Properties

Label 7569.2.a.bj.1.9
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(3.19178\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.19178 q^{2} +2.80388 q^{4} +2.39677 q^{5} +1.35191 q^{7} +1.76193 q^{8} +5.25319 q^{10} -3.50954 q^{11} +6.03467 q^{13} +2.96308 q^{14} -1.74601 q^{16} -3.05437 q^{17} +5.63574 q^{19} +6.72027 q^{20} -7.69212 q^{22} -1.01478 q^{23} +0.744514 q^{25} +13.2266 q^{26} +3.79059 q^{28} +8.11166 q^{31} -7.35072 q^{32} -6.69450 q^{34} +3.24021 q^{35} +5.49645 q^{37} +12.3523 q^{38} +4.22294 q^{40} +6.85782 q^{41} -7.80197 q^{43} -9.84033 q^{44} -2.22416 q^{46} +0.418254 q^{47} -5.17235 q^{49} +1.63181 q^{50} +16.9205 q^{52} +13.3425 q^{53} -8.41156 q^{55} +2.38197 q^{56} -3.56102 q^{59} +7.20954 q^{61} +17.7790 q^{62} -12.6191 q^{64} +14.4637 q^{65} +8.31317 q^{67} -8.56410 q^{68} +7.10182 q^{70} +9.78678 q^{71} -0.303730 q^{73} +12.0470 q^{74} +15.8019 q^{76} -4.74457 q^{77} +4.00638 q^{79} -4.18478 q^{80} +15.0308 q^{82} +4.31434 q^{83} -7.32063 q^{85} -17.1002 q^{86} -6.18356 q^{88} -13.9924 q^{89} +8.15831 q^{91} -2.84532 q^{92} +0.916719 q^{94} +13.5076 q^{95} -3.80357 q^{97} -11.3366 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} + 11 q^{4} + 4 q^{5} + 5 q^{7} - 24 q^{8} + q^{11} + q^{13} - 9 q^{14} + 35 q^{16} - 2 q^{17} + 9 q^{19} + 18 q^{20} - 4 q^{22} + 4 q^{23} + q^{25} + 8 q^{26} + 40 q^{28} + 8 q^{31} - 43 q^{32}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19178 1.54982 0.774910 0.632072i \(-0.217795\pi\)
0.774910 + 0.632072i \(0.217795\pi\)
\(3\) 0 0
\(4\) 2.80388 1.40194
\(5\) 2.39677 1.07187 0.535934 0.844260i \(-0.319959\pi\)
0.535934 + 0.844260i \(0.319959\pi\)
\(6\) 0 0
\(7\) 1.35191 0.510973 0.255486 0.966813i \(-0.417764\pi\)
0.255486 + 0.966813i \(0.417764\pi\)
\(8\) 1.76193 0.622936
\(9\) 0 0
\(10\) 5.25319 1.66120
\(11\) −3.50954 −1.05817 −0.529083 0.848570i \(-0.677464\pi\)
−0.529083 + 0.848570i \(0.677464\pi\)
\(12\) 0 0
\(13\) 6.03467 1.67372 0.836858 0.547420i \(-0.184390\pi\)
0.836858 + 0.547420i \(0.184390\pi\)
\(14\) 2.96308 0.791916
\(15\) 0 0
\(16\) −1.74601 −0.436502
\(17\) −3.05437 −0.740794 −0.370397 0.928874i \(-0.620778\pi\)
−0.370397 + 0.928874i \(0.620778\pi\)
\(18\) 0 0
\(19\) 5.63574 1.29293 0.646463 0.762945i \(-0.276247\pi\)
0.646463 + 0.762945i \(0.276247\pi\)
\(20\) 6.72027 1.50270
\(21\) 0 0
\(22\) −7.69212 −1.63997
\(23\) −1.01478 −0.211596 −0.105798 0.994388i \(-0.533740\pi\)
−0.105798 + 0.994388i \(0.533740\pi\)
\(24\) 0 0
\(25\) 0.744514 0.148903
\(26\) 13.2266 2.59396
\(27\) 0 0
\(28\) 3.79059 0.716354
\(29\) 0 0
\(30\) 0 0
\(31\) 8.11166 1.45690 0.728449 0.685100i \(-0.240242\pi\)
0.728449 + 0.685100i \(0.240242\pi\)
\(32\) −7.35072 −1.29944
\(33\) 0 0
\(34\) −6.69450 −1.14810
\(35\) 3.24021 0.547696
\(36\) 0 0
\(37\) 5.49645 0.903610 0.451805 0.892117i \(-0.350780\pi\)
0.451805 + 0.892117i \(0.350780\pi\)
\(38\) 12.3523 2.00380
\(39\) 0 0
\(40\) 4.22294 0.667706
\(41\) 6.85782 1.07101 0.535506 0.844531i \(-0.320121\pi\)
0.535506 + 0.844531i \(0.320121\pi\)
\(42\) 0 0
\(43\) −7.80197 −1.18979 −0.594895 0.803804i \(-0.702806\pi\)
−0.594895 + 0.803804i \(0.702806\pi\)
\(44\) −9.84033 −1.48349
\(45\) 0 0
\(46\) −2.22416 −0.327935
\(47\) 0.418254 0.0610086 0.0305043 0.999535i \(-0.490289\pi\)
0.0305043 + 0.999535i \(0.490289\pi\)
\(48\) 0 0
\(49\) −5.17235 −0.738907
\(50\) 1.63181 0.230773
\(51\) 0 0
\(52\) 16.9205 2.34645
\(53\) 13.3425 1.83273 0.916367 0.400340i \(-0.131108\pi\)
0.916367 + 0.400340i \(0.131108\pi\)
\(54\) 0 0
\(55\) −8.41156 −1.13421
\(56\) 2.38197 0.318304
\(57\) 0 0
\(58\) 0 0
\(59\) −3.56102 −0.463606 −0.231803 0.972763i \(-0.574462\pi\)
−0.231803 + 0.972763i \(0.574462\pi\)
\(60\) 0 0
\(61\) 7.20954 0.923086 0.461543 0.887118i \(-0.347296\pi\)
0.461543 + 0.887118i \(0.347296\pi\)
\(62\) 17.7790 2.25793
\(63\) 0 0
\(64\) −12.6191 −1.57739
\(65\) 14.4637 1.79400
\(66\) 0 0
\(67\) 8.31317 1.01562 0.507808 0.861471i \(-0.330456\pi\)
0.507808 + 0.861471i \(0.330456\pi\)
\(68\) −8.56410 −1.03855
\(69\) 0 0
\(70\) 7.10182 0.848830
\(71\) 9.78678 1.16148 0.580739 0.814090i \(-0.302764\pi\)
0.580739 + 0.814090i \(0.302764\pi\)
\(72\) 0 0
\(73\) −0.303730 −0.0355489 −0.0177745 0.999842i \(-0.505658\pi\)
−0.0177745 + 0.999842i \(0.505658\pi\)
\(74\) 12.0470 1.40043
\(75\) 0 0
\(76\) 15.8019 1.81261
\(77\) −4.74457 −0.540694
\(78\) 0 0
\(79\) 4.00638 0.450753 0.225377 0.974272i \(-0.427639\pi\)
0.225377 + 0.974272i \(0.427639\pi\)
\(80\) −4.18478 −0.467873
\(81\) 0 0
\(82\) 15.0308 1.65988
\(83\) 4.31434 0.473560 0.236780 0.971563i \(-0.423908\pi\)
0.236780 + 0.971563i \(0.423908\pi\)
\(84\) 0 0
\(85\) −7.32063 −0.794034
\(86\) −17.1002 −1.84396
\(87\) 0 0
\(88\) −6.18356 −0.659170
\(89\) −13.9924 −1.48320 −0.741598 0.670844i \(-0.765932\pi\)
−0.741598 + 0.670844i \(0.765932\pi\)
\(90\) 0 0
\(91\) 8.15831 0.855224
\(92\) −2.84532 −0.296645
\(93\) 0 0
\(94\) 0.916719 0.0945523
\(95\) 13.5076 1.38585
\(96\) 0 0
\(97\) −3.80357 −0.386194 −0.193097 0.981180i \(-0.561853\pi\)
−0.193097 + 0.981180i \(0.561853\pi\)
\(98\) −11.3366 −1.14517
\(99\) 0 0
\(100\) 2.08753 0.208753
\(101\) 0.0422219 0.00420124 0.00210062 0.999998i \(-0.499331\pi\)
0.00210062 + 0.999998i \(0.499331\pi\)
\(102\) 0 0
\(103\) 11.7804 1.16075 0.580377 0.814348i \(-0.302905\pi\)
0.580377 + 0.814348i \(0.302905\pi\)
\(104\) 10.6327 1.04262
\(105\) 0 0
\(106\) 29.2438 2.84041
\(107\) 6.26717 0.605870 0.302935 0.953011i \(-0.402033\pi\)
0.302935 + 0.953011i \(0.402033\pi\)
\(108\) 0 0
\(109\) −14.8073 −1.41828 −0.709141 0.705067i \(-0.750917\pi\)
−0.709141 + 0.705067i \(0.750917\pi\)
\(110\) −18.4363 −1.75783
\(111\) 0 0
\(112\) −2.36044 −0.223041
\(113\) −11.8933 −1.11882 −0.559411 0.828890i \(-0.688973\pi\)
−0.559411 + 0.828890i \(0.688973\pi\)
\(114\) 0 0
\(115\) −2.43219 −0.226803
\(116\) 0 0
\(117\) 0 0
\(118\) −7.80497 −0.718506
\(119\) −4.12923 −0.378526
\(120\) 0 0
\(121\) 1.31686 0.119714
\(122\) 15.8017 1.43062
\(123\) 0 0
\(124\) 22.7442 2.04249
\(125\) −10.1994 −0.912265
\(126\) 0 0
\(127\) −15.0938 −1.33935 −0.669677 0.742652i \(-0.733567\pi\)
−0.669677 + 0.742652i \(0.733567\pi\)
\(128\) −12.9568 −1.14523
\(129\) 0 0
\(130\) 31.7012 2.78038
\(131\) −10.4468 −0.912739 −0.456369 0.889790i \(-0.650850\pi\)
−0.456369 + 0.889790i \(0.650850\pi\)
\(132\) 0 0
\(133\) 7.61899 0.660650
\(134\) 18.2206 1.57402
\(135\) 0 0
\(136\) −5.38159 −0.461468
\(137\) 3.67212 0.313731 0.156865 0.987620i \(-0.449861\pi\)
0.156865 + 0.987620i \(0.449861\pi\)
\(138\) 0 0
\(139\) 5.78134 0.490367 0.245183 0.969477i \(-0.421152\pi\)
0.245183 + 0.969477i \(0.421152\pi\)
\(140\) 9.08518 0.767838
\(141\) 0 0
\(142\) 21.4504 1.80008
\(143\) −21.1789 −1.77107
\(144\) 0 0
\(145\) 0 0
\(146\) −0.665709 −0.0550944
\(147\) 0 0
\(148\) 15.4114 1.26681
\(149\) 8.58416 0.703242 0.351621 0.936142i \(-0.385631\pi\)
0.351621 + 0.936142i \(0.385631\pi\)
\(150\) 0 0
\(151\) 11.9406 0.971714 0.485857 0.874038i \(-0.338508\pi\)
0.485857 + 0.874038i \(0.338508\pi\)
\(152\) 9.92977 0.805411
\(153\) 0 0
\(154\) −10.3990 −0.837978
\(155\) 19.4418 1.56160
\(156\) 0 0
\(157\) −12.2535 −0.977936 −0.488968 0.872302i \(-0.662626\pi\)
−0.488968 + 0.872302i \(0.662626\pi\)
\(158\) 8.78109 0.698586
\(159\) 0 0
\(160\) −17.6180 −1.39282
\(161\) −1.37189 −0.108120
\(162\) 0 0
\(163\) −7.93140 −0.621235 −0.310618 0.950535i \(-0.600536\pi\)
−0.310618 + 0.950535i \(0.600536\pi\)
\(164\) 19.2285 1.50150
\(165\) 0 0
\(166\) 9.45607 0.733933
\(167\) −12.9244 −1.00012 −0.500061 0.865990i \(-0.666689\pi\)
−0.500061 + 0.865990i \(0.666689\pi\)
\(168\) 0 0
\(169\) 23.4172 1.80133
\(170\) −16.0452 −1.23061
\(171\) 0 0
\(172\) −21.8758 −1.66801
\(173\) −2.65357 −0.201747 −0.100874 0.994899i \(-0.532164\pi\)
−0.100874 + 0.994899i \(0.532164\pi\)
\(174\) 0 0
\(175\) 1.00651 0.0760853
\(176\) 6.12768 0.461891
\(177\) 0 0
\(178\) −30.6683 −2.29869
\(179\) 13.3988 1.00147 0.500735 0.865601i \(-0.333063\pi\)
0.500735 + 0.865601i \(0.333063\pi\)
\(180\) 0 0
\(181\) 1.51389 0.112527 0.0562634 0.998416i \(-0.482081\pi\)
0.0562634 + 0.998416i \(0.482081\pi\)
\(182\) 17.8812 1.32544
\(183\) 0 0
\(184\) −1.78797 −0.131811
\(185\) 13.1737 0.968552
\(186\) 0 0
\(187\) 10.7194 0.783883
\(188\) 1.17273 0.0855305
\(189\) 0 0
\(190\) 29.6056 2.14781
\(191\) 11.6187 0.840696 0.420348 0.907363i \(-0.361908\pi\)
0.420348 + 0.907363i \(0.361908\pi\)
\(192\) 0 0
\(193\) −6.16179 −0.443536 −0.221768 0.975100i \(-0.571183\pi\)
−0.221768 + 0.975100i \(0.571183\pi\)
\(194\) −8.33658 −0.598532
\(195\) 0 0
\(196\) −14.5027 −1.03590
\(197\) 2.52672 0.180021 0.0900107 0.995941i \(-0.471310\pi\)
0.0900107 + 0.995941i \(0.471310\pi\)
\(198\) 0 0
\(199\) 13.2818 0.941524 0.470762 0.882260i \(-0.343979\pi\)
0.470762 + 0.882260i \(0.343979\pi\)
\(200\) 1.31178 0.0927570
\(201\) 0 0
\(202\) 0.0925410 0.00651116
\(203\) 0 0
\(204\) 0 0
\(205\) 16.4366 1.14798
\(206\) 25.8199 1.79896
\(207\) 0 0
\(208\) −10.5366 −0.730580
\(209\) −19.7788 −1.36813
\(210\) 0 0
\(211\) −8.30478 −0.571724 −0.285862 0.958271i \(-0.592280\pi\)
−0.285862 + 0.958271i \(0.592280\pi\)
\(212\) 37.4108 2.56938
\(213\) 0 0
\(214\) 13.7362 0.938990
\(215\) −18.6995 −1.27530
\(216\) 0 0
\(217\) 10.9662 0.744435
\(218\) −32.4543 −2.19808
\(219\) 0 0
\(220\) −23.5850 −1.59010
\(221\) −18.4321 −1.23988
\(222\) 0 0
\(223\) 25.0119 1.67492 0.837461 0.546496i \(-0.184039\pi\)
0.837461 + 0.546496i \(0.184039\pi\)
\(224\) −9.93749 −0.663977
\(225\) 0 0
\(226\) −26.0673 −1.73397
\(227\) −3.04387 −0.202029 −0.101014 0.994885i \(-0.532209\pi\)
−0.101014 + 0.994885i \(0.532209\pi\)
\(228\) 0 0
\(229\) −21.9086 −1.44776 −0.723879 0.689927i \(-0.757643\pi\)
−0.723879 + 0.689927i \(0.757643\pi\)
\(230\) −5.33082 −0.351504
\(231\) 0 0
\(232\) 0 0
\(233\) −9.96464 −0.652805 −0.326403 0.945231i \(-0.605837\pi\)
−0.326403 + 0.945231i \(0.605837\pi\)
\(234\) 0 0
\(235\) 1.00246 0.0653932
\(236\) −9.98469 −0.649948
\(237\) 0 0
\(238\) −9.05034 −0.586647
\(239\) 7.78097 0.503309 0.251655 0.967817i \(-0.419025\pi\)
0.251655 + 0.967817i \(0.419025\pi\)
\(240\) 0 0
\(241\) −23.1891 −1.49374 −0.746872 0.664968i \(-0.768445\pi\)
−0.746872 + 0.664968i \(0.768445\pi\)
\(242\) 2.88626 0.185536
\(243\) 0 0
\(244\) 20.2147 1.29411
\(245\) −12.3969 −0.792011
\(246\) 0 0
\(247\) 34.0098 2.16399
\(248\) 14.2922 0.907555
\(249\) 0 0
\(250\) −22.3549 −1.41385
\(251\) −1.18054 −0.0745150 −0.0372575 0.999306i \(-0.511862\pi\)
−0.0372575 + 0.999306i \(0.511862\pi\)
\(252\) 0 0
\(253\) 3.56140 0.223903
\(254\) −33.0821 −2.07576
\(255\) 0 0
\(256\) −3.16025 −0.197516
\(257\) −15.9745 −0.996461 −0.498231 0.867044i \(-0.666017\pi\)
−0.498231 + 0.867044i \(0.666017\pi\)
\(258\) 0 0
\(259\) 7.43069 0.461720
\(260\) 40.5546 2.51509
\(261\) 0 0
\(262\) −22.8970 −1.41458
\(263\) −14.6106 −0.900927 −0.450463 0.892795i \(-0.648741\pi\)
−0.450463 + 0.892795i \(0.648741\pi\)
\(264\) 0 0
\(265\) 31.9789 1.96445
\(266\) 16.6991 1.02389
\(267\) 0 0
\(268\) 23.3091 1.42383
\(269\) −22.1146 −1.34835 −0.674174 0.738573i \(-0.735500\pi\)
−0.674174 + 0.738573i \(0.735500\pi\)
\(270\) 0 0
\(271\) −23.1151 −1.40414 −0.702072 0.712106i \(-0.747742\pi\)
−0.702072 + 0.712106i \(0.747742\pi\)
\(272\) 5.33296 0.323358
\(273\) 0 0
\(274\) 8.04847 0.486226
\(275\) −2.61290 −0.157564
\(276\) 0 0
\(277\) 18.7130 1.12435 0.562177 0.827017i \(-0.309964\pi\)
0.562177 + 0.827017i \(0.309964\pi\)
\(278\) 12.6714 0.759980
\(279\) 0 0
\(280\) 5.70903 0.341180
\(281\) 8.66587 0.516962 0.258481 0.966016i \(-0.416778\pi\)
0.258481 + 0.966016i \(0.416778\pi\)
\(282\) 0 0
\(283\) 5.58496 0.331991 0.165996 0.986126i \(-0.446916\pi\)
0.165996 + 0.986126i \(0.446916\pi\)
\(284\) 27.4410 1.62832
\(285\) 0 0
\(286\) −46.4194 −2.74484
\(287\) 9.27114 0.547258
\(288\) 0 0
\(289\) −7.67081 −0.451224
\(290\) 0 0
\(291\) 0 0
\(292\) −0.851624 −0.0498375
\(293\) 4.71899 0.275686 0.137843 0.990454i \(-0.455983\pi\)
0.137843 + 0.990454i \(0.455983\pi\)
\(294\) 0 0
\(295\) −8.53496 −0.496925
\(296\) 9.68436 0.562892
\(297\) 0 0
\(298\) 18.8146 1.08990
\(299\) −6.12385 −0.354151
\(300\) 0 0
\(301\) −10.5475 −0.607950
\(302\) 26.1712 1.50598
\(303\) 0 0
\(304\) −9.84004 −0.564365
\(305\) 17.2796 0.989428
\(306\) 0 0
\(307\) 11.7362 0.669821 0.334910 0.942250i \(-0.391294\pi\)
0.334910 + 0.942250i \(0.391294\pi\)
\(308\) −13.3032 −0.758021
\(309\) 0 0
\(310\) 42.6121 2.42020
\(311\) −16.8038 −0.952858 −0.476429 0.879213i \(-0.658069\pi\)
−0.476429 + 0.879213i \(0.658069\pi\)
\(312\) 0 0
\(313\) −11.9599 −0.676012 −0.338006 0.941144i \(-0.609752\pi\)
−0.338006 + 0.941144i \(0.609752\pi\)
\(314\) −26.8569 −1.51562
\(315\) 0 0
\(316\) 11.2334 0.631929
\(317\) 14.1360 0.793954 0.396977 0.917829i \(-0.370059\pi\)
0.396977 + 0.917829i \(0.370059\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −30.2451 −1.69075
\(321\) 0 0
\(322\) −3.00686 −0.167566
\(323\) −17.2136 −0.957792
\(324\) 0 0
\(325\) 4.49290 0.249221
\(326\) −17.3839 −0.962803
\(327\) 0 0
\(328\) 12.0830 0.667172
\(329\) 0.565441 0.0311737
\(330\) 0 0
\(331\) 23.0236 1.26549 0.632747 0.774359i \(-0.281927\pi\)
0.632747 + 0.774359i \(0.281927\pi\)
\(332\) 12.0969 0.663904
\(333\) 0 0
\(334\) −28.3275 −1.55001
\(335\) 19.9248 1.08861
\(336\) 0 0
\(337\) −2.55630 −0.139250 −0.0696252 0.997573i \(-0.522180\pi\)
−0.0696252 + 0.997573i \(0.522180\pi\)
\(338\) 51.3253 2.79173
\(339\) 0 0
\(340\) −20.5262 −1.11319
\(341\) −28.4682 −1.54164
\(342\) 0 0
\(343\) −16.4559 −0.888534
\(344\) −13.7465 −0.741163
\(345\) 0 0
\(346\) −5.81604 −0.312672
\(347\) 0.891885 0.0478789 0.0239394 0.999713i \(-0.492379\pi\)
0.0239394 + 0.999713i \(0.492379\pi\)
\(348\) 0 0
\(349\) −0.755575 −0.0404450 −0.0202225 0.999796i \(-0.506437\pi\)
−0.0202225 + 0.999796i \(0.506437\pi\)
\(350\) 2.20605 0.117919
\(351\) 0 0
\(352\) 25.7976 1.37502
\(353\) −19.2406 −1.02407 −0.512036 0.858964i \(-0.671109\pi\)
−0.512036 + 0.858964i \(0.671109\pi\)
\(354\) 0 0
\(355\) 23.4567 1.24495
\(356\) −39.2332 −2.07935
\(357\) 0 0
\(358\) 29.3671 1.55210
\(359\) −17.6146 −0.929661 −0.464830 0.885400i \(-0.653885\pi\)
−0.464830 + 0.885400i \(0.653885\pi\)
\(360\) 0 0
\(361\) 12.7615 0.671658
\(362\) 3.31812 0.174396
\(363\) 0 0
\(364\) 22.8750 1.19897
\(365\) −0.727972 −0.0381038
\(366\) 0 0
\(367\) 3.79787 0.198247 0.0991235 0.995075i \(-0.468396\pi\)
0.0991235 + 0.995075i \(0.468396\pi\)
\(368\) 1.77181 0.0923620
\(369\) 0 0
\(370\) 28.8739 1.50108
\(371\) 18.0378 0.936477
\(372\) 0 0
\(373\) −8.29264 −0.429377 −0.214688 0.976683i \(-0.568874\pi\)
−0.214688 + 0.976683i \(0.568874\pi\)
\(374\) 23.4946 1.21488
\(375\) 0 0
\(376\) 0.736934 0.0380045
\(377\) 0 0
\(378\) 0 0
\(379\) −8.93238 −0.458826 −0.229413 0.973329i \(-0.573681\pi\)
−0.229413 + 0.973329i \(0.573681\pi\)
\(380\) 37.8736 1.94288
\(381\) 0 0
\(382\) 25.4655 1.30293
\(383\) −35.8530 −1.83200 −0.916001 0.401176i \(-0.868602\pi\)
−0.916001 + 0.401176i \(0.868602\pi\)
\(384\) 0 0
\(385\) −11.3717 −0.579553
\(386\) −13.5053 −0.687400
\(387\) 0 0
\(388\) −10.6648 −0.541422
\(389\) −11.3446 −0.575194 −0.287597 0.957752i \(-0.592856\pi\)
−0.287597 + 0.957752i \(0.592856\pi\)
\(390\) 0 0
\(391\) 3.09951 0.156749
\(392\) −9.11331 −0.460292
\(393\) 0 0
\(394\) 5.53800 0.279001
\(395\) 9.60238 0.483148
\(396\) 0 0
\(397\) −24.1353 −1.21131 −0.605657 0.795726i \(-0.707090\pi\)
−0.605657 + 0.795726i \(0.707090\pi\)
\(398\) 29.1108 1.45919
\(399\) 0 0
\(400\) −1.29993 −0.0649964
\(401\) −19.3564 −0.966611 −0.483305 0.875452i \(-0.660564\pi\)
−0.483305 + 0.875452i \(0.660564\pi\)
\(402\) 0 0
\(403\) 48.9512 2.43843
\(404\) 0.118385 0.00588989
\(405\) 0 0
\(406\) 0 0
\(407\) −19.2900 −0.956169
\(408\) 0 0
\(409\) 11.4459 0.565963 0.282981 0.959125i \(-0.408677\pi\)
0.282981 + 0.959125i \(0.408677\pi\)
\(410\) 36.0254 1.77917
\(411\) 0 0
\(412\) 33.0308 1.62731
\(413\) −4.81418 −0.236890
\(414\) 0 0
\(415\) 10.3405 0.507595
\(416\) −44.3592 −2.17489
\(417\) 0 0
\(418\) −43.3508 −2.12036
\(419\) 21.1185 1.03171 0.515854 0.856677i \(-0.327475\pi\)
0.515854 + 0.856677i \(0.327475\pi\)
\(420\) 0 0
\(421\) 27.5131 1.34090 0.670452 0.741953i \(-0.266100\pi\)
0.670452 + 0.741953i \(0.266100\pi\)
\(422\) −18.2022 −0.886070
\(423\) 0 0
\(424\) 23.5086 1.14168
\(425\) −2.27402 −0.110306
\(426\) 0 0
\(427\) 9.74662 0.471672
\(428\) 17.5724 0.849394
\(429\) 0 0
\(430\) −40.9852 −1.97648
\(431\) 1.94954 0.0939060 0.0469530 0.998897i \(-0.485049\pi\)
0.0469530 + 0.998897i \(0.485049\pi\)
\(432\) 0 0
\(433\) 7.83478 0.376516 0.188258 0.982120i \(-0.439716\pi\)
0.188258 + 0.982120i \(0.439716\pi\)
\(434\) 24.0355 1.15374
\(435\) 0 0
\(436\) −41.5179 −1.98835
\(437\) −5.71902 −0.273578
\(438\) 0 0
\(439\) 2.38989 0.114063 0.0570317 0.998372i \(-0.481836\pi\)
0.0570317 + 0.998372i \(0.481836\pi\)
\(440\) −14.8206 −0.706544
\(441\) 0 0
\(442\) −40.3991 −1.92159
\(443\) −38.3497 −1.82205 −0.911024 0.412354i \(-0.864707\pi\)
−0.911024 + 0.412354i \(0.864707\pi\)
\(444\) 0 0
\(445\) −33.5367 −1.58979
\(446\) 54.8206 2.59583
\(447\) 0 0
\(448\) −17.0599 −0.806003
\(449\) 31.3441 1.47922 0.739609 0.673037i \(-0.235010\pi\)
0.739609 + 0.673037i \(0.235010\pi\)
\(450\) 0 0
\(451\) −24.0678 −1.13331
\(452\) −33.3473 −1.56852
\(453\) 0 0
\(454\) −6.67148 −0.313108
\(455\) 19.5536 0.916688
\(456\) 0 0
\(457\) −32.2643 −1.50926 −0.754630 0.656151i \(-0.772183\pi\)
−0.754630 + 0.656151i \(0.772183\pi\)
\(458\) −48.0187 −2.24376
\(459\) 0 0
\(460\) −6.81957 −0.317964
\(461\) 5.67806 0.264454 0.132227 0.991219i \(-0.457787\pi\)
0.132227 + 0.991219i \(0.457787\pi\)
\(462\) 0 0
\(463\) 23.2339 1.07977 0.539886 0.841738i \(-0.318467\pi\)
0.539886 + 0.841738i \(0.318467\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −21.8403 −1.01173
\(467\) −12.0771 −0.558861 −0.279430 0.960166i \(-0.590146\pi\)
−0.279430 + 0.960166i \(0.590146\pi\)
\(468\) 0 0
\(469\) 11.2386 0.518952
\(470\) 2.19717 0.101348
\(471\) 0 0
\(472\) −6.27428 −0.288797
\(473\) 27.3813 1.25899
\(474\) 0 0
\(475\) 4.19588 0.192520
\(476\) −11.5779 −0.530671
\(477\) 0 0
\(478\) 17.0541 0.780038
\(479\) 30.5109 1.39408 0.697039 0.717033i \(-0.254500\pi\)
0.697039 + 0.717033i \(0.254500\pi\)
\(480\) 0 0
\(481\) 33.1692 1.51239
\(482\) −50.8254 −2.31503
\(483\) 0 0
\(484\) 3.69231 0.167832
\(485\) −9.11630 −0.413950
\(486\) 0 0
\(487\) −23.5248 −1.06601 −0.533005 0.846112i \(-0.678937\pi\)
−0.533005 + 0.846112i \(0.678937\pi\)
\(488\) 12.7027 0.575024
\(489\) 0 0
\(490\) −27.1713 −1.22747
\(491\) −27.5887 −1.24506 −0.622531 0.782595i \(-0.713896\pi\)
−0.622531 + 0.782595i \(0.713896\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 74.5419 3.35380
\(495\) 0 0
\(496\) −14.1630 −0.635939
\(497\) 13.2308 0.593483
\(498\) 0 0
\(499\) −38.3679 −1.71758 −0.858791 0.512327i \(-0.828784\pi\)
−0.858791 + 0.512327i \(0.828784\pi\)
\(500\) −28.5980 −1.27894
\(501\) 0 0
\(502\) −2.58748 −0.115485
\(503\) 4.95969 0.221142 0.110571 0.993868i \(-0.464732\pi\)
0.110571 + 0.993868i \(0.464732\pi\)
\(504\) 0 0
\(505\) 0.101196 0.00450318
\(506\) 7.80579 0.347010
\(507\) 0 0
\(508\) −42.3211 −1.87770
\(509\) 16.4294 0.728220 0.364110 0.931356i \(-0.381373\pi\)
0.364110 + 0.931356i \(0.381373\pi\)
\(510\) 0 0
\(511\) −0.410615 −0.0181645
\(512\) 18.9871 0.839119
\(513\) 0 0
\(514\) −35.0125 −1.54434
\(515\) 28.2348 1.24418
\(516\) 0 0
\(517\) −1.46788 −0.0645572
\(518\) 16.2864 0.715583
\(519\) 0 0
\(520\) 25.4841 1.11755
\(521\) 30.7040 1.34517 0.672583 0.740021i \(-0.265185\pi\)
0.672583 + 0.740021i \(0.265185\pi\)
\(522\) 0 0
\(523\) 37.0601 1.62052 0.810262 0.586068i \(-0.199325\pi\)
0.810262 + 0.586068i \(0.199325\pi\)
\(524\) −29.2915 −1.27961
\(525\) 0 0
\(526\) −32.0231 −1.39627
\(527\) −24.7760 −1.07926
\(528\) 0 0
\(529\) −21.9702 −0.955227
\(530\) 70.0906 3.04454
\(531\) 0 0
\(532\) 21.3628 0.926193
\(533\) 41.3847 1.79257
\(534\) 0 0
\(535\) 15.0210 0.649413
\(536\) 14.6472 0.632664
\(537\) 0 0
\(538\) −48.4701 −2.08970
\(539\) 18.1525 0.781886
\(540\) 0 0
\(541\) 34.0254 1.46287 0.731434 0.681913i \(-0.238852\pi\)
0.731434 + 0.681913i \(0.238852\pi\)
\(542\) −50.6632 −2.17617
\(543\) 0 0
\(544\) 22.4518 0.962614
\(545\) −35.4897 −1.52021
\(546\) 0 0
\(547\) 17.1964 0.735265 0.367633 0.929971i \(-0.380168\pi\)
0.367633 + 0.929971i \(0.380168\pi\)
\(548\) 10.2962 0.439832
\(549\) 0 0
\(550\) −5.72689 −0.244196
\(551\) 0 0
\(552\) 0 0
\(553\) 5.41626 0.230323
\(554\) 41.0147 1.74255
\(555\) 0 0
\(556\) 16.2102 0.687466
\(557\) 29.6847 1.25778 0.628890 0.777494i \(-0.283510\pi\)
0.628890 + 0.777494i \(0.283510\pi\)
\(558\) 0 0
\(559\) −47.0823 −1.99137
\(560\) −5.65744 −0.239070
\(561\) 0 0
\(562\) 18.9936 0.801198
\(563\) 27.8621 1.17425 0.587125 0.809497i \(-0.300260\pi\)
0.587125 + 0.809497i \(0.300260\pi\)
\(564\) 0 0
\(565\) −28.5054 −1.19923
\(566\) 12.2410 0.514527
\(567\) 0 0
\(568\) 17.2436 0.723526
\(569\) 9.78846 0.410354 0.205177 0.978725i \(-0.434223\pi\)
0.205177 + 0.978725i \(0.434223\pi\)
\(570\) 0 0
\(571\) −32.3247 −1.35275 −0.676374 0.736559i \(-0.736450\pi\)
−0.676374 + 0.736559i \(0.736450\pi\)
\(572\) −59.3831 −2.48293
\(573\) 0 0
\(574\) 20.3203 0.848151
\(575\) −0.755516 −0.0315072
\(576\) 0 0
\(577\) −43.6057 −1.81533 −0.907664 0.419698i \(-0.862136\pi\)
−0.907664 + 0.419698i \(0.862136\pi\)
\(578\) −16.8127 −0.699316
\(579\) 0 0
\(580\) 0 0
\(581\) 5.83259 0.241977
\(582\) 0 0
\(583\) −46.8260 −1.93934
\(584\) −0.535152 −0.0221447
\(585\) 0 0
\(586\) 10.3430 0.427264
\(587\) 43.6633 1.80218 0.901088 0.433636i \(-0.142769\pi\)
0.901088 + 0.433636i \(0.142769\pi\)
\(588\) 0 0
\(589\) 45.7152 1.88366
\(590\) −18.7067 −0.770144
\(591\) 0 0
\(592\) −9.59684 −0.394428
\(593\) −24.0076 −0.985873 −0.492937 0.870065i \(-0.664077\pi\)
−0.492937 + 0.870065i \(0.664077\pi\)
\(594\) 0 0
\(595\) −9.89682 −0.405730
\(596\) 24.0690 0.985904
\(597\) 0 0
\(598\) −13.4221 −0.548870
\(599\) −3.63501 −0.148522 −0.0742612 0.997239i \(-0.523660\pi\)
−0.0742612 + 0.997239i \(0.523660\pi\)
\(600\) 0 0
\(601\) −15.2601 −0.622474 −0.311237 0.950332i \(-0.600743\pi\)
−0.311237 + 0.950332i \(0.600743\pi\)
\(602\) −23.1178 −0.942213
\(603\) 0 0
\(604\) 33.4801 1.36229
\(605\) 3.15621 0.128318
\(606\) 0 0
\(607\) −2.89009 −0.117305 −0.0586526 0.998278i \(-0.518680\pi\)
−0.0586526 + 0.998278i \(0.518680\pi\)
\(608\) −41.4267 −1.68007
\(609\) 0 0
\(610\) 37.8730 1.53343
\(611\) 2.52402 0.102111
\(612\) 0 0
\(613\) −4.40402 −0.177877 −0.0889384 0.996037i \(-0.528347\pi\)
−0.0889384 + 0.996037i \(0.528347\pi\)
\(614\) 25.7231 1.03810
\(615\) 0 0
\(616\) −8.35960 −0.336818
\(617\) −6.95938 −0.280174 −0.140087 0.990139i \(-0.544738\pi\)
−0.140087 + 0.990139i \(0.544738\pi\)
\(618\) 0 0
\(619\) 13.1480 0.528461 0.264230 0.964460i \(-0.414882\pi\)
0.264230 + 0.964460i \(0.414882\pi\)
\(620\) 54.5125 2.18928
\(621\) 0 0
\(622\) −36.8302 −1.47676
\(623\) −18.9165 −0.757873
\(624\) 0 0
\(625\) −28.1683 −1.12673
\(626\) −26.2134 −1.04770
\(627\) 0 0
\(628\) −34.3574 −1.37101
\(629\) −16.7882 −0.669389
\(630\) 0 0
\(631\) −13.2938 −0.529217 −0.264609 0.964356i \(-0.585243\pi\)
−0.264609 + 0.964356i \(0.585243\pi\)
\(632\) 7.05896 0.280790
\(633\) 0 0
\(634\) 30.9828 1.23049
\(635\) −36.1763 −1.43561
\(636\) 0 0
\(637\) −31.2134 −1.23672
\(638\) 0 0
\(639\) 0 0
\(640\) −31.0546 −1.22754
\(641\) −20.1373 −0.795376 −0.397688 0.917521i \(-0.630187\pi\)
−0.397688 + 0.917521i \(0.630187\pi\)
\(642\) 0 0
\(643\) 44.1506 1.74113 0.870565 0.492053i \(-0.163753\pi\)
0.870565 + 0.492053i \(0.163753\pi\)
\(644\) −3.84660 −0.151577
\(645\) 0 0
\(646\) −37.7284 −1.48440
\(647\) −18.2323 −0.716784 −0.358392 0.933571i \(-0.616675\pi\)
−0.358392 + 0.933571i \(0.616675\pi\)
\(648\) 0 0
\(649\) 12.4976 0.490572
\(650\) 9.84742 0.386248
\(651\) 0 0
\(652\) −22.2387 −0.870935
\(653\) 15.1966 0.594688 0.297344 0.954770i \(-0.403899\pi\)
0.297344 + 0.954770i \(0.403899\pi\)
\(654\) 0 0
\(655\) −25.0385 −0.978336
\(656\) −11.9738 −0.467499
\(657\) 0 0
\(658\) 1.23932 0.0483137
\(659\) 16.7811 0.653699 0.326849 0.945076i \(-0.394013\pi\)
0.326849 + 0.945076i \(0.394013\pi\)
\(660\) 0 0
\(661\) −1.34387 −0.0522705 −0.0261352 0.999658i \(-0.508320\pi\)
−0.0261352 + 0.999658i \(0.508320\pi\)
\(662\) 50.4627 1.96129
\(663\) 0 0
\(664\) 7.60157 0.294998
\(665\) 18.2610 0.708131
\(666\) 0 0
\(667\) 0 0
\(668\) −36.2386 −1.40211
\(669\) 0 0
\(670\) 43.6706 1.68714
\(671\) −25.3021 −0.976778
\(672\) 0 0
\(673\) 11.9193 0.459457 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(674\) −5.60283 −0.215813
\(675\) 0 0
\(676\) 65.6592 2.52535
\(677\) −16.2061 −0.622850 −0.311425 0.950271i \(-0.600806\pi\)
−0.311425 + 0.950271i \(0.600806\pi\)
\(678\) 0 0
\(679\) −5.14208 −0.197335
\(680\) −12.8984 −0.494633
\(681\) 0 0
\(682\) −62.3959 −2.38926
\(683\) 28.8129 1.10249 0.551247 0.834342i \(-0.314152\pi\)
0.551247 + 0.834342i \(0.314152\pi\)
\(684\) 0 0
\(685\) 8.80124 0.336278
\(686\) −36.0676 −1.37707
\(687\) 0 0
\(688\) 13.6223 0.519345
\(689\) 80.5176 3.06747
\(690\) 0 0
\(691\) −25.3535 −0.964492 −0.482246 0.876036i \(-0.660179\pi\)
−0.482246 + 0.876036i \(0.660179\pi\)
\(692\) −7.44031 −0.282838
\(693\) 0 0
\(694\) 1.95481 0.0742037
\(695\) 13.8566 0.525609
\(696\) 0 0
\(697\) −20.9463 −0.793399
\(698\) −1.65605 −0.0626825
\(699\) 0 0
\(700\) 2.82215 0.106667
\(701\) −13.2108 −0.498965 −0.249482 0.968379i \(-0.580260\pi\)
−0.249482 + 0.968379i \(0.580260\pi\)
\(702\) 0 0
\(703\) 30.9765 1.16830
\(704\) 44.2873 1.66914
\(705\) 0 0
\(706\) −42.1710 −1.58713
\(707\) 0.0570801 0.00214672
\(708\) 0 0
\(709\) −35.6702 −1.33962 −0.669811 0.742532i \(-0.733625\pi\)
−0.669811 + 0.742532i \(0.733625\pi\)
\(710\) 51.4118 1.92945
\(711\) 0 0
\(712\) −24.6537 −0.923937
\(713\) −8.23153 −0.308273
\(714\) 0 0
\(715\) −50.7610 −1.89835
\(716\) 37.5685 1.40400
\(717\) 0 0
\(718\) −38.6072 −1.44081
\(719\) −2.02313 −0.0754500 −0.0377250 0.999288i \(-0.512011\pi\)
−0.0377250 + 0.999288i \(0.512011\pi\)
\(720\) 0 0
\(721\) 15.9260 0.593114
\(722\) 27.9704 1.04095
\(723\) 0 0
\(724\) 4.24478 0.157756
\(725\) 0 0
\(726\) 0 0
\(727\) −10.5449 −0.391091 −0.195545 0.980695i \(-0.562648\pi\)
−0.195545 + 0.980695i \(0.562648\pi\)
\(728\) 14.3744 0.532750
\(729\) 0 0
\(730\) −1.59555 −0.0590540
\(731\) 23.8301 0.881389
\(732\) 0 0
\(733\) −19.0185 −0.702464 −0.351232 0.936289i \(-0.614237\pi\)
−0.351232 + 0.936289i \(0.614237\pi\)
\(734\) 8.32408 0.307247
\(735\) 0 0
\(736\) 7.45934 0.274955
\(737\) −29.1754 −1.07469
\(738\) 0 0
\(739\) −43.0359 −1.58310 −0.791550 0.611104i \(-0.790726\pi\)
−0.791550 + 0.611104i \(0.790726\pi\)
\(740\) 36.9376 1.35785
\(741\) 0 0
\(742\) 39.5349 1.45137
\(743\) 3.32534 0.121995 0.0609974 0.998138i \(-0.480572\pi\)
0.0609974 + 0.998138i \(0.480572\pi\)
\(744\) 0 0
\(745\) 20.5743 0.753783
\(746\) −18.1756 −0.665456
\(747\) 0 0
\(748\) 30.0560 1.09896
\(749\) 8.47263 0.309583
\(750\) 0 0
\(751\) 20.4786 0.747274 0.373637 0.927575i \(-0.378111\pi\)
0.373637 + 0.927575i \(0.378111\pi\)
\(752\) −0.730275 −0.0266304
\(753\) 0 0
\(754\) 0 0
\(755\) 28.6190 1.04155
\(756\) 0 0
\(757\) −8.42636 −0.306261 −0.153131 0.988206i \(-0.548936\pi\)
−0.153131 + 0.988206i \(0.548936\pi\)
\(758\) −19.5778 −0.711097
\(759\) 0 0
\(760\) 23.7994 0.863295
\(761\) 26.1414 0.947625 0.473812 0.880626i \(-0.342877\pi\)
0.473812 + 0.880626i \(0.342877\pi\)
\(762\) 0 0
\(763\) −20.0181 −0.724703
\(764\) 32.5773 1.17861
\(765\) 0 0
\(766\) −78.5817 −2.83927
\(767\) −21.4896 −0.775945
\(768\) 0 0
\(769\) 41.1420 1.48362 0.741808 0.670612i \(-0.233968\pi\)
0.741808 + 0.670612i \(0.233968\pi\)
\(770\) −24.9241 −0.898203
\(771\) 0 0
\(772\) −17.2769 −0.621811
\(773\) −34.8669 −1.25407 −0.627037 0.778990i \(-0.715732\pi\)
−0.627037 + 0.778990i \(0.715732\pi\)
\(774\) 0 0
\(775\) 6.03925 0.216936
\(776\) −6.70163 −0.240575
\(777\) 0 0
\(778\) −24.8648 −0.891446
\(779\) 38.6489 1.38474
\(780\) 0 0
\(781\) −34.3471 −1.22904
\(782\) 6.79343 0.242932
\(783\) 0 0
\(784\) 9.03096 0.322534
\(785\) −29.3688 −1.04822
\(786\) 0 0
\(787\) 15.9557 0.568759 0.284380 0.958712i \(-0.408212\pi\)
0.284380 + 0.958712i \(0.408212\pi\)
\(788\) 7.08463 0.252379
\(789\) 0 0
\(790\) 21.0463 0.748792
\(791\) −16.0786 −0.571688
\(792\) 0 0
\(793\) 43.5072 1.54498
\(794\) −52.8991 −1.87732
\(795\) 0 0
\(796\) 37.2407 1.31996
\(797\) −38.0735 −1.34863 −0.674316 0.738443i \(-0.735561\pi\)
−0.674316 + 0.738443i \(0.735561\pi\)
\(798\) 0 0
\(799\) −1.27750 −0.0451948
\(800\) −5.47271 −0.193490
\(801\) 0 0
\(802\) −42.4248 −1.49807
\(803\) 1.06595 0.0376167
\(804\) 0 0
\(805\) −3.28810 −0.115890
\(806\) 107.290 3.77913
\(807\) 0 0
\(808\) 0.0743921 0.00261710
\(809\) 52.1314 1.83284 0.916421 0.400216i \(-0.131065\pi\)
0.916421 + 0.400216i \(0.131065\pi\)
\(810\) 0 0
\(811\) 6.35528 0.223164 0.111582 0.993755i \(-0.464408\pi\)
0.111582 + 0.993755i \(0.464408\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −42.2793 −1.48189
\(815\) −19.0098 −0.665883
\(816\) 0 0
\(817\) −43.9698 −1.53831
\(818\) 25.0868 0.877140
\(819\) 0 0
\(820\) 46.0864 1.60941
\(821\) −0.213766 −0.00746047 −0.00373024 0.999993i \(-0.501187\pi\)
−0.00373024 + 0.999993i \(0.501187\pi\)
\(822\) 0 0
\(823\) 25.4184 0.886029 0.443015 0.896514i \(-0.353909\pi\)
0.443015 + 0.896514i \(0.353909\pi\)
\(824\) 20.7562 0.723076
\(825\) 0 0
\(826\) −10.5516 −0.367137
\(827\) −39.3267 −1.36752 −0.683761 0.729706i \(-0.739657\pi\)
−0.683761 + 0.729706i \(0.739657\pi\)
\(828\) 0 0
\(829\) 2.14332 0.0744405 0.0372203 0.999307i \(-0.488150\pi\)
0.0372203 + 0.999307i \(0.488150\pi\)
\(830\) 22.6640 0.786680
\(831\) 0 0
\(832\) −76.1522 −2.64010
\(833\) 15.7983 0.547378
\(834\) 0 0
\(835\) −30.9769 −1.07200
\(836\) −55.4575 −1.91804
\(837\) 0 0
\(838\) 46.2871 1.59896
\(839\) 15.6125 0.539002 0.269501 0.963000i \(-0.413141\pi\)
0.269501 + 0.963000i \(0.413141\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 60.3025 2.07816
\(843\) 0 0
\(844\) −23.2856 −0.801524
\(845\) 56.1257 1.93078
\(846\) 0 0
\(847\) 1.78027 0.0611708
\(848\) −23.2961 −0.799992
\(849\) 0 0
\(850\) −4.98415 −0.170955
\(851\) −5.57767 −0.191200
\(852\) 0 0
\(853\) 36.4571 1.24827 0.624133 0.781318i \(-0.285452\pi\)
0.624133 + 0.781318i \(0.285452\pi\)
\(854\) 21.3624 0.731007
\(855\) 0 0
\(856\) 11.0423 0.377419
\(857\) 0.490297 0.0167482 0.00837412 0.999965i \(-0.497334\pi\)
0.00837412 + 0.999965i \(0.497334\pi\)
\(858\) 0 0
\(859\) −36.7217 −1.25293 −0.626465 0.779450i \(-0.715499\pi\)
−0.626465 + 0.779450i \(0.715499\pi\)
\(860\) −52.4313 −1.78789
\(861\) 0 0
\(862\) 4.27295 0.145537
\(863\) −40.0757 −1.36419 −0.682096 0.731263i \(-0.738931\pi\)
−0.682096 + 0.731263i \(0.738931\pi\)
\(864\) 0 0
\(865\) −6.36001 −0.216247
\(866\) 17.1721 0.583531
\(867\) 0 0
\(868\) 30.7480 1.04365
\(869\) −14.0605 −0.476971
\(870\) 0 0
\(871\) 50.1672 1.69985
\(872\) −26.0894 −0.883499
\(873\) 0 0
\(874\) −12.5348 −0.423996
\(875\) −13.7887 −0.466143
\(876\) 0 0
\(877\) 29.2270 0.986925 0.493463 0.869767i \(-0.335731\pi\)
0.493463 + 0.869767i \(0.335731\pi\)
\(878\) 5.23811 0.176778
\(879\) 0 0
\(880\) 14.6867 0.495087
\(881\) −23.3679 −0.787285 −0.393643 0.919264i \(-0.628785\pi\)
−0.393643 + 0.919264i \(0.628785\pi\)
\(882\) 0 0
\(883\) −22.0878 −0.743314 −0.371657 0.928370i \(-0.621210\pi\)
−0.371657 + 0.928370i \(0.621210\pi\)
\(884\) −51.6815 −1.73824
\(885\) 0 0
\(886\) −84.0539 −2.82384
\(887\) −16.2336 −0.545072 −0.272536 0.962146i \(-0.587862\pi\)
−0.272536 + 0.962146i \(0.587862\pi\)
\(888\) 0 0
\(889\) −20.4054 −0.684374
\(890\) −73.5049 −2.46389
\(891\) 0 0
\(892\) 70.1305 2.34814
\(893\) 2.35717 0.0788796
\(894\) 0 0
\(895\) 32.1138 1.07344
\(896\) −17.5164 −0.585183
\(897\) 0 0
\(898\) 68.6992 2.29252
\(899\) 0 0
\(900\) 0 0
\(901\) −40.7530 −1.35768
\(902\) −52.7512 −1.75642
\(903\) 0 0
\(904\) −20.9551 −0.696956
\(905\) 3.62846 0.120614
\(906\) 0 0
\(907\) −3.44533 −0.114400 −0.0572002 0.998363i \(-0.518217\pi\)
−0.0572002 + 0.998363i \(0.518217\pi\)
\(908\) −8.53466 −0.283233
\(909\) 0 0
\(910\) 42.8571 1.42070
\(911\) 18.9945 0.629315 0.314658 0.949205i \(-0.398110\pi\)
0.314658 + 0.949205i \(0.398110\pi\)
\(912\) 0 0
\(913\) −15.1413 −0.501105
\(914\) −70.7161 −2.33908
\(915\) 0 0
\(916\) −61.4290 −2.02967
\(917\) −14.1231 −0.466385
\(918\) 0 0
\(919\) −16.7391 −0.552171 −0.276086 0.961133i \(-0.589037\pi\)
−0.276086 + 0.961133i \(0.589037\pi\)
\(920\) −4.28535 −0.141284
\(921\) 0 0
\(922\) 12.4450 0.409856
\(923\) 59.0600 1.94398
\(924\) 0 0
\(925\) 4.09218 0.134550
\(926\) 50.9236 1.67345
\(927\) 0 0
\(928\) 0 0
\(929\) 57.7025 1.89316 0.946578 0.322474i \(-0.104515\pi\)
0.946578 + 0.322474i \(0.104515\pi\)
\(930\) 0 0
\(931\) −29.1500 −0.955352
\(932\) −27.9397 −0.915194
\(933\) 0 0
\(934\) −26.4703 −0.866133
\(935\) 25.6920 0.840219
\(936\) 0 0
\(937\) −40.1165 −1.31055 −0.655274 0.755391i \(-0.727447\pi\)
−0.655274 + 0.755391i \(0.727447\pi\)
\(938\) 24.6326 0.804282
\(939\) 0 0
\(940\) 2.81078 0.0916774
\(941\) −37.2722 −1.21504 −0.607520 0.794305i \(-0.707835\pi\)
−0.607520 + 0.794305i \(0.707835\pi\)
\(942\) 0 0
\(943\) −6.95916 −0.226622
\(944\) 6.21758 0.202365
\(945\) 0 0
\(946\) 60.0137 1.95121
\(947\) 27.4624 0.892408 0.446204 0.894931i \(-0.352776\pi\)
0.446204 + 0.894931i \(0.352776\pi\)
\(948\) 0 0
\(949\) −1.83291 −0.0594988
\(950\) 9.19644 0.298372
\(951\) 0 0
\(952\) −7.27541 −0.235797
\(953\) −2.42289 −0.0784851 −0.0392425 0.999230i \(-0.512494\pi\)
−0.0392425 + 0.999230i \(0.512494\pi\)
\(954\) 0 0
\(955\) 27.8473 0.901116
\(956\) 21.8169 0.705610
\(957\) 0 0
\(958\) 66.8731 2.16057
\(959\) 4.96437 0.160308
\(960\) 0 0
\(961\) 34.7991 1.12255
\(962\) 72.6995 2.34393
\(963\) 0 0
\(964\) −65.0196 −2.09414
\(965\) −14.7684 −0.475412
\(966\) 0 0
\(967\) 37.8518 1.21723 0.608616 0.793465i \(-0.291725\pi\)
0.608616 + 0.793465i \(0.291725\pi\)
\(968\) 2.32021 0.0745744
\(969\) 0 0
\(970\) −19.9809 −0.641548
\(971\) 12.8802 0.413346 0.206673 0.978410i \(-0.433736\pi\)
0.206673 + 0.978410i \(0.433736\pi\)
\(972\) 0 0
\(973\) 7.81584 0.250564
\(974\) −51.5611 −1.65212
\(975\) 0 0
\(976\) −12.5879 −0.402929
\(977\) −1.41211 −0.0451775 −0.0225887 0.999745i \(-0.507191\pi\)
−0.0225887 + 0.999745i \(0.507191\pi\)
\(978\) 0 0
\(979\) 49.1070 1.56947
\(980\) −34.7595 −1.11035
\(981\) 0 0
\(982\) −60.4683 −1.92962
\(983\) −12.0413 −0.384059 −0.192030 0.981389i \(-0.561507\pi\)
−0.192030 + 0.981389i \(0.561507\pi\)
\(984\) 0 0
\(985\) 6.05597 0.192959
\(986\) 0 0
\(987\) 0 0
\(988\) 95.3595 3.03379
\(989\) 7.91726 0.251754
\(990\) 0 0
\(991\) −44.9003 −1.42630 −0.713152 0.701009i \(-0.752733\pi\)
−0.713152 + 0.701009i \(0.752733\pi\)
\(992\) −59.6266 −1.89315
\(993\) 0 0
\(994\) 28.9990 0.919792
\(995\) 31.8335 1.00919
\(996\) 0 0
\(997\) 18.2114 0.576762 0.288381 0.957516i \(-0.406883\pi\)
0.288381 + 0.957516i \(0.406883\pi\)
\(998\) −84.0938 −2.66194
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bj.1.9 9
3.2 odd 2 2523.2.a.r.1.1 9
29.23 even 7 261.2.k.c.181.1 18
29.24 even 7 261.2.k.c.199.1 18
29.28 even 2 7569.2.a.bm.1.1 9
87.23 odd 14 87.2.g.a.7.3 18
87.53 odd 14 87.2.g.a.25.3 yes 18
87.86 odd 2 2523.2.a.o.1.9 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.7.3 18 87.23 odd 14
87.2.g.a.25.3 yes 18 87.53 odd 14
261.2.k.c.181.1 18 29.23 even 7
261.2.k.c.199.1 18 29.24 even 7
2523.2.a.o.1.9 9 87.86 odd 2
2523.2.a.r.1.1 9 3.2 odd 2
7569.2.a.bj.1.9 9 1.1 even 1 trivial
7569.2.a.bm.1.1 9 29.28 even 2