Properties

Label 7569.2.a.bj.1.1
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.77801\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.77801 q^{2} +5.71733 q^{4} +2.53766 q^{5} +0.846706 q^{7} -10.3268 q^{8} -7.04965 q^{10} -1.25795 q^{11} -2.22142 q^{13} -2.35216 q^{14} +17.2532 q^{16} -3.75587 q^{17} -2.95482 q^{19} +14.5087 q^{20} +3.49460 q^{22} -6.41819 q^{23} +1.43972 q^{25} +6.17112 q^{26} +4.84090 q^{28} +0.575935 q^{31} -27.2761 q^{32} +10.4338 q^{34} +2.14865 q^{35} -4.01493 q^{37} +8.20851 q^{38} -26.2059 q^{40} +9.29991 q^{41} +9.54895 q^{43} -7.19214 q^{44} +17.8298 q^{46} +2.81581 q^{47} -6.28309 q^{49} -3.99957 q^{50} -12.7006 q^{52} -3.94794 q^{53} -3.19226 q^{55} -8.74375 q^{56} -2.24563 q^{59} -4.76610 q^{61} -1.59995 q^{62} +41.2667 q^{64} -5.63721 q^{65} -0.143981 q^{67} -21.4736 q^{68} -5.96898 q^{70} +5.11884 q^{71} +1.37989 q^{73} +11.1535 q^{74} -16.8937 q^{76} -1.06512 q^{77} +0.269362 q^{79} +43.7829 q^{80} -25.8352 q^{82} +6.83476 q^{83} -9.53112 q^{85} -26.5271 q^{86} +12.9906 q^{88} +4.61019 q^{89} -1.88089 q^{91} -36.6949 q^{92} -7.82234 q^{94} -7.49833 q^{95} -4.61991 q^{97} +17.4545 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 5 q^{2} + 11 q^{4} + 4 q^{5} + 5 q^{7} - 24 q^{8} + q^{11} + q^{13} - 9 q^{14} + 35 q^{16} - 2 q^{17} + 9 q^{19} + 18 q^{20} - 4 q^{22} + 4 q^{23} + q^{25} + 8 q^{26} + 40 q^{28} + 8 q^{31} - 43 q^{32}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.77801 −1.96435 −0.982175 0.187971i \(-0.939809\pi\)
−0.982175 + 0.187971i \(0.939809\pi\)
\(3\) 0 0
\(4\) 5.71733 2.85867
\(5\) 2.53766 1.13488 0.567438 0.823416i \(-0.307935\pi\)
0.567438 + 0.823416i \(0.307935\pi\)
\(6\) 0 0
\(7\) 0.846706 0.320025 0.160012 0.987115i \(-0.448847\pi\)
0.160012 + 0.987115i \(0.448847\pi\)
\(8\) −10.3268 −3.65107
\(9\) 0 0
\(10\) −7.04965 −2.22929
\(11\) −1.25795 −0.379287 −0.189644 0.981853i \(-0.560733\pi\)
−0.189644 + 0.981853i \(0.560733\pi\)
\(12\) 0 0
\(13\) −2.22142 −0.616111 −0.308055 0.951368i \(-0.599678\pi\)
−0.308055 + 0.951368i \(0.599678\pi\)
\(14\) −2.35216 −0.628640
\(15\) 0 0
\(16\) 17.2532 4.31331
\(17\) −3.75587 −0.910932 −0.455466 0.890253i \(-0.650527\pi\)
−0.455466 + 0.890253i \(0.650527\pi\)
\(18\) 0 0
\(19\) −2.95482 −0.677882 −0.338941 0.940808i \(-0.610069\pi\)
−0.338941 + 0.940808i \(0.610069\pi\)
\(20\) 14.5087 3.24423
\(21\) 0 0
\(22\) 3.49460 0.745052
\(23\) −6.41819 −1.33828 −0.669142 0.743134i \(-0.733338\pi\)
−0.669142 + 0.743134i \(0.733338\pi\)
\(24\) 0 0
\(25\) 1.43972 0.287945
\(26\) 6.17112 1.21026
\(27\) 0 0
\(28\) 4.84090 0.914844
\(29\) 0 0
\(30\) 0 0
\(31\) 0.575935 0.103441 0.0517205 0.998662i \(-0.483529\pi\)
0.0517205 + 0.998662i \(0.483529\pi\)
\(32\) −27.2761 −4.82178
\(33\) 0 0
\(34\) 10.4338 1.78939
\(35\) 2.14865 0.363189
\(36\) 0 0
\(37\) −4.01493 −0.660051 −0.330026 0.943972i \(-0.607057\pi\)
−0.330026 + 0.943972i \(0.607057\pi\)
\(38\) 8.20851 1.33160
\(39\) 0 0
\(40\) −26.2059 −4.14351
\(41\) 9.29991 1.45240 0.726201 0.687482i \(-0.241284\pi\)
0.726201 + 0.687482i \(0.241284\pi\)
\(42\) 0 0
\(43\) 9.54895 1.45620 0.728101 0.685470i \(-0.240403\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(44\) −7.19214 −1.08426
\(45\) 0 0
\(46\) 17.8298 2.62886
\(47\) 2.81581 0.410728 0.205364 0.978686i \(-0.434162\pi\)
0.205364 + 0.978686i \(0.434162\pi\)
\(48\) 0 0
\(49\) −6.28309 −0.897584
\(50\) −3.99957 −0.565624
\(51\) 0 0
\(52\) −12.7006 −1.76126
\(53\) −3.94794 −0.542291 −0.271145 0.962538i \(-0.587402\pi\)
−0.271145 + 0.962538i \(0.587402\pi\)
\(54\) 0 0
\(55\) −3.19226 −0.430444
\(56\) −8.74375 −1.16843
\(57\) 0 0
\(58\) 0 0
\(59\) −2.24563 −0.292356 −0.146178 0.989258i \(-0.546697\pi\)
−0.146178 + 0.989258i \(0.546697\pi\)
\(60\) 0 0
\(61\) −4.76610 −0.610237 −0.305119 0.952314i \(-0.598696\pi\)
−0.305119 + 0.952314i \(0.598696\pi\)
\(62\) −1.59995 −0.203194
\(63\) 0 0
\(64\) 41.2667 5.15834
\(65\) −5.63721 −0.699209
\(66\) 0 0
\(67\) −0.143981 −0.0175900 −0.00879502 0.999961i \(-0.502800\pi\)
−0.00879502 + 0.999961i \(0.502800\pi\)
\(68\) −21.4736 −2.60405
\(69\) 0 0
\(70\) −5.96898 −0.713429
\(71\) 5.11884 0.607495 0.303747 0.952753i \(-0.401762\pi\)
0.303747 + 0.952753i \(0.401762\pi\)
\(72\) 0 0
\(73\) 1.37989 0.161504 0.0807519 0.996734i \(-0.474268\pi\)
0.0807519 + 0.996734i \(0.474268\pi\)
\(74\) 11.1535 1.29657
\(75\) 0 0
\(76\) −16.8937 −1.93784
\(77\) −1.06512 −0.121381
\(78\) 0 0
\(79\) 0.269362 0.0303056 0.0151528 0.999885i \(-0.495177\pi\)
0.0151528 + 0.999885i \(0.495177\pi\)
\(80\) 43.7829 4.89507
\(81\) 0 0
\(82\) −25.8352 −2.85303
\(83\) 6.83476 0.750213 0.375106 0.926982i \(-0.377606\pi\)
0.375106 + 0.926982i \(0.377606\pi\)
\(84\) 0 0
\(85\) −9.53112 −1.03380
\(86\) −26.5271 −2.86049
\(87\) 0 0
\(88\) 12.9906 1.38480
\(89\) 4.61019 0.488679 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(90\) 0 0
\(91\) −1.88089 −0.197171
\(92\) −36.6949 −3.82571
\(93\) 0 0
\(94\) −7.82234 −0.806813
\(95\) −7.49833 −0.769312
\(96\) 0 0
\(97\) −4.61991 −0.469081 −0.234540 0.972106i \(-0.575358\pi\)
−0.234540 + 0.972106i \(0.575358\pi\)
\(98\) 17.4545 1.76317
\(99\) 0 0
\(100\) 8.23138 0.823138
\(101\) 9.11390 0.906867 0.453433 0.891290i \(-0.350199\pi\)
0.453433 + 0.891290i \(0.350199\pi\)
\(102\) 0 0
\(103\) −14.4058 −1.41945 −0.709724 0.704480i \(-0.751180\pi\)
−0.709724 + 0.704480i \(0.751180\pi\)
\(104\) 22.9401 2.24946
\(105\) 0 0
\(106\) 10.9674 1.06525
\(107\) 1.83345 0.177246 0.0886230 0.996065i \(-0.471753\pi\)
0.0886230 + 0.996065i \(0.471753\pi\)
\(108\) 0 0
\(109\) 14.3457 1.37407 0.687033 0.726626i \(-0.258913\pi\)
0.687033 + 0.726626i \(0.258913\pi\)
\(110\) 8.86812 0.845542
\(111\) 0 0
\(112\) 14.6084 1.38037
\(113\) 11.7792 1.10810 0.554049 0.832484i \(-0.313082\pi\)
0.554049 + 0.832484i \(0.313082\pi\)
\(114\) 0 0
\(115\) −16.2872 −1.51879
\(116\) 0 0
\(117\) 0 0
\(118\) 6.23838 0.574290
\(119\) −3.18012 −0.291521
\(120\) 0 0
\(121\) −9.41755 −0.856141
\(122\) 13.2403 1.19872
\(123\) 0 0
\(124\) 3.29282 0.295704
\(125\) −9.03477 −0.808095
\(126\) 0 0
\(127\) 12.0293 1.06743 0.533713 0.845666i \(-0.320796\pi\)
0.533713 + 0.845666i \(0.320796\pi\)
\(128\) −60.0872 −5.31100
\(129\) 0 0
\(130\) 15.6602 1.37349
\(131\) 2.38388 0.208280 0.104140 0.994563i \(-0.466791\pi\)
0.104140 + 0.994563i \(0.466791\pi\)
\(132\) 0 0
\(133\) −2.50186 −0.216939
\(134\) 0.399980 0.0345530
\(135\) 0 0
\(136\) 38.7861 3.32588
\(137\) 13.5702 1.15938 0.579689 0.814838i \(-0.303174\pi\)
0.579689 + 0.814838i \(0.303174\pi\)
\(138\) 0 0
\(139\) 19.9821 1.69486 0.847430 0.530907i \(-0.178148\pi\)
0.847430 + 0.530907i \(0.178148\pi\)
\(140\) 12.2846 1.03824
\(141\) 0 0
\(142\) −14.2202 −1.19333
\(143\) 2.79444 0.233683
\(144\) 0 0
\(145\) 0 0
\(146\) −3.83335 −0.317250
\(147\) 0 0
\(148\) −22.9547 −1.88687
\(149\) 16.1338 1.32173 0.660864 0.750505i \(-0.270190\pi\)
0.660864 + 0.750505i \(0.270190\pi\)
\(150\) 0 0
\(151\) 2.80144 0.227978 0.113989 0.993482i \(-0.463637\pi\)
0.113989 + 0.993482i \(0.463637\pi\)
\(152\) 30.5138 2.47499
\(153\) 0 0
\(154\) 2.95890 0.238435
\(155\) 1.46153 0.117393
\(156\) 0 0
\(157\) 8.49632 0.678080 0.339040 0.940772i \(-0.389898\pi\)
0.339040 + 0.940772i \(0.389898\pi\)
\(158\) −0.748291 −0.0595309
\(159\) 0 0
\(160\) −69.2175 −5.47212
\(161\) −5.43432 −0.428284
\(162\) 0 0
\(163\) −20.7440 −1.62479 −0.812396 0.583106i \(-0.801837\pi\)
−0.812396 + 0.583106i \(0.801837\pi\)
\(164\) 53.1707 4.15193
\(165\) 0 0
\(166\) −18.9870 −1.47368
\(167\) −9.79965 −0.758320 −0.379160 0.925331i \(-0.623787\pi\)
−0.379160 + 0.925331i \(0.623787\pi\)
\(168\) 0 0
\(169\) −8.06530 −0.620408
\(170\) 26.4775 2.03073
\(171\) 0 0
\(172\) 54.5945 4.16280
\(173\) 20.1246 1.53005 0.765023 0.644003i \(-0.222728\pi\)
0.765023 + 0.644003i \(0.222728\pi\)
\(174\) 0 0
\(175\) 1.21902 0.0921494
\(176\) −21.7038 −1.63598
\(177\) 0 0
\(178\) −12.8071 −0.959936
\(179\) 24.5921 1.83810 0.919049 0.394143i \(-0.128958\pi\)
0.919049 + 0.394143i \(0.128958\pi\)
\(180\) 0 0
\(181\) 19.4105 1.44277 0.721384 0.692535i \(-0.243506\pi\)
0.721384 + 0.692535i \(0.243506\pi\)
\(182\) 5.22512 0.387312
\(183\) 0 0
\(184\) 66.2793 4.88617
\(185\) −10.1885 −0.749077
\(186\) 0 0
\(187\) 4.72471 0.345505
\(188\) 16.0989 1.17413
\(189\) 0 0
\(190\) 20.8304 1.51120
\(191\) 0.923161 0.0667976 0.0333988 0.999442i \(-0.489367\pi\)
0.0333988 + 0.999442i \(0.489367\pi\)
\(192\) 0 0
\(193\) 9.74495 0.701457 0.350729 0.936477i \(-0.385934\pi\)
0.350729 + 0.936477i \(0.385934\pi\)
\(194\) 12.8341 0.921438
\(195\) 0 0
\(196\) −35.9225 −2.56589
\(197\) 7.47012 0.532224 0.266112 0.963942i \(-0.414261\pi\)
0.266112 + 0.963942i \(0.414261\pi\)
\(198\) 0 0
\(199\) 25.9244 1.83773 0.918864 0.394573i \(-0.129108\pi\)
0.918864 + 0.394573i \(0.129108\pi\)
\(200\) −14.8677 −1.05131
\(201\) 0 0
\(202\) −25.3185 −1.78140
\(203\) 0 0
\(204\) 0 0
\(205\) 23.6000 1.64830
\(206\) 40.0195 2.78829
\(207\) 0 0
\(208\) −38.3267 −2.65748
\(209\) 3.71702 0.257112
\(210\) 0 0
\(211\) 19.2611 1.32599 0.662996 0.748623i \(-0.269285\pi\)
0.662996 + 0.748623i \(0.269285\pi\)
\(212\) −22.5717 −1.55023
\(213\) 0 0
\(214\) −5.09333 −0.348173
\(215\) 24.2320 1.65261
\(216\) 0 0
\(217\) 0.487648 0.0331037
\(218\) −39.8524 −2.69914
\(219\) 0 0
\(220\) −18.2512 −1.23050
\(221\) 8.34335 0.561235
\(222\) 0 0
\(223\) −0.788104 −0.0527753 −0.0263877 0.999652i \(-0.508400\pi\)
−0.0263877 + 0.999652i \(0.508400\pi\)
\(224\) −23.0948 −1.54309
\(225\) 0 0
\(226\) −32.7229 −2.17669
\(227\) 18.8209 1.24919 0.624595 0.780949i \(-0.285264\pi\)
0.624595 + 0.780949i \(0.285264\pi\)
\(228\) 0 0
\(229\) 26.9061 1.77800 0.889002 0.457903i \(-0.151399\pi\)
0.889002 + 0.457903i \(0.151399\pi\)
\(230\) 45.2459 2.98343
\(231\) 0 0
\(232\) 0 0
\(233\) 13.1181 0.859393 0.429696 0.902973i \(-0.358621\pi\)
0.429696 + 0.902973i \(0.358621\pi\)
\(234\) 0 0
\(235\) 7.14557 0.466126
\(236\) −12.8390 −0.835749
\(237\) 0 0
\(238\) 8.83439 0.572648
\(239\) −4.04911 −0.261915 −0.130958 0.991388i \(-0.541805\pi\)
−0.130958 + 0.991388i \(0.541805\pi\)
\(240\) 0 0
\(241\) 4.02740 0.259428 0.129714 0.991551i \(-0.458594\pi\)
0.129714 + 0.991551i \(0.458594\pi\)
\(242\) 26.1621 1.68176
\(243\) 0 0
\(244\) −27.2494 −1.74446
\(245\) −15.9444 −1.01865
\(246\) 0 0
\(247\) 6.56389 0.417650
\(248\) −5.94756 −0.377671
\(249\) 0 0
\(250\) 25.0987 1.58738
\(251\) −30.3241 −1.91404 −0.957019 0.290027i \(-0.906336\pi\)
−0.957019 + 0.290027i \(0.906336\pi\)
\(252\) 0 0
\(253\) 8.07378 0.507594
\(254\) −33.4174 −2.09680
\(255\) 0 0
\(256\) 84.3892 5.27433
\(257\) 8.14701 0.508196 0.254098 0.967178i \(-0.418221\pi\)
0.254098 + 0.967178i \(0.418221\pi\)
\(258\) 0 0
\(259\) −3.39947 −0.211233
\(260\) −32.2298 −1.99881
\(261\) 0 0
\(262\) −6.62243 −0.409135
\(263\) 5.67062 0.349666 0.174833 0.984598i \(-0.444062\pi\)
0.174833 + 0.984598i \(0.444062\pi\)
\(264\) 0 0
\(265\) −10.0185 −0.615433
\(266\) 6.95019 0.426144
\(267\) 0 0
\(268\) −0.823186 −0.0502841
\(269\) −20.5529 −1.25313 −0.626565 0.779369i \(-0.715540\pi\)
−0.626565 + 0.779369i \(0.715540\pi\)
\(270\) 0 0
\(271\) 9.59174 0.582657 0.291328 0.956623i \(-0.405903\pi\)
0.291328 + 0.956623i \(0.405903\pi\)
\(272\) −64.8009 −3.92913
\(273\) 0 0
\(274\) −37.6980 −2.27742
\(275\) −1.81110 −0.109214
\(276\) 0 0
\(277\) −25.8418 −1.55269 −0.776343 0.630311i \(-0.782928\pi\)
−0.776343 + 0.630311i \(0.782928\pi\)
\(278\) −55.5105 −3.32930
\(279\) 0 0
\(280\) −22.1887 −1.32603
\(281\) 18.3009 1.09174 0.545870 0.837870i \(-0.316199\pi\)
0.545870 + 0.837870i \(0.316199\pi\)
\(282\) 0 0
\(283\) −13.8005 −0.820355 −0.410177 0.912006i \(-0.634533\pi\)
−0.410177 + 0.912006i \(0.634533\pi\)
\(284\) 29.2661 1.73663
\(285\) 0 0
\(286\) −7.76298 −0.459035
\(287\) 7.87429 0.464805
\(288\) 0 0
\(289\) −2.89345 −0.170203
\(290\) 0 0
\(291\) 0 0
\(292\) 7.88929 0.461686
\(293\) 13.2248 0.772600 0.386300 0.922373i \(-0.373753\pi\)
0.386300 + 0.922373i \(0.373753\pi\)
\(294\) 0 0
\(295\) −5.69865 −0.331788
\(296\) 41.4614 2.40989
\(297\) 0 0
\(298\) −44.8197 −2.59634
\(299\) 14.2575 0.824531
\(300\) 0 0
\(301\) 8.08515 0.466020
\(302\) −7.78241 −0.447828
\(303\) 0 0
\(304\) −50.9802 −2.92391
\(305\) −12.0948 −0.692544
\(306\) 0 0
\(307\) 23.3280 1.33140 0.665698 0.746221i \(-0.268134\pi\)
0.665698 + 0.746221i \(0.268134\pi\)
\(308\) −6.08962 −0.346989
\(309\) 0 0
\(310\) −4.06014 −0.230601
\(311\) 5.68433 0.322329 0.161164 0.986928i \(-0.448475\pi\)
0.161164 + 0.986928i \(0.448475\pi\)
\(312\) 0 0
\(313\) 3.99178 0.225629 0.112814 0.993616i \(-0.464013\pi\)
0.112814 + 0.993616i \(0.464013\pi\)
\(314\) −23.6029 −1.33199
\(315\) 0 0
\(316\) 1.54004 0.0866337
\(317\) −12.2855 −0.690020 −0.345010 0.938599i \(-0.612125\pi\)
−0.345010 + 0.938599i \(0.612125\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 104.721 5.85408
\(321\) 0 0
\(322\) 15.0966 0.841300
\(323\) 11.0979 0.617504
\(324\) 0 0
\(325\) −3.19823 −0.177406
\(326\) 57.6269 3.19166
\(327\) 0 0
\(328\) −96.0382 −5.30282
\(329\) 2.38416 0.131443
\(330\) 0 0
\(331\) −15.4931 −0.851579 −0.425790 0.904822i \(-0.640004\pi\)
−0.425790 + 0.904822i \(0.640004\pi\)
\(332\) 39.0766 2.14461
\(333\) 0 0
\(334\) 27.2235 1.48960
\(335\) −0.365374 −0.0199625
\(336\) 0 0
\(337\) −0.0322530 −0.00175693 −0.000878465 1.00000i \(-0.500280\pi\)
−0.000878465 1.00000i \(0.500280\pi\)
\(338\) 22.4055 1.21870
\(339\) 0 0
\(340\) −54.4926 −2.95528
\(341\) −0.724500 −0.0392339
\(342\) 0 0
\(343\) −11.2469 −0.607274
\(344\) −98.6100 −5.31669
\(345\) 0 0
\(346\) −55.9063 −3.00554
\(347\) 4.44819 0.238791 0.119396 0.992847i \(-0.461904\pi\)
0.119396 + 0.992847i \(0.461904\pi\)
\(348\) 0 0
\(349\) −17.0567 −0.913024 −0.456512 0.889717i \(-0.650901\pi\)
−0.456512 + 0.889717i \(0.650901\pi\)
\(350\) −3.38646 −0.181014
\(351\) 0 0
\(352\) 34.3120 1.82884
\(353\) 8.76371 0.466445 0.233222 0.972423i \(-0.425073\pi\)
0.233222 + 0.972423i \(0.425073\pi\)
\(354\) 0 0
\(355\) 12.9899 0.689432
\(356\) 26.3580 1.39697
\(357\) 0 0
\(358\) −68.3170 −3.61067
\(359\) −2.25261 −0.118888 −0.0594441 0.998232i \(-0.518933\pi\)
−0.0594441 + 0.998232i \(0.518933\pi\)
\(360\) 0 0
\(361\) −10.2691 −0.540476
\(362\) −53.9224 −2.83410
\(363\) 0 0
\(364\) −10.7537 −0.563645
\(365\) 3.50169 0.183287
\(366\) 0 0
\(367\) 8.93678 0.466496 0.233248 0.972417i \(-0.425065\pi\)
0.233248 + 0.972417i \(0.425065\pi\)
\(368\) −110.735 −5.77244
\(369\) 0 0
\(370\) 28.3039 1.47145
\(371\) −3.34274 −0.173547
\(372\) 0 0
\(373\) −4.78101 −0.247551 −0.123776 0.992310i \(-0.539500\pi\)
−0.123776 + 0.992310i \(0.539500\pi\)
\(374\) −13.1253 −0.678692
\(375\) 0 0
\(376\) −29.0783 −1.49960
\(377\) 0 0
\(378\) 0 0
\(379\) 34.2900 1.76136 0.880681 0.473711i \(-0.157086\pi\)
0.880681 + 0.473711i \(0.157086\pi\)
\(380\) −42.8704 −2.19921
\(381\) 0 0
\(382\) −2.56455 −0.131214
\(383\) −23.8006 −1.21615 −0.608076 0.793879i \(-0.708058\pi\)
−0.608076 + 0.793879i \(0.708058\pi\)
\(384\) 0 0
\(385\) −2.70290 −0.137753
\(386\) −27.0716 −1.37791
\(387\) 0 0
\(388\) −26.4136 −1.34095
\(389\) −18.5239 −0.939198 −0.469599 0.882880i \(-0.655601\pi\)
−0.469599 + 0.882880i \(0.655601\pi\)
\(390\) 0 0
\(391\) 24.1059 1.21909
\(392\) 64.8841 3.27714
\(393\) 0 0
\(394\) −20.7521 −1.04547
\(395\) 0.683551 0.0343932
\(396\) 0 0
\(397\) −10.8488 −0.544485 −0.272242 0.962229i \(-0.587765\pi\)
−0.272242 + 0.962229i \(0.587765\pi\)
\(398\) −72.0181 −3.60994
\(399\) 0 0
\(400\) 24.8399 1.24199
\(401\) −28.7000 −1.43321 −0.716604 0.697480i \(-0.754305\pi\)
−0.716604 + 0.697480i \(0.754305\pi\)
\(402\) 0 0
\(403\) −1.27939 −0.0637311
\(404\) 52.1072 2.59243
\(405\) 0 0
\(406\) 0 0
\(407\) 5.05060 0.250349
\(408\) 0 0
\(409\) −25.1951 −1.24582 −0.622910 0.782294i \(-0.714050\pi\)
−0.622910 + 0.782294i \(0.714050\pi\)
\(410\) −65.5611 −3.23783
\(411\) 0 0
\(412\) −82.3629 −4.05773
\(413\) −1.90139 −0.0935612
\(414\) 0 0
\(415\) 17.3443 0.851399
\(416\) 60.5916 2.97075
\(417\) 0 0
\(418\) −10.3259 −0.505057
\(419\) −12.9466 −0.632482 −0.316241 0.948679i \(-0.602421\pi\)
−0.316241 + 0.948679i \(0.602421\pi\)
\(420\) 0 0
\(421\) 19.5788 0.954213 0.477107 0.878845i \(-0.341686\pi\)
0.477107 + 0.878845i \(0.341686\pi\)
\(422\) −53.5076 −2.60471
\(423\) 0 0
\(424\) 40.7695 1.97994
\(425\) −5.40741 −0.262298
\(426\) 0 0
\(427\) −4.03549 −0.195291
\(428\) 10.4824 0.506688
\(429\) 0 0
\(430\) −67.3167 −3.24630
\(431\) 3.60547 0.173669 0.0868346 0.996223i \(-0.472325\pi\)
0.0868346 + 0.996223i \(0.472325\pi\)
\(432\) 0 0
\(433\) −4.80667 −0.230994 −0.115497 0.993308i \(-0.536846\pi\)
−0.115497 + 0.993308i \(0.536846\pi\)
\(434\) −1.35469 −0.0650272
\(435\) 0 0
\(436\) 82.0190 3.92800
\(437\) 18.9646 0.907199
\(438\) 0 0
\(439\) 7.54657 0.360178 0.180089 0.983650i \(-0.442361\pi\)
0.180089 + 0.983650i \(0.442361\pi\)
\(440\) 32.9658 1.57158
\(441\) 0 0
\(442\) −23.1779 −1.10246
\(443\) −22.8176 −1.08410 −0.542050 0.840347i \(-0.682352\pi\)
−0.542050 + 0.840347i \(0.682352\pi\)
\(444\) 0 0
\(445\) 11.6991 0.554590
\(446\) 2.18936 0.103669
\(447\) 0 0
\(448\) 34.9408 1.65080
\(449\) 13.0855 0.617544 0.308772 0.951136i \(-0.400082\pi\)
0.308772 + 0.951136i \(0.400082\pi\)
\(450\) 0 0
\(451\) −11.6989 −0.550877
\(452\) 67.3459 3.16768
\(453\) 0 0
\(454\) −52.2847 −2.45384
\(455\) −4.77306 −0.223764
\(456\) 0 0
\(457\) −31.3399 −1.46602 −0.733009 0.680218i \(-0.761885\pi\)
−0.733009 + 0.680218i \(0.761885\pi\)
\(458\) −74.7453 −3.49262
\(459\) 0 0
\(460\) −93.1193 −4.34171
\(461\) −38.1212 −1.77548 −0.887740 0.460346i \(-0.847725\pi\)
−0.887740 + 0.460346i \(0.847725\pi\)
\(462\) 0 0
\(463\) 39.1593 1.81989 0.909944 0.414732i \(-0.136125\pi\)
0.909944 + 0.414732i \(0.136125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −36.4421 −1.68815
\(467\) −14.0227 −0.648891 −0.324445 0.945904i \(-0.605178\pi\)
−0.324445 + 0.945904i \(0.605178\pi\)
\(468\) 0 0
\(469\) −0.121909 −0.00562925
\(470\) −19.8505 −0.915633
\(471\) 0 0
\(472\) 23.1902 1.06741
\(473\) −12.0121 −0.552318
\(474\) 0 0
\(475\) −4.25412 −0.195192
\(476\) −18.1818 −0.833361
\(477\) 0 0
\(478\) 11.2485 0.514493
\(479\) 41.8152 1.91059 0.955294 0.295659i \(-0.0955391\pi\)
0.955294 + 0.295659i \(0.0955391\pi\)
\(480\) 0 0
\(481\) 8.91885 0.406665
\(482\) −11.1882 −0.509607
\(483\) 0 0
\(484\) −53.8433 −2.44742
\(485\) −11.7238 −0.532349
\(486\) 0 0
\(487\) 14.1076 0.639277 0.319639 0.947540i \(-0.396438\pi\)
0.319639 + 0.947540i \(0.396438\pi\)
\(488\) 49.2185 2.22802
\(489\) 0 0
\(490\) 44.2936 2.00098
\(491\) −26.5746 −1.19929 −0.599647 0.800265i \(-0.704692\pi\)
−0.599647 + 0.800265i \(0.704692\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −18.2345 −0.820411
\(495\) 0 0
\(496\) 9.93675 0.446173
\(497\) 4.33415 0.194413
\(498\) 0 0
\(499\) 19.1146 0.855687 0.427844 0.903853i \(-0.359273\pi\)
0.427844 + 0.903853i \(0.359273\pi\)
\(500\) −51.6548 −2.31007
\(501\) 0 0
\(502\) 84.2405 3.75984
\(503\) −16.1585 −0.720471 −0.360235 0.932861i \(-0.617304\pi\)
−0.360235 + 0.932861i \(0.617304\pi\)
\(504\) 0 0
\(505\) 23.1280 1.02918
\(506\) −22.4290 −0.997092
\(507\) 0 0
\(508\) 68.7754 3.05141
\(509\) 25.1057 1.11279 0.556394 0.830918i \(-0.312184\pi\)
0.556394 + 0.830918i \(0.312184\pi\)
\(510\) 0 0
\(511\) 1.16836 0.0516852
\(512\) −114.260 −5.04961
\(513\) 0 0
\(514\) −22.6325 −0.998275
\(515\) −36.5571 −1.61090
\(516\) 0 0
\(517\) −3.54215 −0.155784
\(518\) 9.44375 0.414935
\(519\) 0 0
\(520\) 58.2142 2.55286
\(521\) −2.82291 −0.123674 −0.0618370 0.998086i \(-0.519696\pi\)
−0.0618370 + 0.998086i \(0.519696\pi\)
\(522\) 0 0
\(523\) 30.2113 1.32105 0.660523 0.750805i \(-0.270334\pi\)
0.660523 + 0.750805i \(0.270334\pi\)
\(524\) 13.6294 0.595404
\(525\) 0 0
\(526\) −15.7530 −0.686865
\(527\) −2.16314 −0.0942278
\(528\) 0 0
\(529\) 18.1931 0.791006
\(530\) 27.8316 1.20893
\(531\) 0 0
\(532\) −14.3040 −0.620156
\(533\) −20.6590 −0.894840
\(534\) 0 0
\(535\) 4.65267 0.201152
\(536\) 1.48686 0.0642225
\(537\) 0 0
\(538\) 57.0961 2.46159
\(539\) 7.90383 0.340442
\(540\) 0 0
\(541\) 13.4843 0.579736 0.289868 0.957067i \(-0.406389\pi\)
0.289868 + 0.957067i \(0.406389\pi\)
\(542\) −26.6459 −1.14454
\(543\) 0 0
\(544\) 102.445 4.39231
\(545\) 36.4044 1.55940
\(546\) 0 0
\(547\) 23.3404 0.997962 0.498981 0.866613i \(-0.333708\pi\)
0.498981 + 0.866613i \(0.333708\pi\)
\(548\) 77.5852 3.31427
\(549\) 0 0
\(550\) 5.03126 0.214534
\(551\) 0 0
\(552\) 0 0
\(553\) 0.228071 0.00969855
\(554\) 71.7889 3.05002
\(555\) 0 0
\(556\) 114.244 4.84504
\(557\) −3.33567 −0.141337 −0.0706685 0.997500i \(-0.522513\pi\)
−0.0706685 + 0.997500i \(0.522513\pi\)
\(558\) 0 0
\(559\) −21.2122 −0.897181
\(560\) 37.0712 1.56654
\(561\) 0 0
\(562\) −50.8401 −2.14456
\(563\) −7.82895 −0.329951 −0.164976 0.986298i \(-0.552755\pi\)
−0.164976 + 0.986298i \(0.552755\pi\)
\(564\) 0 0
\(565\) 29.8917 1.25755
\(566\) 38.3379 1.61146
\(567\) 0 0
\(568\) −52.8612 −2.21801
\(569\) −0.170857 −0.00716268 −0.00358134 0.999994i \(-0.501140\pi\)
−0.00358134 + 0.999994i \(0.501140\pi\)
\(570\) 0 0
\(571\) 26.7532 1.11959 0.559793 0.828633i \(-0.310881\pi\)
0.559793 + 0.828633i \(0.310881\pi\)
\(572\) 15.9767 0.668021
\(573\) 0 0
\(574\) −21.8748 −0.913039
\(575\) −9.24042 −0.385352
\(576\) 0 0
\(577\) −39.1710 −1.63071 −0.815356 0.578960i \(-0.803459\pi\)
−0.815356 + 0.578960i \(0.803459\pi\)
\(578\) 8.03804 0.334338
\(579\) 0 0
\(580\) 0 0
\(581\) 5.78703 0.240087
\(582\) 0 0
\(583\) 4.96632 0.205684
\(584\) −14.2498 −0.589662
\(585\) 0 0
\(586\) −36.7386 −1.51766
\(587\) 2.09173 0.0863350 0.0431675 0.999068i \(-0.486255\pi\)
0.0431675 + 0.999068i \(0.486255\pi\)
\(588\) 0 0
\(589\) −1.70178 −0.0701208
\(590\) 15.8309 0.651748
\(591\) 0 0
\(592\) −69.2706 −2.84701
\(593\) −21.6103 −0.887431 −0.443715 0.896168i \(-0.646340\pi\)
−0.443715 + 0.896168i \(0.646340\pi\)
\(594\) 0 0
\(595\) −8.07006 −0.330840
\(596\) 92.2421 3.77838
\(597\) 0 0
\(598\) −39.6074 −1.61967
\(599\) 9.93168 0.405798 0.202899 0.979200i \(-0.434964\pi\)
0.202899 + 0.979200i \(0.434964\pi\)
\(600\) 0 0
\(601\) 15.5063 0.632515 0.316258 0.948673i \(-0.397574\pi\)
0.316258 + 0.948673i \(0.397574\pi\)
\(602\) −22.4606 −0.915427
\(603\) 0 0
\(604\) 16.0167 0.651712
\(605\) −23.8986 −0.971615
\(606\) 0 0
\(607\) 0.403185 0.0163648 0.00818240 0.999967i \(-0.497395\pi\)
0.00818240 + 0.999967i \(0.497395\pi\)
\(608\) 80.5959 3.26859
\(609\) 0 0
\(610\) 33.5993 1.36040
\(611\) −6.25509 −0.253054
\(612\) 0 0
\(613\) −14.7943 −0.597535 −0.298768 0.954326i \(-0.596576\pi\)
−0.298768 + 0.954326i \(0.596576\pi\)
\(614\) −64.8053 −2.61533
\(615\) 0 0
\(616\) 10.9992 0.443171
\(617\) −0.597950 −0.0240726 −0.0120363 0.999928i \(-0.503831\pi\)
−0.0120363 + 0.999928i \(0.503831\pi\)
\(618\) 0 0
\(619\) 5.29901 0.212985 0.106493 0.994313i \(-0.466038\pi\)
0.106493 + 0.994313i \(0.466038\pi\)
\(620\) 8.35605 0.335587
\(621\) 0 0
\(622\) −15.7911 −0.633166
\(623\) 3.90347 0.156389
\(624\) 0 0
\(625\) −30.1258 −1.20503
\(626\) −11.0892 −0.443214
\(627\) 0 0
\(628\) 48.5763 1.93841
\(629\) 15.0796 0.601262
\(630\) 0 0
\(631\) −26.5484 −1.05687 −0.528437 0.848972i \(-0.677222\pi\)
−0.528437 + 0.848972i \(0.677222\pi\)
\(632\) −2.78165 −0.110648
\(633\) 0 0
\(634\) 34.1291 1.35544
\(635\) 30.5262 1.21140
\(636\) 0 0
\(637\) 13.9574 0.553011
\(638\) 0 0
\(639\) 0 0
\(640\) −152.481 −6.02733
\(641\) −5.25020 −0.207370 −0.103685 0.994610i \(-0.533063\pi\)
−0.103685 + 0.994610i \(0.533063\pi\)
\(642\) 0 0
\(643\) 17.9092 0.706270 0.353135 0.935572i \(-0.385116\pi\)
0.353135 + 0.935572i \(0.385116\pi\)
\(644\) −31.0698 −1.22432
\(645\) 0 0
\(646\) −30.8301 −1.21299
\(647\) 35.0126 1.37649 0.688244 0.725479i \(-0.258382\pi\)
0.688244 + 0.725479i \(0.258382\pi\)
\(648\) 0 0
\(649\) 2.82490 0.110887
\(650\) 8.88471 0.348487
\(651\) 0 0
\(652\) −118.600 −4.64474
\(653\) −18.5363 −0.725381 −0.362691 0.931910i \(-0.618142\pi\)
−0.362691 + 0.931910i \(0.618142\pi\)
\(654\) 0 0
\(655\) 6.04947 0.236372
\(656\) 160.454 6.26466
\(657\) 0 0
\(658\) −6.62322 −0.258200
\(659\) 1.30699 0.0509132 0.0254566 0.999676i \(-0.491896\pi\)
0.0254566 + 0.999676i \(0.491896\pi\)
\(660\) 0 0
\(661\) 34.1343 1.32767 0.663836 0.747878i \(-0.268927\pi\)
0.663836 + 0.747878i \(0.268927\pi\)
\(662\) 43.0401 1.67280
\(663\) 0 0
\(664\) −70.5811 −2.73908
\(665\) −6.34888 −0.246199
\(666\) 0 0
\(667\) 0 0
\(668\) −56.0279 −2.16778
\(669\) 0 0
\(670\) 1.01501 0.0392134
\(671\) 5.99553 0.231455
\(672\) 0 0
\(673\) −19.0077 −0.732693 −0.366347 0.930478i \(-0.619392\pi\)
−0.366347 + 0.930478i \(0.619392\pi\)
\(674\) 0.0895990 0.00345122
\(675\) 0 0
\(676\) −46.1120 −1.77354
\(677\) −23.6929 −0.910593 −0.455297 0.890340i \(-0.650467\pi\)
−0.455297 + 0.890340i \(0.650467\pi\)
\(678\) 0 0
\(679\) −3.91170 −0.150117
\(680\) 98.4259 3.77446
\(681\) 0 0
\(682\) 2.01267 0.0770690
\(683\) −14.5206 −0.555614 −0.277807 0.960637i \(-0.589608\pi\)
−0.277807 + 0.960637i \(0.589608\pi\)
\(684\) 0 0
\(685\) 34.4365 1.31575
\(686\) 31.2439 1.19290
\(687\) 0 0
\(688\) 164.750 6.28105
\(689\) 8.77002 0.334111
\(690\) 0 0
\(691\) −12.5999 −0.479322 −0.239661 0.970857i \(-0.577036\pi\)
−0.239661 + 0.970857i \(0.577036\pi\)
\(692\) 115.059 4.37389
\(693\) 0 0
\(694\) −12.3571 −0.469069
\(695\) 50.7078 1.92346
\(696\) 0 0
\(697\) −34.9292 −1.32304
\(698\) 47.3836 1.79350
\(699\) 0 0
\(700\) 6.96956 0.263425
\(701\) −36.3398 −1.37254 −0.686268 0.727349i \(-0.740752\pi\)
−0.686268 + 0.727349i \(0.740752\pi\)
\(702\) 0 0
\(703\) 11.8634 0.447437
\(704\) −51.9116 −1.95649
\(705\) 0 0
\(706\) −24.3457 −0.916261
\(707\) 7.71679 0.290220
\(708\) 0 0
\(709\) −20.1461 −0.756602 −0.378301 0.925683i \(-0.623492\pi\)
−0.378301 + 0.925683i \(0.623492\pi\)
\(710\) −36.0860 −1.35428
\(711\) 0 0
\(712\) −47.6084 −1.78420
\(713\) −3.69646 −0.138434
\(714\) 0 0
\(715\) 7.09134 0.265201
\(716\) 140.601 5.25451
\(717\) 0 0
\(718\) 6.25777 0.233538
\(719\) 19.5168 0.727853 0.363926 0.931428i \(-0.381436\pi\)
0.363926 + 0.931428i \(0.381436\pi\)
\(720\) 0 0
\(721\) −12.1975 −0.454259
\(722\) 28.5275 1.06168
\(723\) 0 0
\(724\) 110.976 4.12439
\(725\) 0 0
\(726\) 0 0
\(727\) −0.984358 −0.0365078 −0.0182539 0.999833i \(-0.505811\pi\)
−0.0182539 + 0.999833i \(0.505811\pi\)
\(728\) 19.4235 0.719884
\(729\) 0 0
\(730\) −9.72773 −0.360040
\(731\) −35.8646 −1.32650
\(732\) 0 0
\(733\) −32.9945 −1.21868 −0.609340 0.792909i \(-0.708565\pi\)
−0.609340 + 0.792909i \(0.708565\pi\)
\(734\) −24.8265 −0.916361
\(735\) 0 0
\(736\) 175.063 6.45291
\(737\) 0.181121 0.00667167
\(738\) 0 0
\(739\) 21.7629 0.800560 0.400280 0.916393i \(-0.368913\pi\)
0.400280 + 0.916393i \(0.368913\pi\)
\(740\) −58.2513 −2.14136
\(741\) 0 0
\(742\) 9.28617 0.340906
\(743\) 17.1512 0.629216 0.314608 0.949222i \(-0.398127\pi\)
0.314608 + 0.949222i \(0.398127\pi\)
\(744\) 0 0
\(745\) 40.9420 1.50000
\(746\) 13.2817 0.486277
\(747\) 0 0
\(748\) 27.0127 0.987683
\(749\) 1.55239 0.0567231
\(750\) 0 0
\(751\) 37.6068 1.37229 0.686146 0.727464i \(-0.259301\pi\)
0.686146 + 0.727464i \(0.259301\pi\)
\(752\) 48.5818 1.77160
\(753\) 0 0
\(754\) 0 0
\(755\) 7.10910 0.258726
\(756\) 0 0
\(757\) 24.7412 0.899235 0.449617 0.893221i \(-0.351560\pi\)
0.449617 + 0.893221i \(0.351560\pi\)
\(758\) −95.2581 −3.45993
\(759\) 0 0
\(760\) 77.4336 2.80881
\(761\) 23.6385 0.856895 0.428448 0.903567i \(-0.359061\pi\)
0.428448 + 0.903567i \(0.359061\pi\)
\(762\) 0 0
\(763\) 12.1466 0.439735
\(764\) 5.27802 0.190952
\(765\) 0 0
\(766\) 66.1182 2.38895
\(767\) 4.98849 0.180124
\(768\) 0 0
\(769\) −2.07725 −0.0749074 −0.0374537 0.999298i \(-0.511925\pi\)
−0.0374537 + 0.999298i \(0.511925\pi\)
\(770\) 7.50869 0.270594
\(771\) 0 0
\(772\) 55.7151 2.00523
\(773\) −12.9678 −0.466419 −0.233209 0.972427i \(-0.574923\pi\)
−0.233209 + 0.972427i \(0.574923\pi\)
\(774\) 0 0
\(775\) 0.829188 0.0297853
\(776\) 47.7088 1.71265
\(777\) 0 0
\(778\) 51.4595 1.84491
\(779\) −27.4795 −0.984557
\(780\) 0 0
\(781\) −6.43926 −0.230415
\(782\) −66.9663 −2.39471
\(783\) 0 0
\(784\) −108.404 −3.87156
\(785\) 21.5608 0.769537
\(786\) 0 0
\(787\) −6.87306 −0.244998 −0.122499 0.992469i \(-0.539091\pi\)
−0.122499 + 0.992469i \(0.539091\pi\)
\(788\) 42.7092 1.52145
\(789\) 0 0
\(790\) −1.89891 −0.0675602
\(791\) 9.97356 0.354619
\(792\) 0 0
\(793\) 10.5875 0.375974
\(794\) 30.1380 1.06956
\(795\) 0 0
\(796\) 148.218 5.25346
\(797\) 13.4431 0.476179 0.238090 0.971243i \(-0.423479\pi\)
0.238090 + 0.971243i \(0.423479\pi\)
\(798\) 0 0
\(799\) −10.5758 −0.374145
\(800\) −39.2700 −1.38840
\(801\) 0 0
\(802\) 79.7288 2.81532
\(803\) −1.73584 −0.0612563
\(804\) 0 0
\(805\) −13.7905 −0.486050
\(806\) 3.55417 0.125190
\(807\) 0 0
\(808\) −94.1173 −3.31104
\(809\) −35.8188 −1.25932 −0.629661 0.776870i \(-0.716806\pi\)
−0.629661 + 0.776870i \(0.716806\pi\)
\(810\) 0 0
\(811\) −42.0554 −1.47677 −0.738383 0.674382i \(-0.764410\pi\)
−0.738383 + 0.674382i \(0.764410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −14.0306 −0.491773
\(815\) −52.6412 −1.84394
\(816\) 0 0
\(817\) −28.2154 −0.987132
\(818\) 69.9923 2.44722
\(819\) 0 0
\(820\) 134.929 4.71193
\(821\) 18.7528 0.654476 0.327238 0.944942i \(-0.393882\pi\)
0.327238 + 0.944942i \(0.393882\pi\)
\(822\) 0 0
\(823\) −19.9500 −0.695414 −0.347707 0.937603i \(-0.613040\pi\)
−0.347707 + 0.937603i \(0.613040\pi\)
\(824\) 148.766 5.18251
\(825\) 0 0
\(826\) 5.28208 0.183787
\(827\) −14.8030 −0.514752 −0.257376 0.966311i \(-0.582858\pi\)
−0.257376 + 0.966311i \(0.582858\pi\)
\(828\) 0 0
\(829\) −33.7345 −1.17165 −0.585824 0.810438i \(-0.699229\pi\)
−0.585824 + 0.810438i \(0.699229\pi\)
\(830\) −48.1826 −1.67244
\(831\) 0 0
\(832\) −91.6707 −3.17811
\(833\) 23.5985 0.817638
\(834\) 0 0
\(835\) −24.8682 −0.860599
\(836\) 21.2515 0.734997
\(837\) 0 0
\(838\) 35.9657 1.24242
\(839\) −18.8511 −0.650813 −0.325407 0.945574i \(-0.605501\pi\)
−0.325407 + 0.945574i \(0.605501\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −54.3901 −1.87441
\(843\) 0 0
\(844\) 110.122 3.79057
\(845\) −20.4670 −0.704086
\(846\) 0 0
\(847\) −7.97390 −0.273986
\(848\) −68.1147 −2.33907
\(849\) 0 0
\(850\) 15.0218 0.515245
\(851\) 25.7686 0.883336
\(852\) 0 0
\(853\) 50.4469 1.72727 0.863634 0.504119i \(-0.168183\pi\)
0.863634 + 0.504119i \(0.168183\pi\)
\(854\) 11.2106 0.383620
\(855\) 0 0
\(856\) −18.9336 −0.647138
\(857\) −56.8554 −1.94214 −0.971072 0.238787i \(-0.923250\pi\)
−0.971072 + 0.238787i \(0.923250\pi\)
\(858\) 0 0
\(859\) −17.5756 −0.599673 −0.299837 0.953991i \(-0.596932\pi\)
−0.299837 + 0.953991i \(0.596932\pi\)
\(860\) 138.542 4.72426
\(861\) 0 0
\(862\) −10.0160 −0.341147
\(863\) 31.3953 1.06871 0.534354 0.845261i \(-0.320555\pi\)
0.534354 + 0.845261i \(0.320555\pi\)
\(864\) 0 0
\(865\) 51.0694 1.73641
\(866\) 13.3530 0.453753
\(867\) 0 0
\(868\) 2.78805 0.0946325
\(869\) −0.338845 −0.0114945
\(870\) 0 0
\(871\) 0.319841 0.0108374
\(872\) −148.145 −5.01681
\(873\) 0 0
\(874\) −52.6838 −1.78206
\(875\) −7.64980 −0.258610
\(876\) 0 0
\(877\) 29.1626 0.984750 0.492375 0.870383i \(-0.336129\pi\)
0.492375 + 0.870383i \(0.336129\pi\)
\(878\) −20.9644 −0.707515
\(879\) 0 0
\(880\) −55.0768 −1.85664
\(881\) 6.19983 0.208878 0.104439 0.994531i \(-0.466695\pi\)
0.104439 + 0.994531i \(0.466695\pi\)
\(882\) 0 0
\(883\) −52.2570 −1.75859 −0.879293 0.476280i \(-0.841985\pi\)
−0.879293 + 0.476280i \(0.841985\pi\)
\(884\) 47.7017 1.60438
\(885\) 0 0
\(886\) 63.3876 2.12955
\(887\) 26.4724 0.888855 0.444428 0.895815i \(-0.353407\pi\)
0.444428 + 0.895815i \(0.353407\pi\)
\(888\) 0 0
\(889\) 10.1853 0.341603
\(890\) −32.5002 −1.08941
\(891\) 0 0
\(892\) −4.50585 −0.150867
\(893\) −8.32020 −0.278425
\(894\) 0 0
\(895\) 62.4064 2.08601
\(896\) −50.8762 −1.69965
\(897\) 0 0
\(898\) −36.3517 −1.21307
\(899\) 0 0
\(900\) 0 0
\(901\) 14.8279 0.493990
\(902\) 32.4995 1.08212
\(903\) 0 0
\(904\) −121.642 −4.04575
\(905\) 49.2572 1.63736
\(906\) 0 0
\(907\) −19.5034 −0.647598 −0.323799 0.946126i \(-0.604960\pi\)
−0.323799 + 0.946126i \(0.604960\pi\)
\(908\) 107.606 3.57102
\(909\) 0 0
\(910\) 13.2596 0.439551
\(911\) −26.8766 −0.890461 −0.445231 0.895416i \(-0.646878\pi\)
−0.445231 + 0.895416i \(0.646878\pi\)
\(912\) 0 0
\(913\) −8.59781 −0.284546
\(914\) 87.0625 2.87977
\(915\) 0 0
\(916\) 153.831 5.08272
\(917\) 2.01844 0.0666549
\(918\) 0 0
\(919\) −23.5501 −0.776847 −0.388424 0.921481i \(-0.626980\pi\)
−0.388424 + 0.921481i \(0.626980\pi\)
\(920\) 168.194 5.54520
\(921\) 0 0
\(922\) 105.901 3.48766
\(923\) −11.3711 −0.374284
\(924\) 0 0
\(925\) −5.78040 −0.190058
\(926\) −108.785 −3.57489
\(927\) 0 0
\(928\) 0 0
\(929\) 26.2377 0.860831 0.430416 0.902631i \(-0.358367\pi\)
0.430416 + 0.902631i \(0.358367\pi\)
\(930\) 0 0
\(931\) 18.5654 0.608456
\(932\) 75.0003 2.45672
\(933\) 0 0
\(934\) 38.9550 1.27465
\(935\) 11.9897 0.392105
\(936\) 0 0
\(937\) 43.7650 1.42974 0.714870 0.699257i \(-0.246486\pi\)
0.714870 + 0.699257i \(0.246486\pi\)
\(938\) 0.338665 0.0110578
\(939\) 0 0
\(940\) 40.8536 1.33250
\(941\) −15.3106 −0.499111 −0.249555 0.968361i \(-0.580284\pi\)
−0.249555 + 0.968361i \(0.580284\pi\)
\(942\) 0 0
\(943\) −59.6886 −1.94373
\(944\) −38.7444 −1.26102
\(945\) 0 0
\(946\) 33.3698 1.08495
\(947\) 12.1417 0.394552 0.197276 0.980348i \(-0.436791\pi\)
0.197276 + 0.980348i \(0.436791\pi\)
\(948\) 0 0
\(949\) −3.06531 −0.0995042
\(950\) 11.8180 0.383426
\(951\) 0 0
\(952\) 32.8404 1.06436
\(953\) 14.2993 0.463199 0.231600 0.972811i \(-0.425604\pi\)
0.231600 + 0.972811i \(0.425604\pi\)
\(954\) 0 0
\(955\) 2.34267 0.0758070
\(956\) −23.1501 −0.748729
\(957\) 0 0
\(958\) −116.163 −3.75306
\(959\) 11.4899 0.371029
\(960\) 0 0
\(961\) −30.6683 −0.989300
\(962\) −24.7766 −0.798831
\(963\) 0 0
\(964\) 23.0260 0.741618
\(965\) 24.7294 0.796067
\(966\) 0 0
\(967\) −12.1295 −0.390059 −0.195029 0.980797i \(-0.562480\pi\)
−0.195029 + 0.980797i \(0.562480\pi\)
\(968\) 97.2531 3.12583
\(969\) 0 0
\(970\) 32.5687 1.04572
\(971\) 52.2721 1.67749 0.838745 0.544524i \(-0.183290\pi\)
0.838745 + 0.544524i \(0.183290\pi\)
\(972\) 0 0
\(973\) 16.9190 0.542397
\(974\) −39.1911 −1.25576
\(975\) 0 0
\(976\) −82.2307 −2.63214
\(977\) −44.6255 −1.42770 −0.713849 0.700300i \(-0.753050\pi\)
−0.713849 + 0.700300i \(0.753050\pi\)
\(978\) 0 0
\(979\) −5.79940 −0.185350
\(980\) −91.1592 −2.91197
\(981\) 0 0
\(982\) 73.8244 2.35583
\(983\) −5.21076 −0.166197 −0.0830987 0.996541i \(-0.526482\pi\)
−0.0830987 + 0.996541i \(0.526482\pi\)
\(984\) 0 0
\(985\) 18.9566 0.604008
\(986\) 0 0
\(987\) 0 0
\(988\) 37.5279 1.19392
\(989\) −61.2870 −1.94881
\(990\) 0 0
\(991\) 38.3071 1.21687 0.608433 0.793606i \(-0.291799\pi\)
0.608433 + 0.793606i \(0.291799\pi\)
\(992\) −15.7093 −0.498770
\(993\) 0 0
\(994\) −12.0403 −0.381896
\(995\) 65.7872 2.08560
\(996\) 0 0
\(997\) 11.4438 0.362428 0.181214 0.983444i \(-0.441997\pi\)
0.181214 + 0.983444i \(0.441997\pi\)
\(998\) −53.1005 −1.68087
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bj.1.1 9
3.2 odd 2 2523.2.a.r.1.9 9
29.7 even 7 261.2.k.c.136.3 18
29.25 even 7 261.2.k.c.190.3 18
29.28 even 2 7569.2.a.bm.1.9 9
87.65 odd 14 87.2.g.a.49.1 yes 18
87.83 odd 14 87.2.g.a.16.1 18
87.86 odd 2 2523.2.a.o.1.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.16.1 18 87.83 odd 14
87.2.g.a.49.1 yes 18 87.65 odd 14
261.2.k.c.136.3 18 29.7 even 7
261.2.k.c.190.3 18 29.25 even 7
2523.2.a.o.1.1 9 87.86 odd 2
2523.2.a.r.1.9 9 3.2 odd 2
7569.2.a.bj.1.1 9 1.1 even 1 trivial
7569.2.a.bm.1.9 9 29.28 even 2