Properties

Label 7569.2.a.bl.1.1
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 9x^{6} + 70x^{5} - 23x^{4} - 141x^{3} + 14x^{2} + 84x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.07337\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.07337 q^{2} +2.29887 q^{4} -1.89543 q^{5} -4.71271 q^{7} -0.619659 q^{8} +O(q^{10})\) \(q-2.07337 q^{2} +2.29887 q^{4} -1.89543 q^{5} -4.71271 q^{7} -0.619659 q^{8} +3.92993 q^{10} -3.74001 q^{11} -1.12526 q^{13} +9.77119 q^{14} -3.31295 q^{16} +5.60261 q^{17} -1.93415 q^{19} -4.35734 q^{20} +7.75444 q^{22} +4.32591 q^{23} -1.40734 q^{25} +2.33307 q^{26} -10.8339 q^{28} +0.971138 q^{31} +8.10829 q^{32} -11.6163 q^{34} +8.93262 q^{35} -9.96009 q^{37} +4.01020 q^{38} +1.17452 q^{40} -1.59051 q^{41} +4.53504 q^{43} -8.59779 q^{44} -8.96921 q^{46} -5.86127 q^{47} +15.2096 q^{49} +2.91793 q^{50} -2.58681 q^{52} -5.15887 q^{53} +7.08895 q^{55} +2.92027 q^{56} -5.71853 q^{59} -10.4423 q^{61} -2.01353 q^{62} -10.1856 q^{64} +2.13285 q^{65} -3.96861 q^{67} +12.8796 q^{68} -18.5206 q^{70} +0.299065 q^{71} -15.1069 q^{73} +20.6510 q^{74} -4.44634 q^{76} +17.6256 q^{77} -13.8124 q^{79} +6.27947 q^{80} +3.29773 q^{82} -2.91826 q^{83} -10.6194 q^{85} -9.40282 q^{86} +2.31753 q^{88} -7.28497 q^{89} +5.30301 q^{91} +9.94468 q^{92} +12.1526 q^{94} +3.66605 q^{95} -12.8154 q^{97} -31.5352 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8} - 4 q^{10} + 3 q^{11} + 5 q^{13} + 15 q^{14} - 5 q^{16} + 16 q^{17} + q^{19} - 8 q^{20} + 24 q^{22} + 10 q^{23} + 9 q^{25} + 12 q^{26} - 24 q^{28} + 4 q^{31} + 25 q^{32} + 24 q^{34} + 44 q^{35} - 25 q^{37} + 10 q^{38} - 5 q^{40} + 34 q^{41} - 12 q^{43} - 23 q^{44} - 6 q^{46} + 8 q^{47} + 26 q^{49} + 27 q^{50} - 23 q^{52} + 32 q^{53} + 5 q^{55} - 14 q^{56} - 10 q^{59} - 51 q^{61} - 8 q^{62} - 8 q^{64} + 11 q^{65} + 7 q^{67} + 11 q^{68} + 14 q^{70} - 7 q^{71} - 17 q^{73} + 62 q^{74} + 6 q^{76} + 64 q^{77} - 13 q^{79} - 54 q^{80} + 37 q^{82} + 31 q^{83} - 42 q^{85} + 70 q^{86} - 29 q^{88} - 32 q^{89} + 45 q^{91} - 9 q^{92} + 38 q^{94} - 20 q^{95} - 16 q^{97} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.07337 −1.46609 −0.733047 0.680178i \(-0.761903\pi\)
−0.733047 + 0.680178i \(0.761903\pi\)
\(3\) 0 0
\(4\) 2.29887 1.14943
\(5\) −1.89543 −0.847663 −0.423832 0.905741i \(-0.639315\pi\)
−0.423832 + 0.905741i \(0.639315\pi\)
\(6\) 0 0
\(7\) −4.71271 −1.78124 −0.890619 0.454751i \(-0.849728\pi\)
−0.890619 + 0.454751i \(0.849728\pi\)
\(8\) −0.619659 −0.219082
\(9\) 0 0
\(10\) 3.92993 1.24275
\(11\) −3.74001 −1.12766 −0.563828 0.825892i \(-0.690672\pi\)
−0.563828 + 0.825892i \(0.690672\pi\)
\(12\) 0 0
\(13\) −1.12526 −0.312090 −0.156045 0.987750i \(-0.549874\pi\)
−0.156045 + 0.987750i \(0.549874\pi\)
\(14\) 9.77119 2.61146
\(15\) 0 0
\(16\) −3.31295 −0.828237
\(17\) 5.60261 1.35883 0.679416 0.733753i \(-0.262233\pi\)
0.679416 + 0.733753i \(0.262233\pi\)
\(18\) 0 0
\(19\) −1.93415 −0.443724 −0.221862 0.975078i \(-0.571213\pi\)
−0.221862 + 0.975078i \(0.571213\pi\)
\(20\) −4.35734 −0.974332
\(21\) 0 0
\(22\) 7.75444 1.65325
\(23\) 4.32591 0.902014 0.451007 0.892520i \(-0.351065\pi\)
0.451007 + 0.892520i \(0.351065\pi\)
\(24\) 0 0
\(25\) −1.40734 −0.281467
\(26\) 2.33307 0.457553
\(27\) 0 0
\(28\) −10.8339 −2.04741
\(29\) 0 0
\(30\) 0 0
\(31\) 0.971138 0.174422 0.0872108 0.996190i \(-0.472205\pi\)
0.0872108 + 0.996190i \(0.472205\pi\)
\(32\) 8.10829 1.43336
\(33\) 0 0
\(34\) −11.6163 −1.99218
\(35\) 8.93262 1.50989
\(36\) 0 0
\(37\) −9.96009 −1.63743 −0.818714 0.574201i \(-0.805313\pi\)
−0.818714 + 0.574201i \(0.805313\pi\)
\(38\) 4.01020 0.650541
\(39\) 0 0
\(40\) 1.17452 0.185708
\(41\) −1.59051 −0.248397 −0.124198 0.992257i \(-0.539636\pi\)
−0.124198 + 0.992257i \(0.539636\pi\)
\(42\) 0 0
\(43\) 4.53504 0.691587 0.345793 0.938311i \(-0.387610\pi\)
0.345793 + 0.938311i \(0.387610\pi\)
\(44\) −8.59779 −1.29617
\(45\) 0 0
\(46\) −8.96921 −1.32244
\(47\) −5.86127 −0.854954 −0.427477 0.904026i \(-0.640598\pi\)
−0.427477 + 0.904026i \(0.640598\pi\)
\(48\) 0 0
\(49\) 15.2096 2.17281
\(50\) 2.91793 0.412657
\(51\) 0 0
\(52\) −2.58681 −0.358726
\(53\) −5.15887 −0.708625 −0.354312 0.935127i \(-0.615285\pi\)
−0.354312 + 0.935127i \(0.615285\pi\)
\(54\) 0 0
\(55\) 7.08895 0.955873
\(56\) 2.92027 0.390238
\(57\) 0 0
\(58\) 0 0
\(59\) −5.71853 −0.744490 −0.372245 0.928135i \(-0.621412\pi\)
−0.372245 + 0.928135i \(0.621412\pi\)
\(60\) 0 0
\(61\) −10.4423 −1.33700 −0.668502 0.743710i \(-0.733064\pi\)
−0.668502 + 0.743710i \(0.733064\pi\)
\(62\) −2.01353 −0.255719
\(63\) 0 0
\(64\) −10.1856 −1.27320
\(65\) 2.13285 0.264547
\(66\) 0 0
\(67\) −3.96861 −0.484843 −0.242421 0.970171i \(-0.577942\pi\)
−0.242421 + 0.970171i \(0.577942\pi\)
\(68\) 12.8796 1.56189
\(69\) 0 0
\(70\) −18.5206 −2.21364
\(71\) 0.299065 0.0354925 0.0177462 0.999843i \(-0.494351\pi\)
0.0177462 + 0.999843i \(0.494351\pi\)
\(72\) 0 0
\(73\) −15.1069 −1.76812 −0.884062 0.467370i \(-0.845202\pi\)
−0.884062 + 0.467370i \(0.845202\pi\)
\(74\) 20.6510 2.40062
\(75\) 0 0
\(76\) −4.44634 −0.510031
\(77\) 17.6256 2.00862
\(78\) 0 0
\(79\) −13.8124 −1.55401 −0.777007 0.629492i \(-0.783263\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(80\) 6.27947 0.702066
\(81\) 0 0
\(82\) 3.29773 0.364173
\(83\) −2.91826 −0.320321 −0.160160 0.987091i \(-0.551201\pi\)
−0.160160 + 0.987091i \(0.551201\pi\)
\(84\) 0 0
\(85\) −10.6194 −1.15183
\(86\) −9.40282 −1.01393
\(87\) 0 0
\(88\) 2.31753 0.247050
\(89\) −7.28497 −0.772205 −0.386102 0.922456i \(-0.626179\pi\)
−0.386102 + 0.922456i \(0.626179\pi\)
\(90\) 0 0
\(91\) 5.30301 0.555906
\(92\) 9.94468 1.03680
\(93\) 0 0
\(94\) 12.1526 1.25344
\(95\) 3.66605 0.376128
\(96\) 0 0
\(97\) −12.8154 −1.30121 −0.650605 0.759416i \(-0.725485\pi\)
−0.650605 + 0.759416i \(0.725485\pi\)
\(98\) −31.5352 −3.18554
\(99\) 0 0
\(100\) −3.23527 −0.323527
\(101\) 9.45277 0.940586 0.470293 0.882510i \(-0.344148\pi\)
0.470293 + 0.882510i \(0.344148\pi\)
\(102\) 0 0
\(103\) 5.55324 0.547177 0.273588 0.961847i \(-0.411789\pi\)
0.273588 + 0.961847i \(0.411789\pi\)
\(104\) 0.697275 0.0683734
\(105\) 0 0
\(106\) 10.6962 1.03891
\(107\) −6.29711 −0.608765 −0.304382 0.952550i \(-0.598450\pi\)
−0.304382 + 0.952550i \(0.598450\pi\)
\(108\) 0 0
\(109\) −16.3981 −1.57065 −0.785324 0.619084i \(-0.787504\pi\)
−0.785324 + 0.619084i \(0.787504\pi\)
\(110\) −14.6980 −1.40140
\(111\) 0 0
\(112\) 15.6130 1.47529
\(113\) −2.74678 −0.258395 −0.129198 0.991619i \(-0.541240\pi\)
−0.129198 + 0.991619i \(0.541240\pi\)
\(114\) 0 0
\(115\) −8.19947 −0.764604
\(116\) 0 0
\(117\) 0 0
\(118\) 11.8566 1.09149
\(119\) −26.4035 −2.42040
\(120\) 0 0
\(121\) 2.98771 0.271610
\(122\) 21.6508 1.96017
\(123\) 0 0
\(124\) 2.23252 0.200486
\(125\) 12.1447 1.08625
\(126\) 0 0
\(127\) −12.4117 −1.10136 −0.550681 0.834716i \(-0.685632\pi\)
−0.550681 + 0.834716i \(0.685632\pi\)
\(128\) 4.90192 0.433273
\(129\) 0 0
\(130\) −4.42218 −0.387851
\(131\) −18.9093 −1.65211 −0.826057 0.563587i \(-0.809421\pi\)
−0.826057 + 0.563587i \(0.809421\pi\)
\(132\) 0 0
\(133\) 9.11507 0.790377
\(134\) 8.22840 0.710825
\(135\) 0 0
\(136\) −3.47170 −0.297696
\(137\) −8.82449 −0.753927 −0.376963 0.926228i \(-0.623032\pi\)
−0.376963 + 0.926228i \(0.623032\pi\)
\(138\) 0 0
\(139\) 10.3454 0.877485 0.438743 0.898613i \(-0.355424\pi\)
0.438743 + 0.898613i \(0.355424\pi\)
\(140\) 20.5349 1.73552
\(141\) 0 0
\(142\) −0.620073 −0.0520353
\(143\) 4.20847 0.351930
\(144\) 0 0
\(145\) 0 0
\(146\) 31.3221 2.59224
\(147\) 0 0
\(148\) −22.8969 −1.88211
\(149\) −12.1003 −0.991298 −0.495649 0.868523i \(-0.665070\pi\)
−0.495649 + 0.868523i \(0.665070\pi\)
\(150\) 0 0
\(151\) 9.54059 0.776402 0.388201 0.921575i \(-0.373097\pi\)
0.388201 + 0.921575i \(0.373097\pi\)
\(152\) 1.19851 0.0972121
\(153\) 0 0
\(154\) −36.5444 −2.94483
\(155\) −1.84073 −0.147851
\(156\) 0 0
\(157\) 0.889508 0.0709905 0.0354952 0.999370i \(-0.488699\pi\)
0.0354952 + 0.999370i \(0.488699\pi\)
\(158\) 28.6382 2.27833
\(159\) 0 0
\(160\) −15.3687 −1.21500
\(161\) −20.3868 −1.60670
\(162\) 0 0
\(163\) 7.71251 0.604090 0.302045 0.953294i \(-0.402331\pi\)
0.302045 + 0.953294i \(0.402331\pi\)
\(164\) −3.65638 −0.285515
\(165\) 0 0
\(166\) 6.05064 0.469621
\(167\) −8.38877 −0.649143 −0.324571 0.945861i \(-0.605220\pi\)
−0.324571 + 0.945861i \(0.605220\pi\)
\(168\) 0 0
\(169\) −11.7338 −0.902600
\(170\) 22.0179 1.68869
\(171\) 0 0
\(172\) 10.4254 0.794933
\(173\) 3.52185 0.267761 0.133881 0.990997i \(-0.457256\pi\)
0.133881 + 0.990997i \(0.457256\pi\)
\(174\) 0 0
\(175\) 6.63236 0.501360
\(176\) 12.3905 0.933967
\(177\) 0 0
\(178\) 15.1044 1.13213
\(179\) −7.13537 −0.533323 −0.266661 0.963790i \(-0.585921\pi\)
−0.266661 + 0.963790i \(0.585921\pi\)
\(180\) 0 0
\(181\) 21.0805 1.56690 0.783452 0.621452i \(-0.213457\pi\)
0.783452 + 0.621452i \(0.213457\pi\)
\(182\) −10.9951 −0.815011
\(183\) 0 0
\(184\) −2.68059 −0.197615
\(185\) 18.8787 1.38799
\(186\) 0 0
\(187\) −20.9538 −1.53230
\(188\) −13.4743 −0.982712
\(189\) 0 0
\(190\) −7.60107 −0.551440
\(191\) 13.8150 0.999620 0.499810 0.866135i \(-0.333403\pi\)
0.499810 + 0.866135i \(0.333403\pi\)
\(192\) 0 0
\(193\) 4.23298 0.304697 0.152348 0.988327i \(-0.451316\pi\)
0.152348 + 0.988327i \(0.451316\pi\)
\(194\) 26.5711 1.90770
\(195\) 0 0
\(196\) 34.9649 2.49749
\(197\) −4.61478 −0.328789 −0.164395 0.986395i \(-0.552567\pi\)
−0.164395 + 0.986395i \(0.552567\pi\)
\(198\) 0 0
\(199\) −3.82599 −0.271217 −0.135609 0.990762i \(-0.543299\pi\)
−0.135609 + 0.990762i \(0.543299\pi\)
\(200\) 0.872067 0.0616645
\(201\) 0 0
\(202\) −19.5991 −1.37899
\(203\) 0 0
\(204\) 0 0
\(205\) 3.01471 0.210557
\(206\) −11.5139 −0.802213
\(207\) 0 0
\(208\) 3.72792 0.258484
\(209\) 7.23374 0.500368
\(210\) 0 0
\(211\) −9.98022 −0.687067 −0.343533 0.939140i \(-0.611624\pi\)
−0.343533 + 0.939140i \(0.611624\pi\)
\(212\) −11.8595 −0.814516
\(213\) 0 0
\(214\) 13.0562 0.892507
\(215\) −8.59586 −0.586233
\(216\) 0 0
\(217\) −4.57669 −0.310686
\(218\) 33.9992 2.30272
\(219\) 0 0
\(220\) 16.2965 1.09871
\(221\) −6.30437 −0.424078
\(222\) 0 0
\(223\) 7.69270 0.515141 0.257571 0.966259i \(-0.417078\pi\)
0.257571 + 0.966259i \(0.417078\pi\)
\(224\) −38.2120 −2.55315
\(225\) 0 0
\(226\) 5.69509 0.378832
\(227\) −6.60154 −0.438159 −0.219080 0.975707i \(-0.570305\pi\)
−0.219080 + 0.975707i \(0.570305\pi\)
\(228\) 0 0
\(229\) −2.32866 −0.153882 −0.0769412 0.997036i \(-0.524515\pi\)
−0.0769412 + 0.997036i \(0.524515\pi\)
\(230\) 17.0005 1.12098
\(231\) 0 0
\(232\) 0 0
\(233\) −1.74843 −0.114544 −0.0572719 0.998359i \(-0.518240\pi\)
−0.0572719 + 0.998359i \(0.518240\pi\)
\(234\) 0 0
\(235\) 11.1096 0.724713
\(236\) −13.1461 −0.855741
\(237\) 0 0
\(238\) 54.7442 3.54854
\(239\) 22.8194 1.47607 0.738033 0.674765i \(-0.235755\pi\)
0.738033 + 0.674765i \(0.235755\pi\)
\(240\) 0 0
\(241\) 11.1763 0.719926 0.359963 0.932967i \(-0.382789\pi\)
0.359963 + 0.932967i \(0.382789\pi\)
\(242\) −6.19463 −0.398206
\(243\) 0 0
\(244\) −24.0055 −1.53680
\(245\) −28.8288 −1.84181
\(246\) 0 0
\(247\) 2.17641 0.138482
\(248\) −0.601774 −0.0382127
\(249\) 0 0
\(250\) −25.1804 −1.59255
\(251\) −20.7323 −1.30861 −0.654304 0.756231i \(-0.727038\pi\)
−0.654304 + 0.756231i \(0.727038\pi\)
\(252\) 0 0
\(253\) −16.1790 −1.01716
\(254\) 25.7341 1.61470
\(255\) 0 0
\(256\) 10.2077 0.637980
\(257\) −2.36599 −0.147586 −0.0737932 0.997274i \(-0.523510\pi\)
−0.0737932 + 0.997274i \(0.523510\pi\)
\(258\) 0 0
\(259\) 46.9390 2.91665
\(260\) 4.90313 0.304079
\(261\) 0 0
\(262\) 39.2060 2.42215
\(263\) 24.4606 1.50830 0.754152 0.656699i \(-0.228048\pi\)
0.754152 + 0.656699i \(0.228048\pi\)
\(264\) 0 0
\(265\) 9.77828 0.600675
\(266\) −18.8989 −1.15877
\(267\) 0 0
\(268\) −9.12330 −0.557294
\(269\) −6.48855 −0.395614 −0.197807 0.980241i \(-0.563382\pi\)
−0.197807 + 0.980241i \(0.563382\pi\)
\(270\) 0 0
\(271\) −0.479077 −0.0291019 −0.0145509 0.999894i \(-0.504632\pi\)
−0.0145509 + 0.999894i \(0.504632\pi\)
\(272\) −18.5611 −1.12543
\(273\) 0 0
\(274\) 18.2964 1.10533
\(275\) 5.26345 0.317398
\(276\) 0 0
\(277\) 4.16222 0.250084 0.125042 0.992151i \(-0.460094\pi\)
0.125042 + 0.992151i \(0.460094\pi\)
\(278\) −21.4498 −1.28648
\(279\) 0 0
\(280\) −5.53518 −0.330790
\(281\) 9.31820 0.555877 0.277939 0.960599i \(-0.410349\pi\)
0.277939 + 0.960599i \(0.410349\pi\)
\(282\) 0 0
\(283\) 9.78406 0.581602 0.290801 0.956784i \(-0.406078\pi\)
0.290801 + 0.956784i \(0.406078\pi\)
\(284\) 0.687510 0.0407962
\(285\) 0 0
\(286\) −8.72573 −0.515963
\(287\) 7.49563 0.442453
\(288\) 0 0
\(289\) 14.3892 0.846424
\(290\) 0 0
\(291\) 0 0
\(292\) −34.7286 −2.03234
\(293\) 11.4460 0.668685 0.334342 0.942452i \(-0.391486\pi\)
0.334342 + 0.942452i \(0.391486\pi\)
\(294\) 0 0
\(295\) 10.8391 0.631076
\(296\) 6.17185 0.358732
\(297\) 0 0
\(298\) 25.0885 1.45334
\(299\) −4.86776 −0.281510
\(300\) 0 0
\(301\) −21.3723 −1.23188
\(302\) −19.7812 −1.13828
\(303\) 0 0
\(304\) 6.40773 0.367508
\(305\) 19.7927 1.13333
\(306\) 0 0
\(307\) −20.1309 −1.14893 −0.574465 0.818529i \(-0.694790\pi\)
−0.574465 + 0.818529i \(0.694790\pi\)
\(308\) 40.5189 2.30878
\(309\) 0 0
\(310\) 3.81651 0.216763
\(311\) −1.77641 −0.100731 −0.0503655 0.998731i \(-0.516039\pi\)
−0.0503655 + 0.998731i \(0.516039\pi\)
\(312\) 0 0
\(313\) −14.9122 −0.842889 −0.421444 0.906854i \(-0.638477\pi\)
−0.421444 + 0.906854i \(0.638477\pi\)
\(314\) −1.84428 −0.104079
\(315\) 0 0
\(316\) −31.7528 −1.78623
\(317\) 11.4211 0.641471 0.320736 0.947169i \(-0.396070\pi\)
0.320736 + 0.947169i \(0.396070\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 19.3061 1.07924
\(321\) 0 0
\(322\) 42.2693 2.35558
\(323\) −10.8363 −0.602946
\(324\) 0 0
\(325\) 1.58361 0.0878430
\(326\) −15.9909 −0.885654
\(327\) 0 0
\(328\) 0.985576 0.0544193
\(329\) 27.6225 1.52288
\(330\) 0 0
\(331\) 9.83216 0.540424 0.270212 0.962801i \(-0.412906\pi\)
0.270212 + 0.962801i \(0.412906\pi\)
\(332\) −6.70869 −0.368187
\(333\) 0 0
\(334\) 17.3930 0.951704
\(335\) 7.52223 0.410983
\(336\) 0 0
\(337\) −15.0044 −0.817344 −0.408672 0.912681i \(-0.634008\pi\)
−0.408672 + 0.912681i \(0.634008\pi\)
\(338\) 24.3285 1.32330
\(339\) 0 0
\(340\) −24.4125 −1.32395
\(341\) −3.63207 −0.196688
\(342\) 0 0
\(343\) −38.6896 −2.08904
\(344\) −2.81018 −0.151515
\(345\) 0 0
\(346\) −7.30210 −0.392563
\(347\) −33.4677 −1.79664 −0.898320 0.439341i \(-0.855212\pi\)
−0.898320 + 0.439341i \(0.855212\pi\)
\(348\) 0 0
\(349\) 27.7844 1.48727 0.743633 0.668588i \(-0.233101\pi\)
0.743633 + 0.668588i \(0.233101\pi\)
\(350\) −13.7513 −0.735040
\(351\) 0 0
\(352\) −30.3251 −1.61633
\(353\) −13.7386 −0.731232 −0.365616 0.930766i \(-0.619142\pi\)
−0.365616 + 0.930766i \(0.619142\pi\)
\(354\) 0 0
\(355\) −0.566858 −0.0300857
\(356\) −16.7472 −0.887597
\(357\) 0 0
\(358\) 14.7943 0.781901
\(359\) 24.6004 1.29836 0.649179 0.760635i \(-0.275112\pi\)
0.649179 + 0.760635i \(0.275112\pi\)
\(360\) 0 0
\(361\) −15.2591 −0.803109
\(362\) −43.7078 −2.29723
\(363\) 0 0
\(364\) 12.1909 0.638977
\(365\) 28.6340 1.49877
\(366\) 0 0
\(367\) −4.43348 −0.231426 −0.115713 0.993283i \(-0.536915\pi\)
−0.115713 + 0.993283i \(0.536915\pi\)
\(368\) −14.3315 −0.747082
\(369\) 0 0
\(370\) −39.1425 −2.03492
\(371\) 24.3122 1.26223
\(372\) 0 0
\(373\) 24.3764 1.26216 0.631080 0.775718i \(-0.282612\pi\)
0.631080 + 0.775718i \(0.282612\pi\)
\(374\) 43.4451 2.24649
\(375\) 0 0
\(376\) 3.63199 0.187305
\(377\) 0 0
\(378\) 0 0
\(379\) 13.5054 0.693727 0.346864 0.937916i \(-0.387247\pi\)
0.346864 + 0.937916i \(0.387247\pi\)
\(380\) 8.42774 0.432334
\(381\) 0 0
\(382\) −28.6437 −1.46554
\(383\) −24.7226 −1.26327 −0.631634 0.775267i \(-0.717615\pi\)
−0.631634 + 0.775267i \(0.717615\pi\)
\(384\) 0 0
\(385\) −33.4081 −1.70264
\(386\) −8.77654 −0.446714
\(387\) 0 0
\(388\) −29.4610 −1.49565
\(389\) −30.2883 −1.53568 −0.767839 0.640643i \(-0.778668\pi\)
−0.767839 + 0.640643i \(0.778668\pi\)
\(390\) 0 0
\(391\) 24.2364 1.22569
\(392\) −9.42478 −0.476023
\(393\) 0 0
\(394\) 9.56814 0.482036
\(395\) 26.1804 1.31728
\(396\) 0 0
\(397\) −13.5986 −0.682494 −0.341247 0.939974i \(-0.610849\pi\)
−0.341247 + 0.939974i \(0.610849\pi\)
\(398\) 7.93270 0.397630
\(399\) 0 0
\(400\) 4.66243 0.233121
\(401\) 14.9067 0.744407 0.372203 0.928151i \(-0.378602\pi\)
0.372203 + 0.928151i \(0.378602\pi\)
\(402\) 0 0
\(403\) −1.09278 −0.0544352
\(404\) 21.7306 1.08114
\(405\) 0 0
\(406\) 0 0
\(407\) 37.2509 1.84646
\(408\) 0 0
\(409\) −20.6030 −1.01875 −0.509377 0.860544i \(-0.670124\pi\)
−0.509377 + 0.860544i \(0.670124\pi\)
\(410\) −6.25062 −0.308696
\(411\) 0 0
\(412\) 12.7661 0.628943
\(413\) 26.9498 1.32611
\(414\) 0 0
\(415\) 5.53137 0.271524
\(416\) −9.12390 −0.447336
\(417\) 0 0
\(418\) −14.9982 −0.733587
\(419\) 5.35781 0.261746 0.130873 0.991399i \(-0.458222\pi\)
0.130873 + 0.991399i \(0.458222\pi\)
\(420\) 0 0
\(421\) 1.91744 0.0934504 0.0467252 0.998908i \(-0.485121\pi\)
0.0467252 + 0.998908i \(0.485121\pi\)
\(422\) 20.6927 1.00730
\(423\) 0 0
\(424\) 3.19674 0.155247
\(425\) −7.88475 −0.382466
\(426\) 0 0
\(427\) 49.2117 2.38152
\(428\) −14.4762 −0.699734
\(429\) 0 0
\(430\) 17.8224 0.859473
\(431\) 20.2439 0.975116 0.487558 0.873091i \(-0.337888\pi\)
0.487558 + 0.873091i \(0.337888\pi\)
\(432\) 0 0
\(433\) −18.1995 −0.874614 −0.437307 0.899312i \(-0.644068\pi\)
−0.437307 + 0.899312i \(0.644068\pi\)
\(434\) 9.48918 0.455495
\(435\) 0 0
\(436\) −37.6969 −1.80536
\(437\) −8.36694 −0.400245
\(438\) 0 0
\(439\) −0.392037 −0.0187109 −0.00935545 0.999956i \(-0.502978\pi\)
−0.00935545 + 0.999956i \(0.502978\pi\)
\(440\) −4.39273 −0.209415
\(441\) 0 0
\(442\) 13.0713 0.621738
\(443\) −5.45469 −0.259160 −0.129580 0.991569i \(-0.541363\pi\)
−0.129580 + 0.991569i \(0.541363\pi\)
\(444\) 0 0
\(445\) 13.8082 0.654570
\(446\) −15.9498 −0.755246
\(447\) 0 0
\(448\) 48.0017 2.26787
\(449\) −2.77692 −0.131051 −0.0655254 0.997851i \(-0.520872\pi\)
−0.0655254 + 0.997851i \(0.520872\pi\)
\(450\) 0 0
\(451\) 5.94855 0.280106
\(452\) −6.31448 −0.297008
\(453\) 0 0
\(454\) 13.6874 0.642383
\(455\) −10.0515 −0.471221
\(456\) 0 0
\(457\) −36.4271 −1.70399 −0.851994 0.523552i \(-0.824607\pi\)
−0.851994 + 0.523552i \(0.824607\pi\)
\(458\) 4.82818 0.225606
\(459\) 0 0
\(460\) −18.8495 −0.878861
\(461\) −25.3558 −1.18094 −0.590470 0.807060i \(-0.701057\pi\)
−0.590470 + 0.807060i \(0.701057\pi\)
\(462\) 0 0
\(463\) 28.4073 1.32020 0.660099 0.751179i \(-0.270514\pi\)
0.660099 + 0.751179i \(0.270514\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 3.62515 0.167932
\(467\) 13.2737 0.614234 0.307117 0.951672i \(-0.400636\pi\)
0.307117 + 0.951672i \(0.400636\pi\)
\(468\) 0 0
\(469\) 18.7029 0.863620
\(470\) −23.0344 −1.06250
\(471\) 0 0
\(472\) 3.54354 0.163105
\(473\) −16.9611 −0.779873
\(474\) 0 0
\(475\) 2.72199 0.124894
\(476\) −60.6980 −2.78209
\(477\) 0 0
\(478\) −47.3131 −2.16405
\(479\) −26.2597 −1.19984 −0.599918 0.800062i \(-0.704800\pi\)
−0.599918 + 0.800062i \(0.704800\pi\)
\(480\) 0 0
\(481\) 11.2077 0.511025
\(482\) −23.1725 −1.05548
\(483\) 0 0
\(484\) 6.86834 0.312197
\(485\) 24.2908 1.10299
\(486\) 0 0
\(487\) 9.23188 0.418337 0.209168 0.977880i \(-0.432924\pi\)
0.209168 + 0.977880i \(0.432924\pi\)
\(488\) 6.47068 0.292914
\(489\) 0 0
\(490\) 59.7729 2.70026
\(491\) 12.1181 0.546883 0.273442 0.961889i \(-0.411838\pi\)
0.273442 + 0.961889i \(0.411838\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −4.51251 −0.203027
\(495\) 0 0
\(496\) −3.21733 −0.144462
\(497\) −1.40941 −0.0632205
\(498\) 0 0
\(499\) −29.5908 −1.32466 −0.662332 0.749210i \(-0.730433\pi\)
−0.662332 + 0.749210i \(0.730433\pi\)
\(500\) 27.9190 1.24857
\(501\) 0 0
\(502\) 42.9857 1.91854
\(503\) 8.97720 0.400274 0.200137 0.979768i \(-0.435861\pi\)
0.200137 + 0.979768i \(0.435861\pi\)
\(504\) 0 0
\(505\) −17.9171 −0.797300
\(506\) 33.5450 1.49126
\(507\) 0 0
\(508\) −28.5328 −1.26594
\(509\) −29.6633 −1.31480 −0.657402 0.753540i \(-0.728345\pi\)
−0.657402 + 0.753540i \(0.728345\pi\)
\(510\) 0 0
\(511\) 71.1942 3.14945
\(512\) −30.9681 −1.36861
\(513\) 0 0
\(514\) 4.90557 0.216376
\(515\) −10.5258 −0.463822
\(516\) 0 0
\(517\) 21.9212 0.964095
\(518\) −97.3220 −4.27608
\(519\) 0 0
\(520\) −1.32164 −0.0579576
\(521\) 23.8067 1.04299 0.521496 0.853254i \(-0.325374\pi\)
0.521496 + 0.853254i \(0.325374\pi\)
\(522\) 0 0
\(523\) 9.45221 0.413316 0.206658 0.978413i \(-0.433741\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(524\) −43.4699 −1.89899
\(525\) 0 0
\(526\) −50.7159 −2.21132
\(527\) 5.44091 0.237010
\(528\) 0 0
\(529\) −4.28652 −0.186370
\(530\) −20.2740 −0.880646
\(531\) 0 0
\(532\) 20.9543 0.908485
\(533\) 1.78974 0.0775221
\(534\) 0 0
\(535\) 11.9358 0.516028
\(536\) 2.45918 0.106221
\(537\) 0 0
\(538\) 13.4532 0.580008
\(539\) −56.8843 −2.45018
\(540\) 0 0
\(541\) −22.9959 −0.988670 −0.494335 0.869272i \(-0.664588\pi\)
−0.494335 + 0.869272i \(0.664588\pi\)
\(542\) 0.993304 0.0426661
\(543\) 0 0
\(544\) 45.4275 1.94769
\(545\) 31.0814 1.33138
\(546\) 0 0
\(547\) 4.50082 0.192441 0.0962206 0.995360i \(-0.469325\pi\)
0.0962206 + 0.995360i \(0.469325\pi\)
\(548\) −20.2863 −0.866588
\(549\) 0 0
\(550\) −10.9131 −0.465336
\(551\) 0 0
\(552\) 0 0
\(553\) 65.0938 2.76807
\(554\) −8.62983 −0.366646
\(555\) 0 0
\(556\) 23.7827 1.00861
\(557\) 13.8370 0.586292 0.293146 0.956068i \(-0.405298\pi\)
0.293146 + 0.956068i \(0.405298\pi\)
\(558\) 0 0
\(559\) −5.10308 −0.215837
\(560\) −29.5933 −1.25055
\(561\) 0 0
\(562\) −19.3201 −0.814968
\(563\) 29.6777 1.25077 0.625384 0.780317i \(-0.284942\pi\)
0.625384 + 0.780317i \(0.284942\pi\)
\(564\) 0 0
\(565\) 5.20634 0.219032
\(566\) −20.2860 −0.852684
\(567\) 0 0
\(568\) −0.185318 −0.00777578
\(569\) −10.5370 −0.441734 −0.220867 0.975304i \(-0.570889\pi\)
−0.220867 + 0.975304i \(0.570889\pi\)
\(570\) 0 0
\(571\) −34.9153 −1.46116 −0.730581 0.682826i \(-0.760751\pi\)
−0.730581 + 0.682826i \(0.760751\pi\)
\(572\) 9.67472 0.404520
\(573\) 0 0
\(574\) −15.5412 −0.648678
\(575\) −6.08800 −0.253887
\(576\) 0 0
\(577\) −8.34697 −0.347489 −0.173744 0.984791i \(-0.555587\pi\)
−0.173744 + 0.984791i \(0.555587\pi\)
\(578\) −29.8341 −1.24094
\(579\) 0 0
\(580\) 0 0
\(581\) 13.7529 0.570568
\(582\) 0 0
\(583\) 19.2942 0.799086
\(584\) 9.36109 0.387365
\(585\) 0 0
\(586\) −23.7319 −0.980355
\(587\) 16.8741 0.696468 0.348234 0.937408i \(-0.386782\pi\)
0.348234 + 0.937408i \(0.386782\pi\)
\(588\) 0 0
\(589\) −1.87832 −0.0773950
\(590\) −22.4735 −0.925218
\(591\) 0 0
\(592\) 32.9973 1.35618
\(593\) 28.1078 1.15425 0.577125 0.816656i \(-0.304175\pi\)
0.577125 + 0.816656i \(0.304175\pi\)
\(594\) 0 0
\(595\) 50.0460 2.05169
\(596\) −27.8170 −1.13943
\(597\) 0 0
\(598\) 10.0927 0.412720
\(599\) 18.0476 0.737403 0.368702 0.929548i \(-0.379802\pi\)
0.368702 + 0.929548i \(0.379802\pi\)
\(600\) 0 0
\(601\) −15.9159 −0.649225 −0.324612 0.945847i \(-0.605234\pi\)
−0.324612 + 0.945847i \(0.605234\pi\)
\(602\) 44.3127 1.80605
\(603\) 0 0
\(604\) 21.9325 0.892422
\(605\) −5.66300 −0.230234
\(606\) 0 0
\(607\) −35.4959 −1.44074 −0.720368 0.693592i \(-0.756027\pi\)
−0.720368 + 0.693592i \(0.756027\pi\)
\(608\) −15.6826 −0.636014
\(609\) 0 0
\(610\) −41.0377 −1.66157
\(611\) 6.59543 0.266823
\(612\) 0 0
\(613\) −28.3858 −1.14649 −0.573246 0.819383i \(-0.694316\pi\)
−0.573246 + 0.819383i \(0.694316\pi\)
\(614\) 41.7388 1.68444
\(615\) 0 0
\(616\) −10.9219 −0.440054
\(617\) −30.7863 −1.23941 −0.619705 0.784835i \(-0.712748\pi\)
−0.619705 + 0.784835i \(0.712748\pi\)
\(618\) 0 0
\(619\) 1.91267 0.0768768 0.0384384 0.999261i \(-0.487762\pi\)
0.0384384 + 0.999261i \(0.487762\pi\)
\(620\) −4.23158 −0.169945
\(621\) 0 0
\(622\) 3.68315 0.147681
\(623\) 34.3319 1.37548
\(624\) 0 0
\(625\) −15.9827 −0.639309
\(626\) 30.9186 1.23575
\(627\) 0 0
\(628\) 2.04486 0.0815988
\(629\) −55.8025 −2.22499
\(630\) 0 0
\(631\) 6.41366 0.255324 0.127662 0.991818i \(-0.459253\pi\)
0.127662 + 0.991818i \(0.459253\pi\)
\(632\) 8.55896 0.340457
\(633\) 0 0
\(634\) −23.6801 −0.940458
\(635\) 23.5256 0.933583
\(636\) 0 0
\(637\) −17.1147 −0.678111
\(638\) 0 0
\(639\) 0 0
\(640\) −9.29126 −0.367269
\(641\) 28.8063 1.13778 0.568891 0.822413i \(-0.307373\pi\)
0.568891 + 0.822413i \(0.307373\pi\)
\(642\) 0 0
\(643\) 3.06597 0.120910 0.0604551 0.998171i \(-0.480745\pi\)
0.0604551 + 0.998171i \(0.480745\pi\)
\(644\) −46.8664 −1.84679
\(645\) 0 0
\(646\) 22.4676 0.883976
\(647\) 45.6599 1.79508 0.897538 0.440938i \(-0.145354\pi\)
0.897538 + 0.440938i \(0.145354\pi\)
\(648\) 0 0
\(649\) 21.3874 0.839529
\(650\) −3.28342 −0.128786
\(651\) 0 0
\(652\) 17.7300 0.694361
\(653\) 12.8121 0.501377 0.250689 0.968068i \(-0.419343\pi\)
0.250689 + 0.968068i \(0.419343\pi\)
\(654\) 0 0
\(655\) 35.8413 1.40044
\(656\) 5.26929 0.205731
\(657\) 0 0
\(658\) −57.2716 −2.23268
\(659\) −25.2362 −0.983064 −0.491532 0.870860i \(-0.663563\pi\)
−0.491532 + 0.870860i \(0.663563\pi\)
\(660\) 0 0
\(661\) −16.2771 −0.633106 −0.316553 0.948575i \(-0.602526\pi\)
−0.316553 + 0.948575i \(0.602526\pi\)
\(662\) −20.3857 −0.792313
\(663\) 0 0
\(664\) 1.80833 0.0701767
\(665\) −17.2770 −0.669974
\(666\) 0 0
\(667\) 0 0
\(668\) −19.2847 −0.746146
\(669\) 0 0
\(670\) −15.5964 −0.602540
\(671\) 39.0545 1.50768
\(672\) 0 0
\(673\) −42.5390 −1.63976 −0.819879 0.572536i \(-0.805960\pi\)
−0.819879 + 0.572536i \(0.805960\pi\)
\(674\) 31.1098 1.19830
\(675\) 0 0
\(676\) −26.9744 −1.03748
\(677\) −20.8334 −0.800693 −0.400347 0.916364i \(-0.631110\pi\)
−0.400347 + 0.916364i \(0.631110\pi\)
\(678\) 0 0
\(679\) 60.3954 2.31776
\(680\) 6.58038 0.252346
\(681\) 0 0
\(682\) 7.53063 0.288363
\(683\) −34.2477 −1.31045 −0.655226 0.755433i \(-0.727427\pi\)
−0.655226 + 0.755433i \(0.727427\pi\)
\(684\) 0 0
\(685\) 16.7262 0.639076
\(686\) 80.2180 3.06274
\(687\) 0 0
\(688\) −15.0244 −0.572798
\(689\) 5.80505 0.221155
\(690\) 0 0
\(691\) −9.12186 −0.347012 −0.173506 0.984833i \(-0.555510\pi\)
−0.173506 + 0.984833i \(0.555510\pi\)
\(692\) 8.09626 0.307774
\(693\) 0 0
\(694\) 69.3910 2.63404
\(695\) −19.6090 −0.743812
\(696\) 0 0
\(697\) −8.91103 −0.337529
\(698\) −57.6074 −2.18047
\(699\) 0 0
\(700\) 15.2469 0.576279
\(701\) 42.8359 1.61789 0.808944 0.587885i \(-0.200039\pi\)
0.808944 + 0.587885i \(0.200039\pi\)
\(702\) 0 0
\(703\) 19.2643 0.726566
\(704\) 38.0942 1.43573
\(705\) 0 0
\(706\) 28.4852 1.07206
\(707\) −44.5482 −1.67541
\(708\) 0 0
\(709\) 11.0057 0.413327 0.206663 0.978412i \(-0.433740\pi\)
0.206663 + 0.978412i \(0.433740\pi\)
\(710\) 1.17531 0.0441084
\(711\) 0 0
\(712\) 4.51419 0.169176
\(713\) 4.20106 0.157331
\(714\) 0 0
\(715\) −7.97688 −0.298318
\(716\) −16.4033 −0.613019
\(717\) 0 0
\(718\) −51.0057 −1.90352
\(719\) −18.1735 −0.677756 −0.338878 0.940830i \(-0.610047\pi\)
−0.338878 + 0.940830i \(0.610047\pi\)
\(720\) 0 0
\(721\) −26.1708 −0.974651
\(722\) 31.6377 1.17743
\(723\) 0 0
\(724\) 48.4613 1.80105
\(725\) 0 0
\(726\) 0 0
\(727\) −41.2879 −1.53128 −0.765641 0.643268i \(-0.777578\pi\)
−0.765641 + 0.643268i \(0.777578\pi\)
\(728\) −3.28605 −0.121789
\(729\) 0 0
\(730\) −59.3689 −2.19734
\(731\) 25.4080 0.939750
\(732\) 0 0
\(733\) 4.54792 0.167981 0.0839906 0.996467i \(-0.473233\pi\)
0.0839906 + 0.996467i \(0.473233\pi\)
\(734\) 9.19225 0.339292
\(735\) 0 0
\(736\) 35.0757 1.29291
\(737\) 14.8427 0.546736
\(738\) 0 0
\(739\) 47.3495 1.74178 0.870889 0.491480i \(-0.163544\pi\)
0.870889 + 0.491480i \(0.163544\pi\)
\(740\) 43.3995 1.59540
\(741\) 0 0
\(742\) −50.4083 −1.85055
\(743\) 13.5622 0.497550 0.248775 0.968561i \(-0.419972\pi\)
0.248775 + 0.968561i \(0.419972\pi\)
\(744\) 0 0
\(745\) 22.9354 0.840286
\(746\) −50.5412 −1.85045
\(747\) 0 0
\(748\) −48.1700 −1.76127
\(749\) 29.6765 1.08435
\(750\) 0 0
\(751\) 28.5839 1.04304 0.521521 0.853239i \(-0.325365\pi\)
0.521521 + 0.853239i \(0.325365\pi\)
\(752\) 19.4181 0.708105
\(753\) 0 0
\(754\) 0 0
\(755\) −18.0835 −0.658128
\(756\) 0 0
\(757\) 7.44366 0.270545 0.135272 0.990808i \(-0.456809\pi\)
0.135272 + 0.990808i \(0.456809\pi\)
\(758\) −28.0018 −1.01707
\(759\) 0 0
\(760\) −2.27170 −0.0824031
\(761\) −44.1546 −1.60060 −0.800302 0.599597i \(-0.795327\pi\)
−0.800302 + 0.599597i \(0.795327\pi\)
\(762\) 0 0
\(763\) 77.2793 2.79770
\(764\) 31.7589 1.14900
\(765\) 0 0
\(766\) 51.2592 1.85207
\(767\) 6.43481 0.232348
\(768\) 0 0
\(769\) 50.0146 1.80357 0.901786 0.432183i \(-0.142256\pi\)
0.901786 + 0.432183i \(0.142256\pi\)
\(770\) 69.2675 2.49623
\(771\) 0 0
\(772\) 9.73106 0.350228
\(773\) 32.9745 1.18601 0.593004 0.805199i \(-0.297942\pi\)
0.593004 + 0.805199i \(0.297942\pi\)
\(774\) 0 0
\(775\) −1.36672 −0.0490939
\(776\) 7.94119 0.285072
\(777\) 0 0
\(778\) 62.7988 2.25145
\(779\) 3.07629 0.110219
\(780\) 0 0
\(781\) −1.11851 −0.0400233
\(782\) −50.2510 −1.79697
\(783\) 0 0
\(784\) −50.3888 −1.79960
\(785\) −1.68600 −0.0601760
\(786\) 0 0
\(787\) −22.3174 −0.795529 −0.397765 0.917488i \(-0.630214\pi\)
−0.397765 + 0.917488i \(0.630214\pi\)
\(788\) −10.6087 −0.377921
\(789\) 0 0
\(790\) −54.2818 −1.93126
\(791\) 12.9448 0.460264
\(792\) 0 0
\(793\) 11.7503 0.417265
\(794\) 28.1949 1.00060
\(795\) 0 0
\(796\) −8.79544 −0.311746
\(797\) −4.41478 −0.156380 −0.0781898 0.996938i \(-0.524914\pi\)
−0.0781898 + 0.996938i \(0.524914\pi\)
\(798\) 0 0
\(799\) −32.8384 −1.16174
\(800\) −11.4111 −0.403443
\(801\) 0 0
\(802\) −30.9072 −1.09137
\(803\) 56.4999 1.99384
\(804\) 0 0
\(805\) 38.6417 1.36194
\(806\) 2.26574 0.0798072
\(807\) 0 0
\(808\) −5.85749 −0.206066
\(809\) −11.2673 −0.396138 −0.198069 0.980188i \(-0.563467\pi\)
−0.198069 + 0.980188i \(0.563467\pi\)
\(810\) 0 0
\(811\) 8.67128 0.304490 0.152245 0.988343i \(-0.451350\pi\)
0.152245 + 0.988343i \(0.451350\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −77.2349 −2.70708
\(815\) −14.6185 −0.512065
\(816\) 0 0
\(817\) −8.77143 −0.306874
\(818\) 42.7177 1.49359
\(819\) 0 0
\(820\) 6.93042 0.242021
\(821\) 28.9281 1.00960 0.504800 0.863237i \(-0.331566\pi\)
0.504800 + 0.863237i \(0.331566\pi\)
\(822\) 0 0
\(823\) 21.9692 0.765799 0.382900 0.923790i \(-0.374926\pi\)
0.382900 + 0.923790i \(0.374926\pi\)
\(824\) −3.44111 −0.119877
\(825\) 0 0
\(826\) −55.8769 −1.94421
\(827\) −5.80098 −0.201720 −0.100860 0.994901i \(-0.532159\pi\)
−0.100860 + 0.994901i \(0.532159\pi\)
\(828\) 0 0
\(829\) 18.6693 0.648412 0.324206 0.945986i \(-0.394903\pi\)
0.324206 + 0.945986i \(0.394903\pi\)
\(830\) −11.4686 −0.398080
\(831\) 0 0
\(832\) 11.4614 0.397352
\(833\) 85.2136 2.95248
\(834\) 0 0
\(835\) 15.9003 0.550254
\(836\) 16.6294 0.575139
\(837\) 0 0
\(838\) −11.1087 −0.383745
\(839\) 44.1447 1.52404 0.762022 0.647551i \(-0.224207\pi\)
0.762022 + 0.647551i \(0.224207\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −3.97557 −0.137007
\(843\) 0 0
\(844\) −22.9432 −0.789737
\(845\) 22.2406 0.765101
\(846\) 0 0
\(847\) −14.0802 −0.483801
\(848\) 17.0911 0.586909
\(849\) 0 0
\(850\) 16.3480 0.560732
\(851\) −43.0864 −1.47698
\(852\) 0 0
\(853\) −52.7487 −1.80608 −0.903041 0.429555i \(-0.858670\pi\)
−0.903041 + 0.429555i \(0.858670\pi\)
\(854\) −102.034 −3.49153
\(855\) 0 0
\(856\) 3.90206 0.133370
\(857\) −51.1931 −1.74872 −0.874362 0.485274i \(-0.838720\pi\)
−0.874362 + 0.485274i \(0.838720\pi\)
\(858\) 0 0
\(859\) −36.4802 −1.24469 −0.622344 0.782744i \(-0.713819\pi\)
−0.622344 + 0.782744i \(0.713819\pi\)
\(860\) −19.7607 −0.673835
\(861\) 0 0
\(862\) −41.9732 −1.42961
\(863\) 41.9778 1.42894 0.714470 0.699666i \(-0.246668\pi\)
0.714470 + 0.699666i \(0.246668\pi\)
\(864\) 0 0
\(865\) −6.67543 −0.226971
\(866\) 37.7344 1.28227
\(867\) 0 0
\(868\) −10.5212 −0.357113
\(869\) 51.6585 1.75239
\(870\) 0 0
\(871\) 4.46570 0.151315
\(872\) 10.1612 0.344102
\(873\) 0 0
\(874\) 17.3478 0.586797
\(875\) −57.2343 −1.93487
\(876\) 0 0
\(877\) −45.6889 −1.54281 −0.771403 0.636347i \(-0.780445\pi\)
−0.771403 + 0.636347i \(0.780445\pi\)
\(878\) 0.812838 0.0274319
\(879\) 0 0
\(880\) −23.4853 −0.791690
\(881\) 43.5459 1.46710 0.733549 0.679636i \(-0.237862\pi\)
0.733549 + 0.679636i \(0.237862\pi\)
\(882\) 0 0
\(883\) 26.3374 0.886325 0.443162 0.896441i \(-0.353857\pi\)
0.443162 + 0.896441i \(0.353857\pi\)
\(884\) −14.4929 −0.487449
\(885\) 0 0
\(886\) 11.3096 0.379953
\(887\) 29.6661 0.996091 0.498046 0.867151i \(-0.334051\pi\)
0.498046 + 0.867151i \(0.334051\pi\)
\(888\) 0 0
\(889\) 58.4928 1.96179
\(890\) −28.6294 −0.959661
\(891\) 0 0
\(892\) 17.6845 0.592120
\(893\) 11.3366 0.379363
\(894\) 0 0
\(895\) 13.5246 0.452078
\(896\) −23.1013 −0.771761
\(897\) 0 0
\(898\) 5.75758 0.192133
\(899\) 0 0
\(900\) 0 0
\(901\) −28.9031 −0.962902
\(902\) −12.3335 −0.410662
\(903\) 0 0
\(904\) 1.70207 0.0566099
\(905\) −39.9567 −1.32821
\(906\) 0 0
\(907\) −8.07782 −0.268220 −0.134110 0.990966i \(-0.542817\pi\)
−0.134110 + 0.990966i \(0.542817\pi\)
\(908\) −15.1760 −0.503635
\(909\) 0 0
\(910\) 20.8405 0.690855
\(911\) 48.9849 1.62294 0.811471 0.584392i \(-0.198667\pi\)
0.811471 + 0.584392i \(0.198667\pi\)
\(912\) 0 0
\(913\) 10.9143 0.361212
\(914\) 75.5269 2.49821
\(915\) 0 0
\(916\) −5.35328 −0.176877
\(917\) 89.1140 2.94281
\(918\) 0 0
\(919\) 43.7574 1.44342 0.721712 0.692194i \(-0.243356\pi\)
0.721712 + 0.692194i \(0.243356\pi\)
\(920\) 5.08087 0.167511
\(921\) 0 0
\(922\) 52.5721 1.73137
\(923\) −0.336525 −0.0110768
\(924\) 0 0
\(925\) 14.0172 0.460882
\(926\) −58.8988 −1.93554
\(927\) 0 0
\(928\) 0 0
\(929\) −28.4491 −0.933386 −0.466693 0.884419i \(-0.654555\pi\)
−0.466693 + 0.884419i \(0.654555\pi\)
\(930\) 0 0
\(931\) −29.4177 −0.964125
\(932\) −4.01942 −0.131660
\(933\) 0 0
\(934\) −27.5213 −0.900525
\(935\) 39.7166 1.29887
\(936\) 0 0
\(937\) 6.02644 0.196875 0.0984377 0.995143i \(-0.468615\pi\)
0.0984377 + 0.995143i \(0.468615\pi\)
\(938\) −38.7780 −1.26615
\(939\) 0 0
\(940\) 25.5396 0.833009
\(941\) 37.8665 1.23441 0.617206 0.786801i \(-0.288264\pi\)
0.617206 + 0.786801i \(0.288264\pi\)
\(942\) 0 0
\(943\) −6.88042 −0.224057
\(944\) 18.9452 0.616614
\(945\) 0 0
\(946\) 35.1667 1.14337
\(947\) −12.9249 −0.420002 −0.210001 0.977701i \(-0.567347\pi\)
−0.210001 + 0.977701i \(0.567347\pi\)
\(948\) 0 0
\(949\) 16.9991 0.551814
\(950\) −5.64370 −0.183106
\(951\) 0 0
\(952\) 16.3611 0.530267
\(953\) 6.55592 0.212367 0.106184 0.994347i \(-0.466137\pi\)
0.106184 + 0.994347i \(0.466137\pi\)
\(954\) 0 0
\(955\) −26.1854 −0.847341
\(956\) 52.4588 1.69664
\(957\) 0 0
\(958\) 54.4461 1.75907
\(959\) 41.5873 1.34292
\(960\) 0 0
\(961\) −30.0569 −0.969577
\(962\) −23.2376 −0.749211
\(963\) 0 0
\(964\) 25.6927 0.827506
\(965\) −8.02333 −0.258280
\(966\) 0 0
\(967\) −34.1333 −1.09765 −0.548826 0.835937i \(-0.684925\pi\)
−0.548826 + 0.835937i \(0.684925\pi\)
\(968\) −1.85136 −0.0595049
\(969\) 0 0
\(970\) −50.3638 −1.61708
\(971\) 29.7514 0.954768 0.477384 0.878695i \(-0.341585\pi\)
0.477384 + 0.878695i \(0.341585\pi\)
\(972\) 0 0
\(973\) −48.7549 −1.56301
\(974\) −19.1411 −0.613321
\(975\) 0 0
\(976\) 34.5949 1.10736
\(977\) 32.5600 1.04169 0.520844 0.853652i \(-0.325617\pi\)
0.520844 + 0.853652i \(0.325617\pi\)
\(978\) 0 0
\(979\) 27.2459 0.870782
\(980\) −66.2736 −2.11703
\(981\) 0 0
\(982\) −25.1254 −0.801783
\(983\) −12.2384 −0.390344 −0.195172 0.980769i \(-0.562526\pi\)
−0.195172 + 0.980769i \(0.562526\pi\)
\(984\) 0 0
\(985\) 8.74700 0.278702
\(986\) 0 0
\(987\) 0 0
\(988\) 5.00328 0.159175
\(989\) 19.6182 0.623821
\(990\) 0 0
\(991\) 24.6058 0.781628 0.390814 0.920470i \(-0.372194\pi\)
0.390814 + 0.920470i \(0.372194\pi\)
\(992\) 7.87427 0.250008
\(993\) 0 0
\(994\) 2.92222 0.0926873
\(995\) 7.25191 0.229901
\(996\) 0 0
\(997\) −9.16138 −0.290144 −0.145072 0.989421i \(-0.546341\pi\)
−0.145072 + 0.989421i \(0.546341\pi\)
\(998\) 61.3526 1.94208
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bl.1.1 9
3.2 odd 2 2523.2.a.p.1.9 9
29.7 even 7 261.2.k.b.136.3 18
29.25 even 7 261.2.k.b.190.3 18
29.28 even 2 7569.2.a.bk.1.9 9
87.65 odd 14 87.2.g.b.49.1 yes 18
87.83 odd 14 87.2.g.b.16.1 18
87.86 odd 2 2523.2.a.q.1.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.16.1 18 87.83 odd 14
87.2.g.b.49.1 yes 18 87.65 odd 14
261.2.k.b.136.3 18 29.7 even 7
261.2.k.b.190.3 18 29.25 even 7
2523.2.a.p.1.9 9 3.2 odd 2
2523.2.a.q.1.1 9 87.86 odd 2
7569.2.a.bk.1.9 9 29.28 even 2
7569.2.a.bl.1.1 9 1.1 even 1 trivial