Properties

Label 7569.2.a.bl.1.2
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 9x^{6} + 70x^{5} - 23x^{4} - 141x^{3} + 14x^{2} + 84x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.83470\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83470 q^{2} +1.36614 q^{4} +2.25851 q^{5} -0.744275 q^{7} +1.16295 q^{8} -4.14369 q^{10} -6.30880 q^{11} -1.64589 q^{13} +1.36552 q^{14} -4.86594 q^{16} -4.16595 q^{17} +1.04086 q^{19} +3.08543 q^{20} +11.5748 q^{22} +4.57353 q^{23} +0.100848 q^{25} +3.01971 q^{26} -1.01678 q^{28} -3.53151 q^{31} +6.60167 q^{32} +7.64329 q^{34} -1.68095 q^{35} -1.07555 q^{37} -1.90967 q^{38} +2.62652 q^{40} +1.20065 q^{41} -12.8267 q^{43} -8.61870 q^{44} -8.39108 q^{46} +7.88593 q^{47} -6.44605 q^{49} -0.185026 q^{50} -2.24851 q^{52} +13.1918 q^{53} -14.2485 q^{55} -0.865553 q^{56} -11.0585 q^{59} -6.44864 q^{61} +6.47928 q^{62} -2.38023 q^{64} -3.71724 q^{65} -6.87762 q^{67} -5.69127 q^{68} +3.08405 q^{70} +3.27762 q^{71} +7.09043 q^{73} +1.97331 q^{74} +1.42196 q^{76} +4.69549 q^{77} +6.38938 q^{79} -10.9898 q^{80} -2.20283 q^{82} +5.15394 q^{83} -9.40883 q^{85} +23.5333 q^{86} -7.33681 q^{88} -9.31849 q^{89} +1.22499 q^{91} +6.24808 q^{92} -14.4684 q^{94} +2.35079 q^{95} -15.1681 q^{97} +11.8266 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8} - 4 q^{10} + 3 q^{11} + 5 q^{13} + 15 q^{14} - 5 q^{16} + 16 q^{17} + q^{19} - 8 q^{20} + 24 q^{22} + 10 q^{23} + 9 q^{25} + 12 q^{26} - 24 q^{28} + 4 q^{31}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.83470 −1.29733 −0.648666 0.761073i \(-0.724673\pi\)
−0.648666 + 0.761073i \(0.724673\pi\)
\(3\) 0 0
\(4\) 1.36614 0.683070
\(5\) 2.25851 1.01003 0.505017 0.863109i \(-0.331486\pi\)
0.505017 + 0.863109i \(0.331486\pi\)
\(6\) 0 0
\(7\) −0.744275 −0.281310 −0.140655 0.990059i \(-0.544921\pi\)
−0.140655 + 0.990059i \(0.544921\pi\)
\(8\) 1.16295 0.411164
\(9\) 0 0
\(10\) −4.14369 −1.31035
\(11\) −6.30880 −1.90218 −0.951088 0.308920i \(-0.900032\pi\)
−0.951088 + 0.308920i \(0.900032\pi\)
\(12\) 0 0
\(13\) −1.64589 −0.456486 −0.228243 0.973604i \(-0.573298\pi\)
−0.228243 + 0.973604i \(0.573298\pi\)
\(14\) 1.36552 0.364952
\(15\) 0 0
\(16\) −4.86594 −1.21649
\(17\) −4.16595 −1.01039 −0.505196 0.863005i \(-0.668580\pi\)
−0.505196 + 0.863005i \(0.668580\pi\)
\(18\) 0 0
\(19\) 1.04086 0.238789 0.119395 0.992847i \(-0.461905\pi\)
0.119395 + 0.992847i \(0.461905\pi\)
\(20\) 3.08543 0.689924
\(21\) 0 0
\(22\) 11.5748 2.46775
\(23\) 4.57353 0.953648 0.476824 0.878999i \(-0.341788\pi\)
0.476824 + 0.878999i \(0.341788\pi\)
\(24\) 0 0
\(25\) 0.100848 0.0201696
\(26\) 3.01971 0.592214
\(27\) 0 0
\(28\) −1.01678 −0.192154
\(29\) 0 0
\(30\) 0 0
\(31\) −3.53151 −0.634278 −0.317139 0.948379i \(-0.602722\pi\)
−0.317139 + 0.948379i \(0.602722\pi\)
\(32\) 6.60167 1.16702
\(33\) 0 0
\(34\) 7.64329 1.31081
\(35\) −1.68095 −0.284132
\(36\) 0 0
\(37\) −1.07555 −0.176819 −0.0884094 0.996084i \(-0.528178\pi\)
−0.0884094 + 0.996084i \(0.528178\pi\)
\(38\) −1.90967 −0.309789
\(39\) 0 0
\(40\) 2.62652 0.415290
\(41\) 1.20065 0.187510 0.0937548 0.995595i \(-0.470113\pi\)
0.0937548 + 0.995595i \(0.470113\pi\)
\(42\) 0 0
\(43\) −12.8267 −1.95606 −0.978029 0.208468i \(-0.933152\pi\)
−0.978029 + 0.208468i \(0.933152\pi\)
\(44\) −8.61870 −1.29932
\(45\) 0 0
\(46\) −8.39108 −1.23720
\(47\) 7.88593 1.15028 0.575141 0.818055i \(-0.304947\pi\)
0.575141 + 0.818055i \(0.304947\pi\)
\(48\) 0 0
\(49\) −6.44605 −0.920865
\(50\) −0.185026 −0.0261667
\(51\) 0 0
\(52\) −2.24851 −0.311812
\(53\) 13.1918 1.81203 0.906016 0.423244i \(-0.139109\pi\)
0.906016 + 0.423244i \(0.139109\pi\)
\(54\) 0 0
\(55\) −14.2485 −1.92126
\(56\) −0.865553 −0.115664
\(57\) 0 0
\(58\) 0 0
\(59\) −11.0585 −1.43970 −0.719849 0.694131i \(-0.755789\pi\)
−0.719849 + 0.694131i \(0.755789\pi\)
\(60\) 0 0
\(61\) −6.44864 −0.825664 −0.412832 0.910807i \(-0.635460\pi\)
−0.412832 + 0.910807i \(0.635460\pi\)
\(62\) 6.47928 0.822869
\(63\) 0 0
\(64\) −2.38023 −0.297528
\(65\) −3.71724 −0.461067
\(66\) 0 0
\(67\) −6.87762 −0.840235 −0.420118 0.907470i \(-0.638011\pi\)
−0.420118 + 0.907470i \(0.638011\pi\)
\(68\) −5.69127 −0.690168
\(69\) 0 0
\(70\) 3.08405 0.368614
\(71\) 3.27762 0.388982 0.194491 0.980904i \(-0.437694\pi\)
0.194491 + 0.980904i \(0.437694\pi\)
\(72\) 0 0
\(73\) 7.09043 0.829872 0.414936 0.909851i \(-0.363804\pi\)
0.414936 + 0.909851i \(0.363804\pi\)
\(74\) 1.97331 0.229393
\(75\) 0 0
\(76\) 1.42196 0.163110
\(77\) 4.69549 0.535100
\(78\) 0 0
\(79\) 6.38938 0.718861 0.359431 0.933172i \(-0.382971\pi\)
0.359431 + 0.933172i \(0.382971\pi\)
\(80\) −10.9898 −1.22869
\(81\) 0 0
\(82\) −2.20283 −0.243262
\(83\) 5.15394 0.565718 0.282859 0.959161i \(-0.408717\pi\)
0.282859 + 0.959161i \(0.408717\pi\)
\(84\) 0 0
\(85\) −9.40883 −1.02053
\(86\) 23.5333 2.53766
\(87\) 0 0
\(88\) −7.33681 −0.782106
\(89\) −9.31849 −0.987758 −0.493879 0.869531i \(-0.664421\pi\)
−0.493879 + 0.869531i \(0.664421\pi\)
\(90\) 0 0
\(91\) 1.22499 0.128414
\(92\) 6.24808 0.651408
\(93\) 0 0
\(94\) −14.4684 −1.49230
\(95\) 2.35079 0.241186
\(96\) 0 0
\(97\) −15.1681 −1.54009 −0.770043 0.637992i \(-0.779765\pi\)
−0.770043 + 0.637992i \(0.779765\pi\)
\(98\) 11.8266 1.19467
\(99\) 0 0
\(100\) 0.137772 0.0137772
\(101\) −4.44158 −0.441954 −0.220977 0.975279i \(-0.570925\pi\)
−0.220977 + 0.975279i \(0.570925\pi\)
\(102\) 0 0
\(103\) 15.3937 1.51678 0.758392 0.651799i \(-0.225986\pi\)
0.758392 + 0.651799i \(0.225986\pi\)
\(104\) −1.91408 −0.187691
\(105\) 0 0
\(106\) −24.2030 −2.35081
\(107\) 7.91673 0.765339 0.382670 0.923885i \(-0.375005\pi\)
0.382670 + 0.923885i \(0.375005\pi\)
\(108\) 0 0
\(109\) 4.18903 0.401236 0.200618 0.979669i \(-0.435705\pi\)
0.200618 + 0.979669i \(0.435705\pi\)
\(110\) 26.1417 2.49252
\(111\) 0 0
\(112\) 3.62160 0.342209
\(113\) 10.8248 1.01831 0.509155 0.860675i \(-0.329958\pi\)
0.509155 + 0.860675i \(0.329958\pi\)
\(114\) 0 0
\(115\) 10.3294 0.963217
\(116\) 0 0
\(117\) 0 0
\(118\) 20.2891 1.86776
\(119\) 3.10062 0.284233
\(120\) 0 0
\(121\) 28.8010 2.61827
\(122\) 11.8314 1.07116
\(123\) 0 0
\(124\) −4.82454 −0.433256
\(125\) −11.0648 −0.989662
\(126\) 0 0
\(127\) 8.06968 0.716068 0.358034 0.933709i \(-0.383447\pi\)
0.358034 + 0.933709i \(0.383447\pi\)
\(128\) −8.83633 −0.781029
\(129\) 0 0
\(130\) 6.82004 0.598157
\(131\) 18.7048 1.63424 0.817122 0.576465i \(-0.195568\pi\)
0.817122 + 0.576465i \(0.195568\pi\)
\(132\) 0 0
\(133\) −0.774686 −0.0671738
\(134\) 12.6184 1.09006
\(135\) 0 0
\(136\) −4.84478 −0.415437
\(137\) 3.73212 0.318856 0.159428 0.987210i \(-0.449035\pi\)
0.159428 + 0.987210i \(0.449035\pi\)
\(138\) 0 0
\(139\) 13.5448 1.14886 0.574430 0.818554i \(-0.305224\pi\)
0.574430 + 0.818554i \(0.305224\pi\)
\(140\) −2.29641 −0.194082
\(141\) 0 0
\(142\) −6.01347 −0.504639
\(143\) 10.3836 0.868317
\(144\) 0 0
\(145\) 0 0
\(146\) −13.0088 −1.07662
\(147\) 0 0
\(148\) −1.46935 −0.120780
\(149\) 2.05954 0.168724 0.0843621 0.996435i \(-0.473115\pi\)
0.0843621 + 0.996435i \(0.473115\pi\)
\(150\) 0 0
\(151\) −12.4698 −1.01478 −0.507390 0.861717i \(-0.669389\pi\)
−0.507390 + 0.861717i \(0.669389\pi\)
\(152\) 1.21046 0.0981816
\(153\) 0 0
\(154\) −8.61483 −0.694203
\(155\) −7.97594 −0.640643
\(156\) 0 0
\(157\) −13.1146 −1.04666 −0.523329 0.852131i \(-0.675310\pi\)
−0.523329 + 0.852131i \(0.675310\pi\)
\(158\) −11.7226 −0.932601
\(159\) 0 0
\(160\) 14.9099 1.17873
\(161\) −3.40397 −0.268270
\(162\) 0 0
\(163\) 10.8794 0.852144 0.426072 0.904689i \(-0.359897\pi\)
0.426072 + 0.904689i \(0.359897\pi\)
\(164\) 1.64025 0.128082
\(165\) 0 0
\(166\) −9.45596 −0.733925
\(167\) 20.2789 1.56923 0.784614 0.619984i \(-0.212861\pi\)
0.784614 + 0.619984i \(0.212861\pi\)
\(168\) 0 0
\(169\) −10.2911 −0.791620
\(170\) 17.2624 1.32397
\(171\) 0 0
\(172\) −17.5231 −1.33612
\(173\) 0.158953 0.0120850 0.00604249 0.999982i \(-0.498077\pi\)
0.00604249 + 0.999982i \(0.498077\pi\)
\(174\) 0 0
\(175\) −0.0750587 −0.00567390
\(176\) 30.6983 2.31397
\(177\) 0 0
\(178\) 17.0967 1.28145
\(179\) 14.3983 1.07618 0.538090 0.842887i \(-0.319146\pi\)
0.538090 + 0.842887i \(0.319146\pi\)
\(180\) 0 0
\(181\) 12.9365 0.961561 0.480781 0.876841i \(-0.340353\pi\)
0.480781 + 0.876841i \(0.340353\pi\)
\(182\) −2.24750 −0.166596
\(183\) 0 0
\(184\) 5.31878 0.392106
\(185\) −2.42913 −0.178593
\(186\) 0 0
\(187\) 26.2822 1.92194
\(188\) 10.7733 0.785722
\(189\) 0 0
\(190\) −4.31300 −0.312898
\(191\) 5.61297 0.406140 0.203070 0.979164i \(-0.434908\pi\)
0.203070 + 0.979164i \(0.434908\pi\)
\(192\) 0 0
\(193\) 9.06736 0.652683 0.326341 0.945252i \(-0.394184\pi\)
0.326341 + 0.945252i \(0.394184\pi\)
\(194\) 27.8289 1.99800
\(195\) 0 0
\(196\) −8.80621 −0.629015
\(197\) −9.64306 −0.687039 −0.343520 0.939145i \(-0.611619\pi\)
−0.343520 + 0.939145i \(0.611619\pi\)
\(198\) 0 0
\(199\) 11.9070 0.844068 0.422034 0.906580i \(-0.361316\pi\)
0.422034 + 0.906580i \(0.361316\pi\)
\(200\) 0.117281 0.00829301
\(201\) 0 0
\(202\) 8.14899 0.573361
\(203\) 0 0
\(204\) 0 0
\(205\) 2.71167 0.189391
\(206\) −28.2428 −1.96777
\(207\) 0 0
\(208\) 8.00878 0.555309
\(209\) −6.56657 −0.454219
\(210\) 0 0
\(211\) −5.79422 −0.398891 −0.199445 0.979909i \(-0.563914\pi\)
−0.199445 + 0.979909i \(0.563914\pi\)
\(212\) 18.0218 1.23774
\(213\) 0 0
\(214\) −14.5249 −0.992899
\(215\) −28.9692 −1.97569
\(216\) 0 0
\(217\) 2.62842 0.178429
\(218\) −7.68563 −0.520537
\(219\) 0 0
\(220\) −19.4654 −1.31236
\(221\) 6.85668 0.461230
\(222\) 0 0
\(223\) −10.3821 −0.695235 −0.347618 0.937636i \(-0.613009\pi\)
−0.347618 + 0.937636i \(0.613009\pi\)
\(224\) −4.91346 −0.328294
\(225\) 0 0
\(226\) −19.8603 −1.32109
\(227\) −1.39818 −0.0928007 −0.0464003 0.998923i \(-0.514775\pi\)
−0.0464003 + 0.998923i \(0.514775\pi\)
\(228\) 0 0
\(229\) −6.89122 −0.455384 −0.227692 0.973733i \(-0.573118\pi\)
−0.227692 + 0.973733i \(0.573118\pi\)
\(230\) −18.9513 −1.24961
\(231\) 0 0
\(232\) 0 0
\(233\) 0.133957 0.00877579 0.00438789 0.999990i \(-0.498603\pi\)
0.00438789 + 0.999990i \(0.498603\pi\)
\(234\) 0 0
\(235\) 17.8104 1.16182
\(236\) −15.1075 −0.983413
\(237\) 0 0
\(238\) −5.68871 −0.368744
\(239\) −10.3770 −0.671234 −0.335617 0.941998i \(-0.608945\pi\)
−0.335617 + 0.941998i \(0.608945\pi\)
\(240\) 0 0
\(241\) 8.46604 0.545345 0.272673 0.962107i \(-0.412092\pi\)
0.272673 + 0.962107i \(0.412092\pi\)
\(242\) −52.8413 −3.39677
\(243\) 0 0
\(244\) −8.80974 −0.563986
\(245\) −14.5585 −0.930105
\(246\) 0 0
\(247\) −1.71313 −0.109004
\(248\) −4.10696 −0.260792
\(249\) 0 0
\(250\) 20.3006 1.28392
\(251\) −7.55152 −0.476647 −0.238324 0.971186i \(-0.576598\pi\)
−0.238324 + 0.971186i \(0.576598\pi\)
\(252\) 0 0
\(253\) −28.8535 −1.81401
\(254\) −14.8055 −0.928978
\(255\) 0 0
\(256\) 20.9725 1.31078
\(257\) −21.3098 −1.32927 −0.664633 0.747170i \(-0.731412\pi\)
−0.664633 + 0.747170i \(0.731412\pi\)
\(258\) 0 0
\(259\) 0.800503 0.0497408
\(260\) −5.07827 −0.314941
\(261\) 0 0
\(262\) −34.3177 −2.12016
\(263\) 25.8179 1.59200 0.796001 0.605296i \(-0.206945\pi\)
0.796001 + 0.605296i \(0.206945\pi\)
\(264\) 0 0
\(265\) 29.7937 1.83021
\(266\) 1.42132 0.0871466
\(267\) 0 0
\(268\) −9.39579 −0.573939
\(269\) −19.1133 −1.16536 −0.582678 0.812703i \(-0.697995\pi\)
−0.582678 + 0.812703i \(0.697995\pi\)
\(270\) 0 0
\(271\) −3.48307 −0.211581 −0.105791 0.994388i \(-0.533737\pi\)
−0.105791 + 0.994388i \(0.533737\pi\)
\(272\) 20.2713 1.22913
\(273\) 0 0
\(274\) −6.84734 −0.413663
\(275\) −0.636230 −0.0383661
\(276\) 0 0
\(277\) −10.1669 −0.610870 −0.305435 0.952213i \(-0.598802\pi\)
−0.305435 + 0.952213i \(0.598802\pi\)
\(278\) −24.8508 −1.49045
\(279\) 0 0
\(280\) −1.95486 −0.116825
\(281\) 1.07622 0.0642017 0.0321009 0.999485i \(-0.489780\pi\)
0.0321009 + 0.999485i \(0.489780\pi\)
\(282\) 0 0
\(283\) 9.12794 0.542600 0.271300 0.962495i \(-0.412546\pi\)
0.271300 + 0.962495i \(0.412546\pi\)
\(284\) 4.47769 0.265702
\(285\) 0 0
\(286\) −19.0508 −1.12650
\(287\) −0.893612 −0.0527483
\(288\) 0 0
\(289\) 0.355162 0.0208919
\(290\) 0 0
\(291\) 0 0
\(292\) 9.68651 0.566860
\(293\) 13.7721 0.804575 0.402287 0.915513i \(-0.368215\pi\)
0.402287 + 0.915513i \(0.368215\pi\)
\(294\) 0 0
\(295\) −24.9757 −1.45414
\(296\) −1.25080 −0.0727015
\(297\) 0 0
\(298\) −3.77865 −0.218891
\(299\) −7.52751 −0.435327
\(300\) 0 0
\(301\) 9.54662 0.550258
\(302\) 22.8784 1.31651
\(303\) 0 0
\(304\) −5.06476 −0.290484
\(305\) −14.5643 −0.833949
\(306\) 0 0
\(307\) 3.43747 0.196187 0.0980934 0.995177i \(-0.468726\pi\)
0.0980934 + 0.995177i \(0.468726\pi\)
\(308\) 6.41469 0.365511
\(309\) 0 0
\(310\) 14.6335 0.831126
\(311\) 29.9213 1.69668 0.848341 0.529450i \(-0.177602\pi\)
0.848341 + 0.529450i \(0.177602\pi\)
\(312\) 0 0
\(313\) 30.6301 1.73132 0.865658 0.500637i \(-0.166901\pi\)
0.865658 + 0.500637i \(0.166901\pi\)
\(314\) 24.0614 1.35786
\(315\) 0 0
\(316\) 8.72878 0.491032
\(317\) −4.43441 −0.249061 −0.124531 0.992216i \(-0.539743\pi\)
−0.124531 + 0.992216i \(0.539743\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −5.37575 −0.300514
\(321\) 0 0
\(322\) 6.24527 0.348036
\(323\) −4.33617 −0.241271
\(324\) 0 0
\(325\) −0.165984 −0.00920715
\(326\) −19.9606 −1.10551
\(327\) 0 0
\(328\) 1.39629 0.0770972
\(329\) −5.86930 −0.323585
\(330\) 0 0
\(331\) −12.6242 −0.693891 −0.346946 0.937885i \(-0.612781\pi\)
−0.346946 + 0.937885i \(0.612781\pi\)
\(332\) 7.04100 0.386425
\(333\) 0 0
\(334\) −37.2058 −2.03581
\(335\) −15.5331 −0.848666
\(336\) 0 0
\(337\) −17.0903 −0.930968 −0.465484 0.885056i \(-0.654120\pi\)
−0.465484 + 0.885056i \(0.654120\pi\)
\(338\) 18.8811 1.02699
\(339\) 0 0
\(340\) −12.8538 −0.697093
\(341\) 22.2796 1.20651
\(342\) 0 0
\(343\) 10.0076 0.540358
\(344\) −14.9168 −0.804261
\(345\) 0 0
\(346\) −0.291632 −0.0156782
\(347\) −5.48266 −0.294325 −0.147162 0.989112i \(-0.547014\pi\)
−0.147162 + 0.989112i \(0.547014\pi\)
\(348\) 0 0
\(349\) −20.4824 −1.09640 −0.548198 0.836349i \(-0.684686\pi\)
−0.548198 + 0.836349i \(0.684686\pi\)
\(350\) 0.137710 0.00736093
\(351\) 0 0
\(352\) −41.6486 −2.21988
\(353\) 18.8850 1.00515 0.502574 0.864534i \(-0.332387\pi\)
0.502574 + 0.864534i \(0.332387\pi\)
\(354\) 0 0
\(355\) 7.40253 0.392885
\(356\) −12.7304 −0.674707
\(357\) 0 0
\(358\) −26.4166 −1.39616
\(359\) 4.29579 0.226723 0.113361 0.993554i \(-0.463838\pi\)
0.113361 + 0.993554i \(0.463838\pi\)
\(360\) 0 0
\(361\) −17.9166 −0.942980
\(362\) −23.7346 −1.24746
\(363\) 0 0
\(364\) 1.67351 0.0877157
\(365\) 16.0138 0.838199
\(366\) 0 0
\(367\) 13.6676 0.713445 0.356723 0.934210i \(-0.383894\pi\)
0.356723 + 0.934210i \(0.383894\pi\)
\(368\) −22.2546 −1.16010
\(369\) 0 0
\(370\) 4.45673 0.231695
\(371\) −9.81832 −0.509742
\(372\) 0 0
\(373\) 12.5156 0.648034 0.324017 0.946051i \(-0.394966\pi\)
0.324017 + 0.946051i \(0.394966\pi\)
\(374\) −48.2200 −2.49340
\(375\) 0 0
\(376\) 9.17092 0.472954
\(377\) 0 0
\(378\) 0 0
\(379\) 11.1109 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(380\) 3.21150 0.164746
\(381\) 0 0
\(382\) −10.2981 −0.526899
\(383\) −15.5503 −0.794582 −0.397291 0.917693i \(-0.630050\pi\)
−0.397291 + 0.917693i \(0.630050\pi\)
\(384\) 0 0
\(385\) 10.6048 0.540470
\(386\) −16.6359 −0.846746
\(387\) 0 0
\(388\) −20.7217 −1.05199
\(389\) 0.482991 0.0244886 0.0122443 0.999925i \(-0.496102\pi\)
0.0122443 + 0.999925i \(0.496102\pi\)
\(390\) 0 0
\(391\) −19.0531 −0.963558
\(392\) −7.49642 −0.378626
\(393\) 0 0
\(394\) 17.6922 0.891318
\(395\) 14.4304 0.726075
\(396\) 0 0
\(397\) −7.77402 −0.390167 −0.195083 0.980787i \(-0.562498\pi\)
−0.195083 + 0.980787i \(0.562498\pi\)
\(398\) −21.8459 −1.09504
\(399\) 0 0
\(400\) −0.490721 −0.0245360
\(401\) 1.55128 0.0774671 0.0387335 0.999250i \(-0.487668\pi\)
0.0387335 + 0.999250i \(0.487668\pi\)
\(402\) 0 0
\(403\) 5.81246 0.289539
\(404\) −6.06782 −0.301885
\(405\) 0 0
\(406\) 0 0
\(407\) 6.78542 0.336341
\(408\) 0 0
\(409\) 10.1682 0.502788 0.251394 0.967885i \(-0.419111\pi\)
0.251394 + 0.967885i \(0.419111\pi\)
\(410\) −4.97511 −0.245703
\(411\) 0 0
\(412\) 21.0299 1.03607
\(413\) 8.23059 0.405001
\(414\) 0 0
\(415\) 11.6402 0.571395
\(416\) −10.8656 −0.532729
\(417\) 0 0
\(418\) 12.0477 0.589273
\(419\) 15.0196 0.733755 0.366878 0.930269i \(-0.380427\pi\)
0.366878 + 0.930269i \(0.380427\pi\)
\(420\) 0 0
\(421\) −8.57843 −0.418087 −0.209044 0.977906i \(-0.567035\pi\)
−0.209044 + 0.977906i \(0.567035\pi\)
\(422\) 10.6307 0.517494
\(423\) 0 0
\(424\) 15.3414 0.745042
\(425\) −0.420128 −0.0203792
\(426\) 0 0
\(427\) 4.79957 0.232267
\(428\) 10.8154 0.522780
\(429\) 0 0
\(430\) 53.1500 2.56312
\(431\) 9.39451 0.452518 0.226259 0.974067i \(-0.427350\pi\)
0.226259 + 0.974067i \(0.427350\pi\)
\(432\) 0 0
\(433\) 22.2308 1.06835 0.534173 0.845375i \(-0.320623\pi\)
0.534173 + 0.845375i \(0.320623\pi\)
\(434\) −4.82237 −0.231481
\(435\) 0 0
\(436\) 5.72280 0.274072
\(437\) 4.76040 0.227721
\(438\) 0 0
\(439\) −2.81005 −0.134116 −0.0670581 0.997749i \(-0.521361\pi\)
−0.0670581 + 0.997749i \(0.521361\pi\)
\(440\) −16.5702 −0.789954
\(441\) 0 0
\(442\) −12.5800 −0.598369
\(443\) 4.92058 0.233784 0.116892 0.993145i \(-0.462707\pi\)
0.116892 + 0.993145i \(0.462707\pi\)
\(444\) 0 0
\(445\) −21.0459 −0.997670
\(446\) 19.0480 0.901951
\(447\) 0 0
\(448\) 1.77154 0.0836975
\(449\) 37.9915 1.79293 0.896464 0.443116i \(-0.146127\pi\)
0.896464 + 0.443116i \(0.146127\pi\)
\(450\) 0 0
\(451\) −7.57465 −0.356676
\(452\) 14.7882 0.695576
\(453\) 0 0
\(454\) 2.56525 0.120393
\(455\) 2.76665 0.129703
\(456\) 0 0
\(457\) −4.65673 −0.217833 −0.108916 0.994051i \(-0.534738\pi\)
−0.108916 + 0.994051i \(0.534738\pi\)
\(458\) 12.6433 0.590785
\(459\) 0 0
\(460\) 14.1113 0.657944
\(461\) 19.9667 0.929940 0.464970 0.885326i \(-0.346065\pi\)
0.464970 + 0.885326i \(0.346065\pi\)
\(462\) 0 0
\(463\) −19.4998 −0.906230 −0.453115 0.891452i \(-0.649687\pi\)
−0.453115 + 0.891452i \(0.649687\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.245771 −0.0113851
\(467\) −34.5823 −1.60028 −0.800139 0.599814i \(-0.795241\pi\)
−0.800139 + 0.599814i \(0.795241\pi\)
\(468\) 0 0
\(469\) 5.11884 0.236366
\(470\) −32.6769 −1.50727
\(471\) 0 0
\(472\) −12.8605 −0.591952
\(473\) 80.9213 3.72077
\(474\) 0 0
\(475\) 0.104969 0.00481629
\(476\) 4.23587 0.194151
\(477\) 0 0
\(478\) 19.0388 0.870813
\(479\) −6.16844 −0.281843 −0.140922 0.990021i \(-0.545007\pi\)
−0.140922 + 0.990021i \(0.545007\pi\)
\(480\) 0 0
\(481\) 1.77023 0.0807154
\(482\) −15.5327 −0.707494
\(483\) 0 0
\(484\) 39.3462 1.78846
\(485\) −34.2572 −1.55554
\(486\) 0 0
\(487\) 6.54624 0.296638 0.148319 0.988940i \(-0.452614\pi\)
0.148319 + 0.988940i \(0.452614\pi\)
\(488\) −7.49943 −0.339483
\(489\) 0 0
\(490\) 26.7104 1.20666
\(491\) −18.2086 −0.821744 −0.410872 0.911693i \(-0.634776\pi\)
−0.410872 + 0.911693i \(0.634776\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 3.14309 0.141414
\(495\) 0 0
\(496\) 17.1841 0.771590
\(497\) −2.43945 −0.109424
\(498\) 0 0
\(499\) 16.7536 0.749995 0.374997 0.927026i \(-0.377644\pi\)
0.374997 + 0.927026i \(0.377644\pi\)
\(500\) −15.1160 −0.676008
\(501\) 0 0
\(502\) 13.8548 0.618370
\(503\) −3.32173 −0.148109 −0.0740544 0.997254i \(-0.523594\pi\)
−0.0740544 + 0.997254i \(0.523594\pi\)
\(504\) 0 0
\(505\) −10.0313 −0.446389
\(506\) 52.9377 2.35337
\(507\) 0 0
\(508\) 11.0243 0.489124
\(509\) −18.8251 −0.834409 −0.417205 0.908813i \(-0.636990\pi\)
−0.417205 + 0.908813i \(0.636990\pi\)
\(510\) 0 0
\(511\) −5.27723 −0.233451
\(512\) −20.8057 −0.919490
\(513\) 0 0
\(514\) 39.0971 1.72450
\(515\) 34.7667 1.53200
\(516\) 0 0
\(517\) −49.7508 −2.18804
\(518\) −1.46869 −0.0645304
\(519\) 0 0
\(520\) −4.32295 −0.189574
\(521\) 3.09335 0.135522 0.0677611 0.997702i \(-0.478414\pi\)
0.0677611 + 0.997702i \(0.478414\pi\)
\(522\) 0 0
\(523\) 34.6039 1.51312 0.756561 0.653924i \(-0.226878\pi\)
0.756561 + 0.653924i \(0.226878\pi\)
\(524\) 25.5533 1.11630
\(525\) 0 0
\(526\) −47.3683 −2.06535
\(527\) 14.7121 0.640870
\(528\) 0 0
\(529\) −2.08278 −0.0905556
\(530\) −54.6627 −2.37439
\(531\) 0 0
\(532\) −1.05833 −0.0458843
\(533\) −1.97613 −0.0855956
\(534\) 0 0
\(535\) 17.8800 0.773019
\(536\) −7.99831 −0.345474
\(537\) 0 0
\(538\) 35.0672 1.51185
\(539\) 40.6669 1.75165
\(540\) 0 0
\(541\) 27.7601 1.19350 0.596751 0.802427i \(-0.296458\pi\)
0.596751 + 0.802427i \(0.296458\pi\)
\(542\) 6.39040 0.274491
\(543\) 0 0
\(544\) −27.5022 −1.17915
\(545\) 9.46095 0.405263
\(546\) 0 0
\(547\) −32.6717 −1.39694 −0.698471 0.715639i \(-0.746136\pi\)
−0.698471 + 0.715639i \(0.746136\pi\)
\(548\) 5.09859 0.217801
\(549\) 0 0
\(550\) 1.16729 0.0497736
\(551\) 0 0
\(552\) 0 0
\(553\) −4.75546 −0.202223
\(554\) 18.6533 0.792501
\(555\) 0 0
\(556\) 18.5041 0.784751
\(557\) −43.4204 −1.83978 −0.919891 0.392175i \(-0.871723\pi\)
−0.919891 + 0.392175i \(0.871723\pi\)
\(558\) 0 0
\(559\) 21.1113 0.892914
\(560\) 8.17940 0.345643
\(561\) 0 0
\(562\) −1.97454 −0.0832909
\(563\) 0.551999 0.0232640 0.0116320 0.999932i \(-0.496297\pi\)
0.0116320 + 0.999932i \(0.496297\pi\)
\(564\) 0 0
\(565\) 24.4478 1.02853
\(566\) −16.7471 −0.703932
\(567\) 0 0
\(568\) 3.81170 0.159935
\(569\) 27.9559 1.17197 0.585986 0.810322i \(-0.300708\pi\)
0.585986 + 0.810322i \(0.300708\pi\)
\(570\) 0 0
\(571\) 33.2897 1.39313 0.696566 0.717493i \(-0.254710\pi\)
0.696566 + 0.717493i \(0.254710\pi\)
\(572\) 14.1854 0.593121
\(573\) 0 0
\(574\) 1.63951 0.0684320
\(575\) 0.461232 0.0192347
\(576\) 0 0
\(577\) 19.3682 0.806309 0.403154 0.915132i \(-0.367914\pi\)
0.403154 + 0.915132i \(0.367914\pi\)
\(578\) −0.651618 −0.0271037
\(579\) 0 0
\(580\) 0 0
\(581\) −3.83595 −0.159142
\(582\) 0 0
\(583\) −83.2244 −3.44680
\(584\) 8.24580 0.341214
\(585\) 0 0
\(586\) −25.2677 −1.04380
\(587\) −5.82917 −0.240596 −0.120298 0.992738i \(-0.538385\pi\)
−0.120298 + 0.992738i \(0.538385\pi\)
\(588\) 0 0
\(589\) −3.67581 −0.151459
\(590\) 45.8231 1.88651
\(591\) 0 0
\(592\) 5.23355 0.215098
\(593\) 2.27254 0.0933219 0.0466609 0.998911i \(-0.485142\pi\)
0.0466609 + 0.998911i \(0.485142\pi\)
\(594\) 0 0
\(595\) 7.00276 0.287085
\(596\) 2.81362 0.115250
\(597\) 0 0
\(598\) 13.8108 0.564764
\(599\) −30.3666 −1.24074 −0.620372 0.784307i \(-0.713019\pi\)
−0.620372 + 0.784307i \(0.713019\pi\)
\(600\) 0 0
\(601\) 19.9450 0.813572 0.406786 0.913524i \(-0.366650\pi\)
0.406786 + 0.913524i \(0.366650\pi\)
\(602\) −17.5152 −0.713867
\(603\) 0 0
\(604\) −17.0355 −0.693165
\(605\) 65.0472 2.64455
\(606\) 0 0
\(607\) 33.9427 1.37769 0.688846 0.724907i \(-0.258117\pi\)
0.688846 + 0.724907i \(0.258117\pi\)
\(608\) 6.87141 0.278672
\(609\) 0 0
\(610\) 26.7212 1.08191
\(611\) −12.9793 −0.525088
\(612\) 0 0
\(613\) 26.5569 1.07262 0.536311 0.844021i \(-0.319818\pi\)
0.536311 + 0.844021i \(0.319818\pi\)
\(614\) −6.30674 −0.254519
\(615\) 0 0
\(616\) 5.46060 0.220014
\(617\) 0.847640 0.0341247 0.0170624 0.999854i \(-0.494569\pi\)
0.0170624 + 0.999854i \(0.494569\pi\)
\(618\) 0 0
\(619\) 44.1556 1.77476 0.887381 0.461036i \(-0.152522\pi\)
0.887381 + 0.461036i \(0.152522\pi\)
\(620\) −10.8962 −0.437604
\(621\) 0 0
\(622\) −54.8968 −2.20116
\(623\) 6.93552 0.277866
\(624\) 0 0
\(625\) −25.4941 −1.01976
\(626\) −56.1972 −2.24609
\(627\) 0 0
\(628\) −17.9163 −0.714940
\(629\) 4.48068 0.178656
\(630\) 0 0
\(631\) −4.70583 −0.187336 −0.0936681 0.995603i \(-0.529859\pi\)
−0.0936681 + 0.995603i \(0.529859\pi\)
\(632\) 7.43051 0.295570
\(633\) 0 0
\(634\) 8.13583 0.323115
\(635\) 18.2254 0.723253
\(636\) 0 0
\(637\) 10.6095 0.420362
\(638\) 0 0
\(639\) 0 0
\(640\) −19.9569 −0.788866
\(641\) −26.2799 −1.03799 −0.518996 0.854776i \(-0.673694\pi\)
−0.518996 + 0.854776i \(0.673694\pi\)
\(642\) 0 0
\(643\) −21.4377 −0.845421 −0.422710 0.906265i \(-0.638921\pi\)
−0.422710 + 0.906265i \(0.638921\pi\)
\(644\) −4.65029 −0.183247
\(645\) 0 0
\(646\) 7.95559 0.313008
\(647\) −31.4103 −1.23487 −0.617433 0.786623i \(-0.711827\pi\)
−0.617433 + 0.786623i \(0.711827\pi\)
\(648\) 0 0
\(649\) 69.7661 2.73856
\(650\) 0.304532 0.0119447
\(651\) 0 0
\(652\) 14.8628 0.582073
\(653\) 34.4884 1.34963 0.674817 0.737985i \(-0.264223\pi\)
0.674817 + 0.737985i \(0.264223\pi\)
\(654\) 0 0
\(655\) 42.2448 1.65064
\(656\) −5.84228 −0.228103
\(657\) 0 0
\(658\) 10.7684 0.419797
\(659\) −23.6867 −0.922702 −0.461351 0.887218i \(-0.652635\pi\)
−0.461351 + 0.887218i \(0.652635\pi\)
\(660\) 0 0
\(661\) −32.0028 −1.24477 −0.622383 0.782713i \(-0.713835\pi\)
−0.622383 + 0.782713i \(0.713835\pi\)
\(662\) 23.1618 0.900207
\(663\) 0 0
\(664\) 5.99376 0.232603
\(665\) −1.74963 −0.0678478
\(666\) 0 0
\(667\) 0 0
\(668\) 27.7038 1.07189
\(669\) 0 0
\(670\) 28.4987 1.10100
\(671\) 40.6832 1.57056
\(672\) 0 0
\(673\) 11.9640 0.461180 0.230590 0.973051i \(-0.425934\pi\)
0.230590 + 0.973051i \(0.425934\pi\)
\(674\) 31.3557 1.20777
\(675\) 0 0
\(676\) −14.0590 −0.540732
\(677\) 40.0569 1.53951 0.769755 0.638339i \(-0.220378\pi\)
0.769755 + 0.638339i \(0.220378\pi\)
\(678\) 0 0
\(679\) 11.2892 0.433241
\(680\) −10.9420 −0.419605
\(681\) 0 0
\(682\) −40.8765 −1.56524
\(683\) 20.7589 0.794318 0.397159 0.917750i \(-0.369996\pi\)
0.397159 + 0.917750i \(0.369996\pi\)
\(684\) 0 0
\(685\) 8.42901 0.322056
\(686\) −18.3609 −0.701023
\(687\) 0 0
\(688\) 62.4141 2.37952
\(689\) −21.7122 −0.827168
\(690\) 0 0
\(691\) 3.33679 0.126937 0.0634687 0.997984i \(-0.479784\pi\)
0.0634687 + 0.997984i \(0.479784\pi\)
\(692\) 0.217152 0.00825489
\(693\) 0 0
\(694\) 10.0591 0.381837
\(695\) 30.5911 1.16039
\(696\) 0 0
\(697\) −5.00184 −0.189458
\(698\) 37.5791 1.42239
\(699\) 0 0
\(700\) −0.102541 −0.00387567
\(701\) −24.0330 −0.907714 −0.453857 0.891074i \(-0.649952\pi\)
−0.453857 + 0.891074i \(0.649952\pi\)
\(702\) 0 0
\(703\) −1.11949 −0.0422225
\(704\) 15.0164 0.565951
\(705\) 0 0
\(706\) −34.6484 −1.30401
\(707\) 3.30576 0.124326
\(708\) 0 0
\(709\) −47.3439 −1.77804 −0.889019 0.457871i \(-0.848612\pi\)
−0.889019 + 0.457871i \(0.848612\pi\)
\(710\) −13.5814 −0.509703
\(711\) 0 0
\(712\) −10.8369 −0.406130
\(713\) −16.1515 −0.604878
\(714\) 0 0
\(715\) 23.4513 0.877030
\(716\) 19.6701 0.735106
\(717\) 0 0
\(718\) −7.88150 −0.294135
\(719\) −28.9066 −1.07803 −0.539016 0.842295i \(-0.681204\pi\)
−0.539016 + 0.842295i \(0.681204\pi\)
\(720\) 0 0
\(721\) −11.4571 −0.426686
\(722\) 32.8717 1.22336
\(723\) 0 0
\(724\) 17.6730 0.656813
\(725\) 0 0
\(726\) 0 0
\(727\) 3.66717 0.136008 0.0680038 0.997685i \(-0.478337\pi\)
0.0680038 + 0.997685i \(0.478337\pi\)
\(728\) 1.42460 0.0527992
\(729\) 0 0
\(730\) −29.3805 −1.08742
\(731\) 53.4356 1.97639
\(732\) 0 0
\(733\) −41.1371 −1.51943 −0.759716 0.650255i \(-0.774662\pi\)
−0.759716 + 0.650255i \(0.774662\pi\)
\(734\) −25.0761 −0.925575
\(735\) 0 0
\(736\) 30.1930 1.11293
\(737\) 43.3896 1.59827
\(738\) 0 0
\(739\) 42.9540 1.58009 0.790043 0.613051i \(-0.210058\pi\)
0.790043 + 0.613051i \(0.210058\pi\)
\(740\) −3.31853 −0.121992
\(741\) 0 0
\(742\) 18.0137 0.661304
\(743\) −28.2979 −1.03815 −0.519074 0.854729i \(-0.673723\pi\)
−0.519074 + 0.854729i \(0.673723\pi\)
\(744\) 0 0
\(745\) 4.65149 0.170417
\(746\) −22.9625 −0.840715
\(747\) 0 0
\(748\) 35.9051 1.31282
\(749\) −5.89222 −0.215297
\(750\) 0 0
\(751\) 52.1447 1.90279 0.951393 0.307978i \(-0.0996523\pi\)
0.951393 + 0.307978i \(0.0996523\pi\)
\(752\) −38.3725 −1.39930
\(753\) 0 0
\(754\) 0 0
\(755\) −28.1631 −1.02496
\(756\) 0 0
\(757\) −40.8852 −1.48600 −0.742999 0.669292i \(-0.766598\pi\)
−0.742999 + 0.669292i \(0.766598\pi\)
\(758\) −20.3853 −0.740427
\(759\) 0 0
\(760\) 2.73384 0.0991668
\(761\) 13.1093 0.475210 0.237605 0.971362i \(-0.423638\pi\)
0.237605 + 0.971362i \(0.423638\pi\)
\(762\) 0 0
\(763\) −3.11779 −0.112872
\(764\) 7.66810 0.277422
\(765\) 0 0
\(766\) 28.5302 1.03084
\(767\) 18.2011 0.657202
\(768\) 0 0
\(769\) 35.8690 1.29347 0.646734 0.762716i \(-0.276134\pi\)
0.646734 + 0.762716i \(0.276134\pi\)
\(770\) −19.4566 −0.701169
\(771\) 0 0
\(772\) 12.3873 0.445828
\(773\) 38.0995 1.37034 0.685172 0.728381i \(-0.259727\pi\)
0.685172 + 0.728381i \(0.259727\pi\)
\(774\) 0 0
\(775\) −0.356146 −0.0127931
\(776\) −17.6397 −0.633228
\(777\) 0 0
\(778\) −0.886146 −0.0317699
\(779\) 1.24970 0.0447753
\(780\) 0 0
\(781\) −20.6779 −0.739912
\(782\) 34.9569 1.25005
\(783\) 0 0
\(784\) 31.3661 1.12022
\(785\) −29.6194 −1.05716
\(786\) 0 0
\(787\) −16.2121 −0.577901 −0.288950 0.957344i \(-0.593306\pi\)
−0.288950 + 0.957344i \(0.593306\pi\)
\(788\) −13.1738 −0.469296
\(789\) 0 0
\(790\) −26.4756 −0.941960
\(791\) −8.05662 −0.286460
\(792\) 0 0
\(793\) 10.6137 0.376904
\(794\) 14.2630 0.506176
\(795\) 0 0
\(796\) 16.2667 0.576557
\(797\) 28.8327 1.02131 0.510653 0.859787i \(-0.329404\pi\)
0.510653 + 0.859787i \(0.329404\pi\)
\(798\) 0 0
\(799\) −32.8524 −1.16224
\(800\) 0.665765 0.0235384
\(801\) 0 0
\(802\) −2.84613 −0.100500
\(803\) −44.7321 −1.57856
\(804\) 0 0
\(805\) −7.68788 −0.270962
\(806\) −10.6641 −0.375629
\(807\) 0 0
\(808\) −5.16533 −0.181716
\(809\) 12.7510 0.448301 0.224151 0.974555i \(-0.428039\pi\)
0.224151 + 0.974555i \(0.428039\pi\)
\(810\) 0 0
\(811\) 11.6687 0.409742 0.204871 0.978789i \(-0.434323\pi\)
0.204871 + 0.978789i \(0.434323\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −12.4492 −0.436345
\(815\) 24.5713 0.860695
\(816\) 0 0
\(817\) −13.3508 −0.467086
\(818\) −18.6557 −0.652282
\(819\) 0 0
\(820\) 3.70452 0.129367
\(821\) 45.4267 1.58540 0.792701 0.609611i \(-0.208674\pi\)
0.792701 + 0.609611i \(0.208674\pi\)
\(822\) 0 0
\(823\) −11.1415 −0.388370 −0.194185 0.980965i \(-0.562206\pi\)
−0.194185 + 0.980965i \(0.562206\pi\)
\(824\) 17.9020 0.623646
\(825\) 0 0
\(826\) −15.1007 −0.525420
\(827\) −8.81985 −0.306696 −0.153348 0.988172i \(-0.549006\pi\)
−0.153348 + 0.988172i \(0.549006\pi\)
\(828\) 0 0
\(829\) −40.1793 −1.39548 −0.697742 0.716349i \(-0.745812\pi\)
−0.697742 + 0.716349i \(0.745812\pi\)
\(830\) −21.3563 −0.741289
\(831\) 0 0
\(832\) 3.91758 0.135818
\(833\) 26.8540 0.930435
\(834\) 0 0
\(835\) 45.8000 1.58497
\(836\) −8.97085 −0.310263
\(837\) 0 0
\(838\) −27.5565 −0.951924
\(839\) 31.9033 1.10142 0.550712 0.834695i \(-0.314356\pi\)
0.550712 + 0.834695i \(0.314356\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 15.7389 0.542398
\(843\) 0 0
\(844\) −7.91571 −0.272470
\(845\) −23.2424 −0.799564
\(846\) 0 0
\(847\) −21.4359 −0.736545
\(848\) −64.1905 −2.20431
\(849\) 0 0
\(850\) 0.770811 0.0264386
\(851\) −4.91905 −0.168623
\(852\) 0 0
\(853\) 7.50388 0.256928 0.128464 0.991714i \(-0.458995\pi\)
0.128464 + 0.991714i \(0.458995\pi\)
\(854\) −8.80578 −0.301328
\(855\) 0 0
\(856\) 9.20674 0.314680
\(857\) −10.9514 −0.374092 −0.187046 0.982351i \(-0.559891\pi\)
−0.187046 + 0.982351i \(0.559891\pi\)
\(858\) 0 0
\(859\) −11.4776 −0.391610 −0.195805 0.980643i \(-0.562732\pi\)
−0.195805 + 0.980643i \(0.562732\pi\)
\(860\) −39.5760 −1.34953
\(861\) 0 0
\(862\) −17.2361 −0.587066
\(863\) 7.52988 0.256320 0.128160 0.991753i \(-0.459093\pi\)
0.128160 + 0.991753i \(0.459093\pi\)
\(864\) 0 0
\(865\) 0.358997 0.0122063
\(866\) −40.7870 −1.38600
\(867\) 0 0
\(868\) 3.59078 0.121879
\(869\) −40.3093 −1.36740
\(870\) 0 0
\(871\) 11.3198 0.383556
\(872\) 4.87162 0.164974
\(873\) 0 0
\(874\) −8.73393 −0.295430
\(875\) 8.23523 0.278402
\(876\) 0 0
\(877\) 27.3723 0.924297 0.462149 0.886803i \(-0.347079\pi\)
0.462149 + 0.886803i \(0.347079\pi\)
\(878\) 5.15560 0.173993
\(879\) 0 0
\(880\) 69.3322 2.33719
\(881\) −26.2414 −0.884094 −0.442047 0.896992i \(-0.645748\pi\)
−0.442047 + 0.896992i \(0.645748\pi\)
\(882\) 0 0
\(883\) 30.3863 1.02258 0.511290 0.859408i \(-0.329168\pi\)
0.511290 + 0.859408i \(0.329168\pi\)
\(884\) 9.36718 0.315052
\(885\) 0 0
\(886\) −9.02781 −0.303295
\(887\) −8.08209 −0.271370 −0.135685 0.990752i \(-0.543324\pi\)
−0.135685 + 0.990752i \(0.543324\pi\)
\(888\) 0 0
\(889\) −6.00606 −0.201437
\(890\) 38.6129 1.29431
\(891\) 0 0
\(892\) −14.1834 −0.474894
\(893\) 8.20814 0.274675
\(894\) 0 0
\(895\) 32.5187 1.08698
\(896\) 6.57666 0.219711
\(897\) 0 0
\(898\) −69.7031 −2.32602
\(899\) 0 0
\(900\) 0 0
\(901\) −54.9564 −1.83086
\(902\) 13.8972 0.462728
\(903\) 0 0
\(904\) 12.5886 0.418692
\(905\) 29.2171 0.971210
\(906\) 0 0
\(907\) 7.94924 0.263950 0.131975 0.991253i \(-0.457868\pi\)
0.131975 + 0.991253i \(0.457868\pi\)
\(908\) −1.91011 −0.0633893
\(909\) 0 0
\(910\) −5.07598 −0.168267
\(911\) 5.66777 0.187782 0.0938908 0.995583i \(-0.470070\pi\)
0.0938908 + 0.995583i \(0.470070\pi\)
\(912\) 0 0
\(913\) −32.5152 −1.07610
\(914\) 8.54372 0.282601
\(915\) 0 0
\(916\) −9.41436 −0.311059
\(917\) −13.9215 −0.459728
\(918\) 0 0
\(919\) 26.8324 0.885118 0.442559 0.896739i \(-0.354071\pi\)
0.442559 + 0.896739i \(0.354071\pi\)
\(920\) 12.0125 0.396040
\(921\) 0 0
\(922\) −36.6329 −1.20644
\(923\) −5.39459 −0.177565
\(924\) 0 0
\(925\) −0.108467 −0.00356637
\(926\) 35.7763 1.17568
\(927\) 0 0
\(928\) 0 0
\(929\) 24.4580 0.802441 0.401220 0.915982i \(-0.368586\pi\)
0.401220 + 0.915982i \(0.368586\pi\)
\(930\) 0 0
\(931\) −6.70943 −0.219893
\(932\) 0.183003 0.00599447
\(933\) 0 0
\(934\) 63.4483 2.07609
\(935\) 59.3584 1.94123
\(936\) 0 0
\(937\) 34.2397 1.11856 0.559281 0.828978i \(-0.311077\pi\)
0.559281 + 0.828978i \(0.311077\pi\)
\(938\) −9.39156 −0.306645
\(939\) 0 0
\(940\) 24.3315 0.793606
\(941\) 38.0807 1.24139 0.620697 0.784050i \(-0.286850\pi\)
0.620697 + 0.784050i \(0.286850\pi\)
\(942\) 0 0
\(943\) 5.49120 0.178818
\(944\) 53.8101 1.75137
\(945\) 0 0
\(946\) −148.467 −4.82707
\(947\) 49.7451 1.61650 0.808250 0.588839i \(-0.200415\pi\)
0.808250 + 0.588839i \(0.200415\pi\)
\(948\) 0 0
\(949\) −11.6700 −0.378825
\(950\) −0.192586 −0.00624832
\(951\) 0 0
\(952\) 3.60585 0.116866
\(953\) 9.58035 0.310338 0.155169 0.987888i \(-0.450408\pi\)
0.155169 + 0.987888i \(0.450408\pi\)
\(954\) 0 0
\(955\) 12.6769 0.410216
\(956\) −14.1765 −0.458500
\(957\) 0 0
\(958\) 11.3173 0.365644
\(959\) −2.77772 −0.0896974
\(960\) 0 0
\(961\) −18.5284 −0.597691
\(962\) −3.24784 −0.104715
\(963\) 0 0
\(964\) 11.5658 0.372509
\(965\) 20.4787 0.659232
\(966\) 0 0
\(967\) 45.1604 1.45226 0.726131 0.687557i \(-0.241317\pi\)
0.726131 + 0.687557i \(0.241317\pi\)
\(968\) 33.4940 1.07654
\(969\) 0 0
\(970\) 62.8518 2.01805
\(971\) −18.1666 −0.582994 −0.291497 0.956572i \(-0.594153\pi\)
−0.291497 + 0.956572i \(0.594153\pi\)
\(972\) 0 0
\(973\) −10.0811 −0.323185
\(974\) −12.0104 −0.384838
\(975\) 0 0
\(976\) 31.3787 1.00441
\(977\) −1.43021 −0.0457566 −0.0228783 0.999738i \(-0.507283\pi\)
−0.0228783 + 0.999738i \(0.507283\pi\)
\(978\) 0 0
\(979\) 58.7885 1.87889
\(980\) −19.8889 −0.635327
\(981\) 0 0
\(982\) 33.4074 1.06607
\(983\) −41.1614 −1.31285 −0.656423 0.754393i \(-0.727931\pi\)
−0.656423 + 0.754393i \(0.727931\pi\)
\(984\) 0 0
\(985\) −21.7789 −0.693933
\(986\) 0 0
\(987\) 0 0
\(988\) −2.34038 −0.0744574
\(989\) −58.6635 −1.86539
\(990\) 0 0
\(991\) −3.93474 −0.124991 −0.0624956 0.998045i \(-0.519906\pi\)
−0.0624956 + 0.998045i \(0.519906\pi\)
\(992\) −23.3139 −0.740216
\(993\) 0 0
\(994\) 4.47567 0.141960
\(995\) 26.8921 0.852538
\(996\) 0 0
\(997\) −46.8707 −1.48441 −0.742206 0.670172i \(-0.766220\pi\)
−0.742206 + 0.670172i \(0.766220\pi\)
\(998\) −30.7379 −0.972992
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bl.1.2 9
3.2 odd 2 2523.2.a.p.1.8 9
29.16 even 7 261.2.k.b.82.1 18
29.20 even 7 261.2.k.b.226.1 18
29.28 even 2 7569.2.a.bk.1.8 9
87.20 odd 14 87.2.g.b.52.3 18
87.74 odd 14 87.2.g.b.82.3 yes 18
87.86 odd 2 2523.2.a.q.1.2 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.52.3 18 87.20 odd 14
87.2.g.b.82.3 yes 18 87.74 odd 14
261.2.k.b.82.1 18 29.16 even 7
261.2.k.b.226.1 18 29.20 even 7
2523.2.a.p.1.8 9 3.2 odd 2
2523.2.a.q.1.2 9 87.86 odd 2
7569.2.a.bk.1.8 9 29.28 even 2
7569.2.a.bl.1.2 9 1.1 even 1 trivial