)
\(12\) 0 0
\(13\) 3.30428 0.916441 0.458221 0.888839i \(-0.348487\pi\)
0.458221 + 0.888839i \(0.348487\pi\)
\(14\) 0.778916 0.208174
\(15\) 0 0
\(16\) −4.14718 −1.03679
\(17\) 4.30028 1.04297 0.521486 0.853260i \(-0.325378\pi\)
0.521486 + 0.853260i \(0.325378\pi\)
\(18\) 0 0
\(19\) 5.37118 1.23223 0.616116 0.787655i \(-0.288705\pi\)
0.616116 + 0.787655i \(0.288705\pi\)
\(20\) −2.34476 −0.524304
\(21\) 0 0
\(22\) 4.93963 1.05313
\(23\) −3.00189 −0.625938 −0.312969 0.949763i \(-0.601324\pi\)
−0.312969 + 0.949763i \(0.601324\pi\)
\(24\) 0 0
\(25\) −3.51400 −0.702800
\(26\) 6.54504 1.28359
\(27\) 0 0
\(28\) 0.756386 0.142943
\(29\) 0 0
\(30\) 0 0
\(31\) −10.0037 −1.79672 −0.898359 0.439262i \(-0.855240\pi\)
−0.898359 + 0.439262i \(0.855240\pi\)
\(32\) −7.91152 −1.39857
\(33\) 0 0
\(34\) 8.51790 1.46081
\(35\) −0.479363 −0.0810271
\(36\) 0 0
\(37\) 3.64927 0.599936 0.299968 0.953949i \(-0.403024\pi\)
0.299968 + 0.953949i \(0.403024\pi\)
\(38\) 10.6391 1.72589
\(39\) 0 0
\(40\) 0.184759 0.0292130
\(41\) 7.82011 1.22130 0.610648 0.791902i \(-0.290909\pi\)
0.610648 + 0.791902i \(0.290909\pi\)
\(42\) 0 0
\(43\) 2.34873 0.358178 0.179089 0.983833i \(-0.442685\pi\)
0.179089 + 0.983833i \(0.442685\pi\)
\(44\) 4.79675 0.723137
\(45\) 0 0
\(46\) −5.94608 −0.876702
\(47\) 8.54106 1.24584 0.622921 0.782285i \(-0.285946\pi\)
0.622921 + 0.782285i \(0.285946\pi\)
\(48\) 0 0
\(49\) −6.84536 −0.977909
\(50\) −6.96045 −0.984357
\(51\) 0 0
\(52\) 6.35572 0.881379
\(53\) 10.9212 1.50014 0.750069 0.661360i \(-0.230020\pi\)
0.750069 + 0.661360i \(0.230020\pi\)
\(54\) 0 0
\(55\) −3.03996 −0.409908
\(56\) −0.0596006 −0.00796447
\(57\) 0 0
\(58\) 0 0
\(59\) −10.2851 −1.33901 −0.669503 0.742809i \(-0.733493\pi\)
−0.669503 + 0.742809i \(0.733493\pi\)
\(60\) 0 0
\(61\) 3.72270 0.476642 0.238321 0.971186i \(-0.423403\pi\)
0.238321 + 0.971186i \(0.423403\pi\)
\(62\) −19.8151 −2.51652
\(63\) 0 0
\(64\) −7.37660 −0.922075
\(65\) −4.02797 −0.499608
\(66\) 0 0
\(67\) 5.14680 0.628781 0.314391 0.949294i \(-0.398200\pi\)
0.314391 + 0.949294i \(0.398200\pi\)
\(68\) 8.27152 1.00307
\(69\) 0 0
\(70\) −0.949512 −0.113488
\(71\) 8.09127 0.960257 0.480128 0.877198i \(-0.340590\pi\)
0.480128 + 0.877198i \(0.340590\pi\)
\(72\) 0 0
\(73\) 8.75660 1.02488 0.512441 0.858722i \(-0.328741\pi\)
0.512441 + 0.858722i \(0.328741\pi\)
\(74\) 7.22839 0.840283
\(75\) 0 0
\(76\) 10.3314 1.18509
\(77\) 0.980649 0.111755
\(78\) 0 0
\(79\) 7.29925 0.821230 0.410615 0.911809i \(-0.365314\pi\)
0.410615 + 0.911809i \(0.365314\pi\)
\(80\) 5.05548 0.565220
\(81\) 0 0
\(82\) 15.4899 1.71057
\(83\) 3.74978 0.411592 0.205796 0.978595i \(-0.434022\pi\)
0.205796 + 0.978595i \(0.434022\pi\)
\(84\) 0 0
\(85\) −5.24211 −0.568587
\(86\) 4.65232 0.501672
\(87\) 0 0
\(88\) −0.377968 −0.0402915
\(89\) −10.4120 −1.10367 −0.551837 0.833952i \(-0.686073\pi\)
−0.551837 + 0.833952i \(0.686073\pi\)
\(90\) 0 0
\(91\) 1.29936 0.136210
\(92\) −5.77409 −0.601990
\(93\) 0 0
\(94\) 16.9179 1.74495
\(95\) −6.54755 −0.671765
\(96\) 0 0
\(97\) −16.2019 −1.64506 −0.822529 0.568723i \(-0.807438\pi\)
−0.822529 + 0.568723i \(0.807438\pi\)
\(98\) −13.5591 −1.36968
\(99\) 0 0
\(100\) −6.75912 −0.675912
\(101\) 2.76424 0.275052 0.137526 0.990498i \(-0.456085\pi\)
0.137526 + 0.990498i \(0.456085\pi\)
\(102\) 0 0
\(103\) 3.78612 0.373057 0.186529 0.982450i \(-0.440276\pi\)
0.186529 + 0.982450i \(0.440276\pi\)
\(104\) −0.500809 −0.0491084
\(105\) 0 0
\(106\) 21.6324 2.10113
\(107\) 11.2962 1.09204 0.546020 0.837772i \(-0.316142\pi\)
0.546020 + 0.837772i \(0.316142\pi\)
\(108\) 0 0
\(109\) 14.8783 1.42508 0.712542 0.701629i \(-0.247544\pi\)
0.712542 + 0.701629i \(0.247544\pi\)
\(110\) −6.02149 −0.574127
\(111\) 0 0
\(112\) −1.63083 −0.154099
\(113\) 0.0175163 0.00164780 0.000823898 1.00000i \(-0.499738\pi\)
0.000823898 1.00000i \(0.499738\pi\)
\(114\) 0 0
\(115\) 3.65936 0.341237
\(116\) 0 0
\(117\) 0 0
\(118\) −20.3725 −1.87544
\(119\) 1.69103 0.155017
\(120\) 0 0
\(121\) −4.78105 −0.434641
\(122\) 7.37384 0.667596
\(123\) 0 0
\(124\) −19.2420 −1.72798
\(125\) 10.3787 0.928299
\(126\) 0 0
\(127\) 10.2560 0.910070 0.455035 0.890473i \(-0.349627\pi\)
0.455035 + 0.890473i \(0.349627\pi\)
\(128\) 1.21162 0.107093
\(129\) 0 0
\(130\) −7.97851 −0.699761
\(131\) −4.95269 −0.432719 −0.216359 0.976314i \(-0.569418\pi\)
−0.216359 + 0.976314i \(0.569418\pi\)
\(132\) 0 0
\(133\) 2.11215 0.183146
\(134\) 10.1947 0.880685
\(135\) 0 0
\(136\) −0.651768 −0.0558886
\(137\) 13.5688 1.15926 0.579631 0.814879i \(-0.303197\pi\)
0.579631 + 0.814879i \(0.303197\pi\)
\(138\) 0 0
\(139\) 16.4724 1.39717 0.698584 0.715528i \(-0.253814\pi\)
0.698584 + 0.715528i \(0.253814\pi\)
\(140\) −0.922046 −0.0779271
\(141\) 0 0
\(142\) 16.0270 1.34496
\(143\) 8.24015 0.689076
\(144\) 0 0
\(145\) 0 0
\(146\) 17.3449 1.43547
\(147\) 0 0
\(148\) 7.01930 0.576983
\(149\) −7.98689 −0.654312 −0.327156 0.944970i \(-0.606090\pi\)
−0.327156 + 0.944970i \(0.606090\pi\)
\(150\) 0 0
\(151\) −20.3034 −1.65227 −0.826133 0.563475i \(-0.809464\pi\)
−0.826133 + 0.563475i \(0.809464\pi\)
\(152\) −0.814077 −0.0660304
\(153\) 0 0
\(154\) 1.94245 0.156527
\(155\) 12.1947 0.979500
\(156\) 0 0
\(157\) −4.08988 −0.326408 −0.163204 0.986592i \(-0.552183\pi\)
−0.163204 + 0.986592i \(0.552183\pi\)
\(158\) 14.4582 1.15023
\(159\) 0 0
\(160\) 9.64427 0.762446
\(161\) −1.18046 −0.0930330
\(162\) 0 0
\(163\) 19.2776 1.50993 0.754967 0.655762i \(-0.227653\pi\)
0.754967 + 0.655762i \(0.227653\pi\)
\(164\) 15.0418 1.17457
\(165\) 0 0
\(166\) 7.42749 0.576485
\(167\) 3.24714 0.251271 0.125635 0.992076i \(-0.459903\pi\)
0.125635 + 0.992076i \(0.459903\pi\)
\(168\) 0 0
\(169\) −2.08176 −0.160136
\(170\) −10.3835 −0.796375
\(171\) 0 0
\(172\) 4.51775 0.344475
\(173\) 8.02956 0.610476 0.305238 0.952276i \(-0.401264\pi\)
0.305238 + 0.952276i \(0.401264\pi\)
\(174\) 0 0
\(175\) −1.38184 −0.104457
\(176\) −10.3422 −0.779570
\(177\) 0 0
\(178\) −20.6239 −1.54583
\(179\) 10.5652 0.789681 0.394840 0.918750i \(-0.370800\pi\)
0.394840 + 0.918750i \(0.370800\pi\)
\(180\) 0 0
\(181\) −12.2440 −0.910088 −0.455044 0.890469i \(-0.650376\pi\)
−0.455044 + 0.890469i \(0.650376\pi\)
\(182\) 2.57375 0.190779
\(183\) 0 0
\(184\) 0.454979 0.0335415
\(185\) −4.44852 −0.327061
\(186\) 0 0
\(187\) 10.7240 0.784214
\(188\) 16.4286 1.19818
\(189\) 0 0
\(190\) −12.9692 −0.940888
\(191\) −6.79213 −0.491461 −0.245731 0.969338i \(-0.579028\pi\)
−0.245731 + 0.969338i \(0.579028\pi\)
\(192\) 0 0
\(193\) −24.4529 −1.76016 −0.880080 0.474826i \(-0.842511\pi\)
−0.880080 + 0.474826i \(0.842511\pi\)
\(194\) −32.0925 −2.30410
\(195\) 0 0
\(196\) −13.1669 −0.940496
\(197\) 7.52376 0.536045 0.268023 0.963413i \(-0.413630\pi\)
0.268023 + 0.963413i \(0.413630\pi\)
\(198\) 0 0
\(199\) −23.0582 −1.63455 −0.817275 0.576248i \(-0.804516\pi\)
−0.817275 + 0.576248i \(0.804516\pi\)
\(200\) 0.532596 0.0376602
\(201\) 0 0
\(202\) 5.47534 0.385244
\(203\) 0 0
\(204\) 0 0
\(205\) −9.53284 −0.665802
\(206\) 7.49946 0.522512
\(207\) 0 0
\(208\) −13.7034 −0.950161
\(209\) 13.3945 0.926520
\(210\) 0 0
\(211\) 6.53288 0.449742 0.224871 0.974389i \(-0.427804\pi\)
0.224871 + 0.974389i \(0.427804\pi\)
\(212\) 21.0067 1.44274
\(213\) 0 0
\(214\) 22.3752 1.52954
\(215\) −2.86314 −0.195265
\(216\) 0 0
\(217\) −3.93383 −0.267046
\(218\) 29.4707 1.99600
\(219\) 0 0
\(220\) −5.84731 −0.394226
\(221\) 14.2093 0.955822
\(222\) 0 0
\(223\) −12.2164 −0.818070 −0.409035 0.912519i \(-0.634135\pi\)
−0.409035 + 0.912519i \(0.634135\pi\)
\(224\) −3.11110 −0.207869
\(225\) 0 0
\(226\) 0.0346959 0.00230794
\(227\) 14.4701 0.960417 0.480209 0.877154i \(-0.340561\pi\)
0.480209 + 0.877154i \(0.340561\pi\)
\(228\) 0 0
\(229\) 10.4194 0.688530 0.344265 0.938872i \(-0.388128\pi\)
0.344265 + 0.938872i \(0.388128\pi\)
\(230\) 7.24837 0.477944
\(231\) 0 0
\(232\) 0 0
\(233\) 18.5595 1.21587 0.607935 0.793987i \(-0.291998\pi\)
0.607935 + 0.793987i \(0.291998\pi\)
\(234\) 0 0
\(235\) −10.4117 −0.679184
\(236\) −19.7832 −1.28778
\(237\) 0 0
\(238\) 3.34956 0.217120
\(239\) 23.8345 1.54173 0.770864 0.637000i \(-0.219825\pi\)
0.770864 + 0.637000i \(0.219825\pi\)
\(240\) 0 0
\(241\) 18.2561 1.17598 0.587990 0.808868i \(-0.299919\pi\)
0.587990 + 0.808868i \(0.299919\pi\)
\(242\) −9.47019 −0.608767
\(243\) 0 0
\(244\) 7.16054 0.458407
\(245\) 8.34461 0.533118
\(246\) 0 0
\(247\) 17.7478 1.12927
\(248\) 1.51620 0.0962789
\(249\) 0 0
\(250\) 20.5579 1.30020
\(251\) 17.1613 1.08321 0.541606 0.840632i \(-0.317816\pi\)
0.541606 + 0.840632i \(0.317816\pi\)
\(252\) 0 0
\(253\) −7.48607 −0.470645
\(254\) 20.3148 1.27466
\(255\) 0 0
\(256\) 17.1532 1.07207
\(257\) 1.64299 0.102487 0.0512435 0.998686i \(-0.483682\pi\)
0.0512435 + 0.998686i \(0.483682\pi\)
\(258\) 0 0
\(259\) 1.43503 0.0891683
\(260\) −7.74772 −0.480493
\(261\) 0 0
\(262\) −9.81019 −0.606075
\(263\) −6.87423 −0.423883 −0.211942 0.977282i \(-0.567979\pi\)
−0.211942 + 0.977282i \(0.567979\pi\)
\(264\) 0 0
\(265\) −13.3131 −0.817816
\(266\) 4.18370 0.256519
\(267\) 0 0
\(268\) 9.89978 0.604725
\(269\) 4.03745 0.246167 0.123084 0.992396i \(-0.460722\pi\)
0.123084 + 0.992396i \(0.460722\pi\)
\(270\) 0 0
\(271\) 12.8985 0.783530 0.391765 0.920065i \(-0.371865\pi\)
0.391765 + 0.920065i \(0.371865\pi\)
\(272\) −17.8340 −1.08135
\(273\) 0 0
\(274\) 26.8768 1.62369
\(275\) −8.76315 −0.528438
\(276\) 0 0
\(277\) −3.20273 −0.192433 −0.0962166 0.995360i \(-0.530674\pi\)
−0.0962166 + 0.995360i \(0.530674\pi\)
\(278\) 32.6281 1.95690
\(279\) 0 0
\(280\) 0.0726542 0.00434192
\(281\) −19.2355 −1.14749 −0.573746 0.819033i \(-0.694510\pi\)
−0.573746 + 0.819033i \(0.694510\pi\)
\(282\) 0 0
\(283\) 28.2362 1.67847 0.839235 0.543770i \(-0.183003\pi\)
0.839235 + 0.543770i \(0.183003\pi\)
\(284\) 15.5634 0.923518
\(285\) 0 0
\(286\) 16.3219 0.965134
\(287\) 3.07516 0.181521
\(288\) 0 0
\(289\) 1.49242 0.0877892
\(290\) 0 0
\(291\) 0 0
\(292\) 16.8432 0.985672
\(293\) 33.3244 1.94683 0.973417 0.229039i \(-0.0735583\pi\)
0.973417 + 0.229039i \(0.0735583\pi\)
\(294\) 0 0
\(295\) 12.5377 0.729974
\(296\) −0.553097 −0.0321481
\(297\) 0 0
\(298\) −15.8203 −0.916443
\(299\) −9.91908 −0.573635
\(300\) 0 0
\(301\) 0.923610 0.0532360
\(302\) −40.2165 −2.31420
\(303\) 0 0
\(304\) −22.2752 −1.27757
\(305\) −4.53803 −0.259847
\(306\) 0 0
\(307\) −0.940065 −0.0536523 −0.0268262 0.999640i \(-0.508540\pi\)
−0.0268262 + 0.999640i \(0.508540\pi\)
\(308\) 1.88626 0.107480
\(309\) 0 0
\(310\) 24.1550 1.37191
\(311\) −8.75219 −0.496291 −0.248146 0.968723i \(-0.579821\pi\)
−0.248146 + 0.968723i \(0.579821\pi\)
\(312\) 0 0
\(313\) −32.9372 −1.86172 −0.930861 0.365372i \(-0.880942\pi\)
−0.930861 + 0.365372i \(0.880942\pi\)
\(314\) −8.10115 −0.457174
\(315\) 0 0
\(316\) 14.0400 0.789811
\(317\) 23.4587 1.31757 0.658785 0.752331i \(-0.271071\pi\)
0.658785 + 0.752331i \(0.271071\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.99219 0.502679
\(321\) 0 0
\(322\) −2.33822 −0.130304
\(323\) 23.0976 1.28518
\(324\) 0 0
\(325\) −11.6112 −0.644075
\(326\) 38.1846 2.11485
\(327\) 0 0
\(328\) −1.18525 −0.0654443
\(329\) 3.35866 0.185169
\(330\) 0 0
\(331\) −26.4233 −1.45236 −0.726178 0.687506i \(-0.758705\pi\)
−0.726178 + 0.687506i \(0.758705\pi\)
\(332\) 7.21264 0.395845
\(333\) 0 0
\(334\) 6.43186 0.351936
\(335\) −6.27403 −0.342787
\(336\) 0 0
\(337\) −6.42229 −0.349844 −0.174922 0.984582i \(-0.555967\pi\)
−0.174922 + 0.984582i \(0.555967\pi\)
\(338\) −4.12351 −0.224290
\(339\) 0 0
\(340\) −10.0831 −0.546834
\(341\) −24.9471 −1.35096
\(342\) 0 0
\(343\) −5.44452 −0.293976
\(344\) −0.355983 −0.0191933
\(345\) 0 0
\(346\) 15.9048 0.855046
\(347\) 5.30429 0.284749 0.142375 0.989813i \(-0.454526\pi\)
0.142375 + 0.989813i \(0.454526\pi\)
\(348\) 0 0
\(349\) 13.3972 0.717134 0.358567 0.933504i \(-0.383265\pi\)
0.358567 + 0.933504i \(0.383265\pi\)
\(350\) −2.73711 −0.146305
\(351\) 0 0
\(352\) −19.7296 −1.05159
\(353\) 16.0910 0.856437 0.428219 0.903675i \(-0.359141\pi\)
0.428219 + 0.903675i \(0.359141\pi\)
\(354\) 0 0
\(355\) −9.86339 −0.523494
\(356\) −20.0274 −1.06145
\(357\) 0 0
\(358\) 20.9273 1.10604
\(359\) 12.0867 0.637913 0.318957 0.947769i \(-0.396668\pi\)
0.318957 + 0.947769i \(0.396668\pi\)
\(360\) 0 0
\(361\) 9.84954 0.518397
\(362\) −24.2526 −1.27469
\(363\) 0 0
\(364\) 2.49931 0.130999
\(365\) −10.6744 −0.558726
\(366\) 0 0
\(367\) −7.32140 −0.382174 −0.191087 0.981573i \(-0.561201\pi\)
−0.191087 + 0.981573i \(0.561201\pi\)
\(368\) 12.4494 0.648969
\(369\) 0 0
\(370\) −8.81152 −0.458089
\(371\) 4.29461 0.222965
\(372\) 0 0
\(373\) −8.27558 −0.428493 −0.214247 0.976780i \(-0.568730\pi\)
−0.214247 + 0.976780i \(0.568730\pi\)
\(374\) 21.2418 1.09839
\(375\) 0 0
\(376\) −1.29452 −0.0667596
\(377\) 0 0
\(378\) 0 0
\(379\) −3.85809 −0.198177 −0.0990885 0.995079i \(-0.531593\pi\)
−0.0990885 + 0.995079i \(0.531593\pi\)
\(380\) −12.5941 −0.646064
\(381\) 0 0
\(382\) −13.4537 −0.688351
\(383\) 5.53107 0.282625 0.141312 0.989965i \(-0.454868\pi\)
0.141312 + 0.989965i \(0.454868\pi\)
\(384\) 0 0
\(385\) −1.19543 −0.0609246
\(386\) −48.4358 −2.46532
\(387\) 0 0
\(388\) −31.1642 −1.58212
\(389\) −8.73816 −0.443042 −0.221521 0.975156i \(-0.571102\pi\)
−0.221521 + 0.975156i \(0.571102\pi\)
\(390\) 0 0
\(391\) −12.9090 −0.652835
\(392\) 1.03751 0.0524022
\(393\) 0 0
\(394\) 14.9029 0.750797
\(395\) −8.89791 −0.447702
\(396\) 0 0
\(397\) −6.75150 −0.338848 −0.169424 0.985543i \(-0.554191\pi\)
−0.169424 + 0.985543i \(0.554191\pi\)
\(398\) −45.6731 −2.28939
\(399\) 0 0
\(400\) 14.5732 0.728659
\(401\) 23.4914 1.17311 0.586553 0.809911i \(-0.300485\pi\)
0.586553 + 0.809911i \(0.300485\pi\)
\(402\) 0 0
\(403\) −33.0550 −1.64659
\(404\) 5.31696 0.264529
\(405\) 0 0
\(406\) 0 0
\(407\) 9.10048 0.451094
\(408\) 0 0
\(409\) −24.4037 −1.20668 −0.603341 0.797483i \(-0.706164\pi\)
−0.603341 + 0.797483i \(0.706164\pi\)
\(410\) −18.8824 −0.932537
\(411\) 0 0
\(412\) 7.28253 0.358784
\(413\) −4.04449 −0.199016
\(414\) 0 0
\(415\) −4.57105 −0.224384
\(416\) −26.1418 −1.28171
\(417\) 0 0
\(418\) 26.5316 1.29770
\(419\) −16.7208 −0.816864 −0.408432 0.912789i \(-0.633924\pi\)
−0.408432 + 0.912789i \(0.633924\pi\)
\(420\) 0 0
\(421\) −23.1473 −1.12813 −0.564066 0.825730i \(-0.690764\pi\)
−0.564066 + 0.825730i \(0.690764\pi\)
\(422\) 12.9402 0.629919
\(423\) 0 0
\(424\) −1.65526 −0.0803863
\(425\) −15.1112 −0.733000
\(426\) 0 0
\(427\) 1.46390 0.0708433
\(428\) 21.7280 1.05026
\(429\) 0 0
\(430\) −5.67125 −0.273492
\(431\) −37.5513 −1.80878 −0.904391 0.426705i \(-0.859674\pi\)
−0.904391 + 0.426705i \(0.859674\pi\)
\(432\) 0 0
\(433\) 17.1657 0.824929 0.412464 0.910974i \(-0.364668\pi\)
0.412464 + 0.910974i \(0.364668\pi\)
\(434\) −7.79205 −0.374030
\(435\) 0 0
\(436\) 28.6182 1.37056
\(437\) −16.1237 −0.771301
\(438\) 0 0
\(439\) 5.29840 0.252879 0.126439 0.991974i \(-0.459645\pi\)
0.126439 + 0.991974i \(0.459645\pi\)
\(440\) 0.460749 0.0219653
\(441\) 0 0
\(442\) 28.1455 1.33874
\(443\) −13.8119 −0.656225 −0.328113 0.944639i \(-0.606413\pi\)
−0.328113 + 0.944639i \(0.606413\pi\)
\(444\) 0 0
\(445\) 12.6924 0.601680
\(446\) −24.1980 −1.14581
\(447\) 0 0
\(448\) −2.90076 −0.137048
\(449\) −17.3095 −0.816886 −0.408443 0.912784i \(-0.633928\pi\)
−0.408443 + 0.912784i \(0.633928\pi\)
\(450\) 0 0
\(451\) 19.5017 0.918297
\(452\) 0.0336923 0.00158475
\(453\) 0 0
\(454\) 28.6621 1.34518
\(455\) −1.58395 −0.0742566
\(456\) 0 0
\(457\) −20.4082 −0.954657 −0.477328 0.878725i \(-0.658395\pi\)
−0.477328 + 0.878725i \(0.658395\pi\)
\(458\) 20.6384 0.964370
\(459\) 0 0
\(460\) 7.03871 0.328181
\(461\) −16.9405 −0.788995 −0.394498 0.918897i \(-0.629081\pi\)
−0.394498 + 0.918897i \(0.629081\pi\)
\(462\) 0 0
\(463\) 26.1995 1.21759 0.608796 0.793327i \(-0.291653\pi\)
0.608796 + 0.793327i \(0.291653\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 36.7622 1.70297
\(467\) −28.3546 −1.31209 −0.656047 0.754720i \(-0.727773\pi\)
−0.656047 + 0.754720i \(0.727773\pi\)
\(468\) 0 0
\(469\) 2.02391 0.0934557
\(470\) −20.6232 −0.951279
\(471\) 0 0
\(472\) 1.55885 0.0717519
\(473\) 5.85723 0.269316
\(474\) 0 0
\(475\) −18.8743 −0.866013
\(476\) 3.25267 0.149086
\(477\) 0 0
\(478\) 47.2109 2.15938
\(479\) −33.6686 −1.53836 −0.769179 0.639033i \(-0.779335\pi\)
−0.769179 + 0.639033i \(0.779335\pi\)
\(480\) 0 0
\(481\) 12.0582 0.549806
\(482\) 36.1613 1.64710
\(483\) 0 0
\(484\) −9.19626 −0.418012
\(485\) 19.7504 0.896821
\(486\) 0 0
\(487\) −23.2890 −1.05532 −0.527662 0.849454i \(-0.676931\pi\)
−0.527662 + 0.849454i \(0.676931\pi\)
\(488\) −0.564227 −0.0255413
\(489\) 0 0
\(490\) 16.5288 0.746696
\(491\) 14.8333 0.669418 0.334709 0.942322i \(-0.391362\pi\)
0.334709 + 0.942322i \(0.391362\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 35.1545 1.58168
\(495\) 0 0
\(496\) 41.4872 1.86283
\(497\) 3.18179 0.142723
\(498\) 0 0
\(499\) 23.1693 1.03720 0.518599 0.855017i \(-0.326454\pi\)
0.518599 + 0.855017i \(0.326454\pi\)
\(500\) 19.9633 0.892784
\(501\) 0 0
\(502\) 33.9927 1.51717
\(503\) 15.5235 0.692158 0.346079 0.938205i \(-0.387513\pi\)
0.346079 + 0.938205i \(0.387513\pi\)
\(504\) 0 0
\(505\) −3.36965 −0.149948
\(506\) −14.8282 −0.659196
\(507\) 0 0
\(508\) 19.7272 0.875252
\(509\) −32.3172 −1.43244 −0.716218 0.697876i \(-0.754129\pi\)
−0.716218 + 0.697876i \(0.754129\pi\)
\(510\) 0 0
\(511\) 3.44342 0.152328
\(512\) 31.5534 1.39447
\(513\) 0 0
\(514\) 3.25440 0.143545
\(515\) −4.61534 −0.203376
\(516\) 0 0
\(517\) 21.2995 0.936753
\(518\) 2.84247 0.124891
\(519\) 0 0
\(520\) 0.610494 0.0267720
\(521\) 0.674556 0.0295529 0.0147764 0.999891i \(-0.495296\pi\)
0.0147764 + 0.999891i \(0.495296\pi\)
\(522\) 0 0
\(523\) −6.73109 −0.294330 −0.147165 0.989112i \(-0.547015\pi\)
−0.147165 + 0.989112i \(0.547015\pi\)
\(524\) −9.52642 −0.416164
\(525\) 0 0
\(526\) −13.6163 −0.593700
\(527\) −43.0187 −1.87393
\(528\) 0 0
\(529\) −13.9886 −0.608202
\(530\) −26.3703 −1.14545
\(531\) 0 0
\(532\) 4.06268 0.176140
\(533\) 25.8398 1.11925
\(534\) 0 0
\(535\) −13.7702 −0.595338
\(536\) −0.780069 −0.0336939
\(537\) 0 0
\(538\) 7.99728 0.344787
\(539\) −17.0709 −0.735294
\(540\) 0 0
\(541\) −15.6659 −0.673531 −0.336766 0.941588i \(-0.609333\pi\)
−0.336766 + 0.941588i \(0.609333\pi\)
\(542\) 25.5491 1.09743
\(543\) 0 0
\(544\) −34.0217 −1.45867
\(545\) −18.1369 −0.776900
\(546\) 0 0
\(547\) −12.9377 −0.553177 −0.276589 0.960988i \(-0.589204\pi\)
−0.276589 + 0.960988i \(0.589204\pi\)
\(548\) 26.0994 1.11491
\(549\) 0 0
\(550\) −17.3579 −0.740142
\(551\) 0 0
\(552\) 0 0
\(553\) 2.87034 0.122059
\(554\) −6.34389 −0.269526
\(555\) 0 0
\(556\) 31.6843 1.34371
\(557\) −9.74915 −0.413085 −0.206542 0.978438i \(-0.566221\pi\)
−0.206542 + 0.978438i \(0.566221\pi\)
\(558\) 0 0
\(559\) 7.76086 0.328249
\(560\) 1.98800 0.0840085
\(561\) 0 0
\(562\) −38.1012 −1.60720
\(563\) −39.5811 −1.66814 −0.834072 0.551656i \(-0.813996\pi\)
−0.834072 + 0.551656i \(0.813996\pi\)
\(564\) 0 0
\(565\) −0.0213527 −0.000898314 0
\(566\) 55.9297 2.35090
\(567\) 0 0
\(568\) −1.22634 −0.0514563
\(569\) 28.9833 1.21504 0.607521 0.794304i \(-0.292164\pi\)
0.607521 + 0.794304i \(0.292164\pi\)
\(570\) 0 0
\(571\) −30.2218 −1.26474 −0.632372 0.774665i \(-0.717919\pi\)
−0.632372 + 0.774665i \(0.717919\pi\)
\(572\) 15.8498 0.662712
\(573\) 0 0
\(574\) 6.09121 0.254242
\(575\) 10.5487 0.439909
\(576\) 0 0
\(577\) −25.9505 −1.08033 −0.540167 0.841558i \(-0.681639\pi\)
−0.540167 + 0.841558i \(0.681639\pi\)
\(578\) 2.95615 0.122960
\(579\) 0 0
\(580\) 0 0
\(581\) 1.47456 0.0611749
\(582\) 0 0
\(583\) 27.2350 1.12796
\(584\) −1.32719 −0.0549193
\(585\) 0 0
\(586\) 66.0083 2.72678
\(587\) −0.775462 −0.0320067 −0.0160034 0.999872i \(-0.505094\pi\)
−0.0160034 + 0.999872i \(0.505094\pi\)
\(588\) 0 0
\(589\) −53.7317 −2.21397
\(590\) 24.8344 1.02242
\(591\) 0 0
\(592\) −15.1342 −0.622010
\(593\) 27.4401 1.12683 0.563415 0.826174i \(-0.309487\pi\)
0.563415 + 0.826174i \(0.309487\pi\)
\(594\) 0 0
\(595\) −2.06140 −0.0845090
\(596\) −15.3627 −0.629279
\(597\) 0 0
\(598\) −19.6475 −0.803446
\(599\) −43.2574 −1.76745 −0.883724 0.468008i \(-0.844972\pi\)
−0.883724 + 0.468008i \(0.844972\pi\)
\(600\) 0 0
\(601\) −33.0371 −1.34761 −0.673806 0.738908i \(-0.735342\pi\)
−0.673806 + 0.738908i \(0.735342\pi\)
\(602\) 1.82947 0.0745635
\(603\) 0 0
\(604\) −39.0532 −1.58905
\(605\) 5.82817 0.236949
\(606\) 0 0
\(607\) −17.6236 −0.715319 −0.357659 0.933852i \(-0.616425\pi\)
−0.357659 + 0.933852i \(0.616425\pi\)
\(608\) −42.4942 −1.72337
\(609\) 0 0
\(610\) −8.98883 −0.363947
\(611\) 28.2220 1.14174
\(612\) 0 0
\(613\) 38.0570 1.53711 0.768554 0.639785i \(-0.220977\pi\)
0.768554 + 0.639785i \(0.220977\pi\)
\(614\) −1.86206 −0.0751466
\(615\) 0 0
\(616\) −0.148631 −0.00598852
\(617\) 5.15982 0.207727 0.103863 0.994592i \(-0.466880\pi\)
0.103863 + 0.994592i \(0.466880\pi\)
\(618\) 0 0
\(619\) −29.6683 −1.19247 −0.596236 0.802809i \(-0.703338\pi\)
−0.596236 + 0.802809i \(0.703338\pi\)
\(620\) 23.4563 0.942026
\(621\) 0 0
\(622\) −17.3362 −0.695116
\(623\) −4.09441 −0.164039
\(624\) 0 0
\(625\) 4.91819 0.196727
\(626\) −65.2414 −2.60757
\(627\) 0 0
\(628\) −7.86682 −0.313920
\(629\) 15.6929 0.625716
\(630\) 0 0
\(631\) 9.97005 0.396901 0.198451 0.980111i \(-0.436409\pi\)
0.198451 + 0.980111i \(0.436409\pi\)
\(632\) −1.10630 −0.0440064
\(633\) 0 0
\(634\) 46.4664 1.84542
\(635\) −12.5022 −0.496135
\(636\) 0 0
\(637\) −22.6190 −0.896196
\(638\) 0 0
\(639\) 0 0
\(640\) −1.47699 −0.0583832
\(641\) −22.3786 −0.883903 −0.441951 0.897039i \(-0.645714\pi\)
−0.441951 + 0.897039i \(0.645714\pi\)
\(642\) 0 0
\(643\) −5.92551 −0.233679 −0.116840 0.993151i \(-0.537276\pi\)
−0.116840 + 0.993151i \(0.537276\pi\)
\(644\) −2.27059 −0.0894737
\(645\) 0 0
\(646\) 45.7512 1.80006
\(647\) −15.3902 −0.605050 −0.302525 0.953141i \(-0.597830\pi\)
−0.302525 + 0.953141i \(0.597830\pi\)
\(648\) 0 0
\(649\) −25.6488 −1.00680
\(650\) −22.9993 −0.902105
\(651\) 0 0
\(652\) 37.0800 1.45217
\(653\) −33.5424 −1.31262 −0.656308 0.754493i \(-0.727883\pi\)
−0.656308 + 0.754493i \(0.727883\pi\)
\(654\) 0 0
\(655\) 6.03741 0.235901
\(656\) −32.4314 −1.26623
\(657\) 0 0
\(658\) 6.65277 0.259352
\(659\) −10.2318 −0.398575 −0.199288 0.979941i \(-0.563863\pi\)
−0.199288 + 0.979941i \(0.563863\pi\)
\(660\) 0 0
\(661\) 13.3227 0.518193 0.259097 0.965851i \(-0.416575\pi\)
0.259097 + 0.965851i \(0.416575\pi\)
\(662\) −52.3387 −2.03420
\(663\) 0 0
\(664\) −0.568332 −0.0220556
\(665\) −2.57474 −0.0998443
\(666\) 0 0
\(667\) 0 0
\(668\) 6.24581 0.241658
\(669\) 0 0
\(670\) −12.4275 −0.480115
\(671\) 9.28360 0.358389
\(672\) 0 0
\(673\) 38.0338 1.46610 0.733048 0.680177i \(-0.238097\pi\)
0.733048 + 0.680177i \(0.238097\pi\)
\(674\) −12.7211 −0.489999
\(675\) 0 0
\(676\) −4.00424 −0.154009
\(677\) −8.81473 −0.338778 −0.169389 0.985549i \(-0.554179\pi\)
−0.169389 + 0.985549i \(0.554179\pi\)
\(678\) 0 0
\(679\) −6.37121 −0.244505
\(680\) 0.794515 0.0304683
\(681\) 0 0
\(682\) −49.4146 −1.89218
\(683\) 10.1501 0.388382 0.194191 0.980964i \(-0.437792\pi\)
0.194191 + 0.980964i \(0.437792\pi\)
\(684\) 0 0
\(685\) −16.5406 −0.631985
\(686\) −10.7844 −0.411750
\(687\) 0 0
\(688\) −9.74062 −0.371358
\(689\) 36.0865 1.37479
\(690\) 0 0
\(691\) −0.144207 −0.00548590 −0.00274295 0.999996i \(-0.500873\pi\)
−0.00274295 + 0.999996i \(0.500873\pi\)
\(692\) 15.4447 0.587120
\(693\) 0 0
\(694\) 10.5066 0.398826
\(695\) −20.0801 −0.761681
\(696\) 0 0
\(697\) 33.6287 1.27378
\(698\) 26.5368 1.00443
\(699\) 0 0
\(700\) −2.65794 −0.100461
\(701\) −48.2313 −1.82167 −0.910835 0.412771i \(-0.864561\pi\)
−0.910835 + 0.412771i \(0.864561\pi\)
\(702\) 0 0
\(703\) 19.6009 0.739260
\(704\) −18.3956 −0.693312
\(705\) 0 0
\(706\) 31.8727 1.19954
\(707\) 1.08700 0.0408809
\(708\) 0 0
\(709\) 10.5595 0.396571 0.198286 0.980144i \(-0.436463\pi\)
0.198286 + 0.980144i \(0.436463\pi\)
\(710\) −19.5372 −0.733217
\(711\) 0 0
\(712\) 1.57809 0.0591414
\(713\) 30.0301 1.12463
\(714\) 0 0
\(715\) −10.0449 −0.375657
\(716\) 20.3220 0.759468
\(717\) 0 0
\(718\) 23.9411 0.893475
\(719\) 25.2961 0.943386 0.471693 0.881763i \(-0.343643\pi\)
0.471693 + 0.881763i \(0.343643\pi\)
\(720\) 0 0
\(721\) 1.48884 0.0554474
\(722\) 19.5098 0.726078
\(723\) 0 0
\(724\) −23.5511 −0.875269
\(725\) 0 0
\(726\) 0 0
\(727\) −49.0795 −1.82026 −0.910129 0.414326i \(-0.864017\pi\)
−0.910129 + 0.414326i \(0.864017\pi\)
\(728\) −0.196937 −0.00729897
\(729\) 0 0
\(730\) −21.1437 −0.782563
\(731\) 10.1002 0.373570
\(732\) 0 0
\(733\) −3.40131 −0.125630 −0.0628151 0.998025i \(-0.520008\pi\)
−0.0628151 + 0.998025i \(0.520008\pi\)
\(734\) −14.5021 −0.535281
\(735\) 0 0
\(736\) 23.7495 0.875419
\(737\) 12.8350 0.472783
\(738\) 0 0
\(739\) 7.22771 0.265876 0.132938 0.991124i \(-0.457559\pi\)
0.132938 + 0.991124i \(0.457559\pi\)
\(740\) −8.55664 −0.314548
\(741\) 0 0
\(742\) 8.50668 0.312290
\(743\) −22.2471 −0.816166 −0.408083 0.912945i \(-0.633803\pi\)
−0.408083 + 0.912945i \(0.633803\pi\)
\(744\) 0 0
\(745\) 9.73615 0.356705
\(746\) −16.3921 −0.600157
\(747\) 0 0
\(748\) 20.6274 0.754211
\(749\) 4.44207 0.162310
\(750\) 0 0
\(751\) 25.7262 0.938761 0.469381 0.882996i \(-0.344477\pi\)
0.469381 + 0.882996i \(0.344477\pi\)
\(752\) −35.4213 −1.29168
\(753\) 0 0
\(754\) 0 0
\(755\) 24.7502 0.900750
\(756\) 0 0
\(757\) −26.5887 −0.966382 −0.483191 0.875515i \(-0.660522\pi\)
−0.483191 + 0.875515i \(0.660522\pi\)
\(758\) −7.64203 −0.277571
\(759\) 0 0
\(760\) 0.992373 0.0359972
\(761\) 8.21201 0.297685 0.148843 0.988861i \(-0.452445\pi\)
0.148843 + 0.988861i \(0.452445\pi\)
\(762\) 0 0
\(763\) 5.85071 0.211810
\(764\) −13.0645 −0.472659
\(765\) 0 0
\(766\) 10.9558 0.395850
\(767\) −33.9848 −1.22712
\(768\) 0 0
\(769\) −41.9873 −1.51410 −0.757050 0.653357i \(-0.773360\pi\)
−0.757050 + 0.653357i \(0.773360\pi\)
\(770\) −2.36788 −0.0853323
\(771\) 0 0
\(772\) −47.0348 −1.69282
\(773\) 48.1727 1.73265 0.866327 0.499478i \(-0.166475\pi\)
0.866327 + 0.499478i \(0.166475\pi\)
\(774\) 0 0
\(775\) 35.1530 1.26273
\(776\) 2.45563 0.0881520
\(777\) 0 0
\(778\) −17.3084 −0.620535
\(779\) 42.0032 1.50492
\(780\) 0 0
\(781\) 20.1779 0.722021
\(782\) −25.5698 −0.914375
\(783\) 0 0
\(784\) 28.3890 1.01389
\(785\) 4.98563 0.177945
\(786\) 0 0
\(787\) 17.3814 0.619581 0.309791 0.950805i \(-0.399741\pi\)
0.309791 + 0.950805i \(0.399741\pi\)
\(788\) 14.4718 0.515537
\(789\) 0 0
\(790\) −17.6248 −0.627061
\(791\) 0.00688807 0.000244912 0
\(792\) 0 0
\(793\) 12.3008 0.436815
\(794\) −13.3732 −0.474598
\(795\) 0 0
\(796\) −44.3520 −1.57201
\(797\) 33.2762 1.17870 0.589352 0.807876i \(-0.299383\pi\)
0.589352 + 0.807876i \(0.299383\pi\)
\(798\) 0 0
\(799\) 36.7289 1.29938
\(800\) 27.8011 0.982916
\(801\) 0 0
\(802\) 46.5313 1.64308
\(803\) 21.8371 0.770613
\(804\) 0 0
\(805\) 1.43900 0.0507180
\(806\) −65.4746 −2.30625
\(807\) 0 0
\(808\) −0.418959 −0.0147389
\(809\) −5.66329 −0.199111 −0.0995553 0.995032i \(-0.531742\pi\)
−0.0995553 + 0.995032i \(0.531742\pi\)
\(810\) 0 0
\(811\) 15.4044 0.540922 0.270461 0.962731i \(-0.412824\pi\)
0.270461 + 0.962731i \(0.412824\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 18.0260 0.631812
\(815\) −23.4997 −0.823157
\(816\) 0 0
\(817\) 12.6155 0.441359
\(818\) −48.3382 −1.69011
\(819\) 0 0
\(820\) −18.3363 −0.640330
\(821\) −0.807130 −0.0281690 −0.0140845 0.999901i \(-0.504483\pi\)
−0.0140845 + 0.999901i \(0.504483\pi\)
\(822\) 0 0
\(823\) −38.9003 −1.35598 −0.677989 0.735072i \(-0.737149\pi\)
−0.677989 + 0.735072i \(0.737149\pi\)
\(824\) −0.573839 −0.0199906
\(825\) 0 0
\(826\) −8.01123 −0.278746
\(827\) −1.80340 −0.0627103 −0.0313552 0.999508i \(-0.509982\pi\)
−0.0313552 + 0.999508i \(0.509982\pi\)
\(828\) 0 0
\(829\) 7.75729 0.269422 0.134711 0.990885i \(-0.456989\pi\)
0.134711 + 0.990885i \(0.456989\pi\)
\(830\) −9.05423 −0.314277
\(831\) 0 0
\(832\) −24.3743 −0.845027
\(833\) −29.4370 −1.01993
\(834\) 0 0
\(835\) −3.95831 −0.136983
\(836\) 25.7642 0.891073
\(837\) 0 0
\(838\) −33.1202 −1.14412
\(839\) −33.0135 −1.13975 −0.569876 0.821731i \(-0.693009\pi\)
−0.569876 + 0.821731i \(0.693009\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −45.8497 −1.58009
\(843\) 0 0
\(844\) 12.5659 0.432536
\(845\) 2.53771 0.0872997
\(846\) 0 0
\(847\) −1.88009 −0.0646005
\(848\) −45.2920 −1.55534
\(849\) 0 0
\(850\) −29.9319 −1.02666
\(851\) −10.9547 −0.375523
\(852\) 0 0
\(853\) −5.02035 −0.171893 −0.0859467 0.996300i \(-0.527391\pi\)
−0.0859467 + 0.996300i \(0.527391\pi\)
\(854\) 2.89967 0.0992246
\(855\) 0 0
\(856\) −1.71209 −0.0585180
\(857\) −8.87355 −0.303115 −0.151557 0.988448i \(-0.548429\pi\)
−0.151557 + 0.988448i \(0.548429\pi\)
\(858\) 0 0
\(859\) −36.4701 −1.24434 −0.622172 0.782880i \(-0.713750\pi\)
−0.622172 + 0.782880i \(0.713750\pi\)
\(860\) −5.50721 −0.187794
\(861\) 0 0
\(862\) −74.3808 −2.53342
\(863\) 8.86240 0.301680 0.150840 0.988558i \(-0.451802\pi\)
0.150840 + 0.988558i \(0.451802\pi\)
\(864\) 0 0
\(865\) −9.78816 −0.332807
\(866\) 34.0014 1.15541
\(867\) 0 0
\(868\) −7.56666 −0.256829
\(869\) 18.2027 0.617486
\(870\) 0 0
\(871\) 17.0064 0.576241
\(872\) −2.25502 −0.0763645
\(873\) 0 0
\(874\) −31.9375 −1.08030
\(875\) 4.08130 0.137973
\(876\) 0 0
\(877\) −41.5401 −1.40271 −0.701355 0.712812i \(-0.747421\pi\)
−0.701355 + 0.712812i \(0.747421\pi\)
\(878\) 10.4950 0.354187
\(879\) 0 0
\(880\) 12.6073 0.424991
\(881\) −14.7088 −0.495552 −0.247776 0.968817i \(-0.579700\pi\)
−0.247776 + 0.968817i \(0.579700\pi\)
\(882\) 0 0
\(883\) −31.6654 −1.06563 −0.532813 0.846233i \(-0.678865\pi\)
−0.532813 + 0.846233i \(0.678865\pi\)
\(884\) 27.3314 0.919253
\(885\) 0 0
\(886\) −27.3584 −0.919123
\(887\) 37.7959 1.26906 0.634531 0.772897i \(-0.281193\pi\)
0.634531 + 0.772897i \(0.281193\pi\)
\(888\) 0 0
\(889\) 4.03303 0.135264
\(890\) 25.1409 0.842726
\(891\) 0 0
\(892\) −23.4980 −0.786772
\(893\) 45.8755 1.53517
\(894\) 0 0
\(895\) −12.8792 −0.430503
\(896\) 0.476456 0.0159173
\(897\) 0 0
\(898\) −34.2863 −1.14415
\(899\) 0 0
\(900\) 0 0
\(901\) 46.9641 1.56460
\(902\) 38.6285 1.28619
\(903\) 0 0
\(904\) −0.00265484 −8.82987e−5 0
\(905\) 14.9256 0.496144
\(906\) 0 0
\(907\) 4.99667 0.165912 0.0829559 0.996553i \(-0.473564\pi\)
0.0829559 + 0.996553i \(0.473564\pi\)
\(908\) 27.8331 0.923673
\(909\) 0 0
\(910\) −3.13745 −0.104005
\(911\) −12.9724 −0.429795 −0.214898 0.976637i \(-0.568942\pi\)
−0.214898 + 0.976637i \(0.568942\pi\)
\(912\) 0 0
\(913\) 9.35115 0.309478
\(914\) −40.4242 −1.33711
\(915\) 0 0
\(916\) 20.0414 0.662188
\(917\) −1.94758 −0.0643149
\(918\) 0 0
\(919\) 53.4139 1.76196 0.880981 0.473151i \(-0.156883\pi\)
0.880981 + 0.473151i \(0.156883\pi\)
\(920\) −0.554627 −0.0182855
\(921\) 0 0
\(922\) −33.5553 −1.10508
\(923\) 26.7358 0.880019
\(924\) 0 0
\(925\) −12.8235 −0.421635
\(926\) 51.8953 1.70539
\(927\) 0 0
\(928\) 0 0
\(929\) −46.1682 −1.51473 −0.757365 0.652992i \(-0.773513\pi\)
−0.757365 + 0.652992i \(0.773513\pi\)
\(930\) 0 0
\(931\) −36.7677 −1.20501
\(932\) 35.6988 1.16935
\(933\) 0 0
\(934\) −56.1641 −1.83775
\(935\) −13.0727 −0.427523
\(936\) 0 0
\(937\) −10.1380 −0.331193 −0.165596 0.986194i \(-0.552955\pi\)
−0.165596 + 0.986194i \(0.552955\pi\)
\(938\) 4.00892 0.130896
\(939\) 0 0
\(940\) −20.0267 −0.653199
\(941\) 6.79516 0.221516 0.110758 0.993847i \(-0.464672\pi\)
0.110758 + 0.993847i \(0.464672\pi\)
\(942\) 0 0
\(943\) −23.4751 −0.764455
\(944\) 42.6542 1.38828
\(945\) 0 0
\(946\) 11.6019 0.377209
\(947\) −3.79087 −0.123187 −0.0615933 0.998101i \(-0.519618\pi\)
−0.0615933 + 0.998101i \(0.519618\pi\)
\(948\) 0 0
\(949\) 28.9342 0.939245
\(950\) −37.3858 −1.21296
\(951\) 0 0
\(952\) −0.256300 −0.00830671
\(953\) −51.2275 −1.65942 −0.829711 0.558193i \(-0.811495\pi\)
−0.829711 + 0.558193i \(0.811495\pi\)
\(954\) 0 0
\(955\) 8.27972 0.267925
\(956\) 45.8453 1.48274
\(957\) 0 0
\(958\) −66.6901 −2.15466
\(959\) 5.33577 0.172301
\(960\) 0 0
\(961\) 69.0741 2.22820
\(962\) 23.8846 0.770070
\(963\) 0 0
\(964\) 35.1153 1.13099
\(965\) 29.8085 0.959570
\(966\) 0 0
\(967\) 21.1563 0.680342 0.340171 0.940364i \(-0.389515\pi\)
0.340171 + 0.940364i \(0.389515\pi\)
\(968\) 0.724634 0.0232906
\(969\) 0 0
\(970\) 39.1212 1.25611
\(971\) 51.3515 1.64795 0.823974 0.566628i \(-0.191752\pi\)
0.823974 + 0.566628i \(0.191752\pi\)
\(972\) 0 0
\(973\) 6.47755 0.207661
\(974\) −46.1303 −1.47811
\(975\) 0 0
\(976\) −15.4387 −0.494180
\(977\) −55.4930 −1.77538 −0.887689 0.460443i \(-0.847690\pi\)
−0.887689 + 0.460443i \(0.847690\pi\)
\(978\) 0 0
\(979\) −25.9654 −0.829857
\(980\) 16.0507 0.512721
\(981\) 0 0
\(982\) 29.3815 0.937601
\(983\) 4.53823 0.144747 0.0723735 0.997378i \(-0.476943\pi\)
0.0723735 + 0.997378i \(0.476943\pi\)
\(984\) 0 0
\(985\) −9.17158 −0.292231
\(986\) 0 0
\(987\) 0 0
\(988\) 34.1377 1.08606
\(989\) −7.05064 −0.224197
\(990\) 0 0
\(991\) 7.37723 0.234345 0.117173 0.993112i \(-0.462617\pi\)
0.117173 + 0.993112i \(0.462617\pi\)
\(992\) 79.1445 2.51284
\(993\) 0 0
\(994\) 6.30242 0.199901
\(995\) 28.1083 0.891092
\(996\) 0 0
\(997\) 30.8978 0.978542 0.489271 0.872132i \(-0.337263\pi\)
0.489271 + 0.872132i \(0.337263\pi\)
\(998\) 45.8932 1.45272
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bl.1.7 9
3.2 odd 2 2523.2.a.p.1.3 9
29.7 even 7 261.2.k.b.136.1 18
29.25 even 7 261.2.k.b.190.1 18
29.28 even 2 7569.2.a.bk.1.3 9
87.65 odd 14 87.2.g.b.49.3 yes 18
87.83 odd 14 87.2.g.b.16.3 18
87.86 odd 2 2523.2.a.q.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.16.3 18 87.83 odd 14
87.2.g.b.49.3 yes 18 87.65 odd 14
261.2.k.b.136.1 18 29.7 even 7
261.2.k.b.190.1 18 29.25 even 7
2523.2.a.p.1.3 9 3.2 odd 2
2523.2.a.q.1.7 9 87.86 odd 2
7569.2.a.bk.1.3 9 29.28 even 2
7569.2.a.bl.1.7 9 1.1 even 1 trivial