Properties

Label 7569.2.a.bg.1.6
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.14884000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 36x^{4} - 31x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.13370\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.13370 q^{2} -0.714715 q^{4} +0.407162 q^{5} +2.15643 q^{7} -3.07768 q^{8} +0.461601 q^{10} +3.55259 q^{11} -0.0966811 q^{13} +2.44476 q^{14} -2.05975 q^{16} +0.587012 q^{17} -3.61803 q^{19} -0.291004 q^{20} +4.02758 q^{22} -8.26725 q^{23} -4.83422 q^{25} -0.109608 q^{26} -1.54124 q^{28} +1.67779 q^{31} +3.82022 q^{32} +0.665498 q^{34} +0.878017 q^{35} -0.0122881 q^{37} -4.10178 q^{38} -1.25311 q^{40} -9.57247 q^{41} +3.47689 q^{43} -2.53909 q^{44} -9.37262 q^{46} +3.31333 q^{47} -2.34980 q^{49} -5.48057 q^{50} +0.0690994 q^{52} -6.88596 q^{53} +1.44648 q^{55} -6.63682 q^{56} +6.45137 q^{59} -9.67779 q^{61} +1.90211 q^{62} +8.45050 q^{64} -0.0393648 q^{65} +8.02282 q^{67} -0.419546 q^{68} +0.995411 q^{70} +9.30889 q^{71} -9.28647 q^{73} -0.0139310 q^{74} +2.58586 q^{76} +7.66092 q^{77} -11.0410 q^{79} -0.838652 q^{80} -10.8523 q^{82} -12.8784 q^{83} +0.239009 q^{85} +3.94177 q^{86} -10.9337 q^{88} +2.23999 q^{89} -0.208486 q^{91} +5.90873 q^{92} +3.75634 q^{94} -1.47312 q^{95} +5.72809 q^{97} -2.66397 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} + 12 q^{10} + 2 q^{13} - 2 q^{16} - 20 q^{19} - 14 q^{22} + 2 q^{25} - 20 q^{28} - 10 q^{31} - 36 q^{34} - 18 q^{37} + 10 q^{40} - 28 q^{43} - 26 q^{46} + 4 q^{49} + 44 q^{52} - 14 q^{55}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13370 0.801650 0.400825 0.916155i \(-0.368724\pi\)
0.400825 + 0.916155i \(0.368724\pi\)
\(3\) 0 0
\(4\) −0.714715 −0.357358
\(5\) 0.407162 0.182088 0.0910441 0.995847i \(-0.470980\pi\)
0.0910441 + 0.995847i \(0.470980\pi\)
\(6\) 0 0
\(7\) 2.15643 0.815055 0.407528 0.913193i \(-0.366391\pi\)
0.407528 + 0.913193i \(0.366391\pi\)
\(8\) −3.07768 −1.08813
\(9\) 0 0
\(10\) 0.461601 0.145971
\(11\) 3.55259 1.07115 0.535573 0.844489i \(-0.320096\pi\)
0.535573 + 0.844489i \(0.320096\pi\)
\(12\) 0 0
\(13\) −0.0966811 −0.0268145 −0.0134073 0.999910i \(-0.504268\pi\)
−0.0134073 + 0.999910i \(0.504268\pi\)
\(14\) 2.44476 0.653389
\(15\) 0 0
\(16\) −2.05975 −0.514938
\(17\) 0.587012 0.142371 0.0711857 0.997463i \(-0.477322\pi\)
0.0711857 + 0.997463i \(0.477322\pi\)
\(18\) 0 0
\(19\) −3.61803 −0.830034 −0.415017 0.909814i \(-0.636224\pi\)
−0.415017 + 0.909814i \(0.636224\pi\)
\(20\) −0.291004 −0.0650706
\(21\) 0 0
\(22\) 4.02758 0.858683
\(23\) −8.26725 −1.72384 −0.861921 0.507043i \(-0.830739\pi\)
−0.861921 + 0.507043i \(0.830739\pi\)
\(24\) 0 0
\(25\) −4.83422 −0.966844
\(26\) −0.109608 −0.0214958
\(27\) 0 0
\(28\) −1.54124 −0.291266
\(29\) 0 0
\(30\) 0 0
\(31\) 1.67779 0.301339 0.150670 0.988584i \(-0.451857\pi\)
0.150670 + 0.988584i \(0.451857\pi\)
\(32\) 3.82022 0.675325
\(33\) 0 0
\(34\) 0.665498 0.114132
\(35\) 0.878017 0.148412
\(36\) 0 0
\(37\) −0.0122881 −0.00202014 −0.00101007 0.999999i \(-0.500322\pi\)
−0.00101007 + 0.999999i \(0.500322\pi\)
\(38\) −4.10178 −0.665397
\(39\) 0 0
\(40\) −1.25311 −0.198135
\(41\) −9.57247 −1.49497 −0.747484 0.664279i \(-0.768739\pi\)
−0.747484 + 0.664279i \(0.768739\pi\)
\(42\) 0 0
\(43\) 3.47689 0.530221 0.265111 0.964218i \(-0.414591\pi\)
0.265111 + 0.964218i \(0.414591\pi\)
\(44\) −2.53909 −0.382782
\(45\) 0 0
\(46\) −9.37262 −1.38192
\(47\) 3.31333 0.483299 0.241650 0.970364i \(-0.422312\pi\)
0.241650 + 0.970364i \(0.422312\pi\)
\(48\) 0 0
\(49\) −2.34980 −0.335685
\(50\) −5.48057 −0.775070
\(51\) 0 0
\(52\) 0.0690994 0.00958237
\(53\) −6.88596 −0.945859 −0.472929 0.881100i \(-0.656803\pi\)
−0.472929 + 0.881100i \(0.656803\pi\)
\(54\) 0 0
\(55\) 1.44648 0.195043
\(56\) −6.63682 −0.886882
\(57\) 0 0
\(58\) 0 0
\(59\) 6.45137 0.839897 0.419949 0.907548i \(-0.362048\pi\)
0.419949 + 0.907548i \(0.362048\pi\)
\(60\) 0 0
\(61\) −9.67779 −1.23911 −0.619557 0.784952i \(-0.712688\pi\)
−0.619557 + 0.784952i \(0.712688\pi\)
\(62\) 1.90211 0.241569
\(63\) 0 0
\(64\) 8.45050 1.05631
\(65\) −0.0393648 −0.00488261
\(66\) 0 0
\(67\) 8.02282 0.980144 0.490072 0.871682i \(-0.336971\pi\)
0.490072 + 0.871682i \(0.336971\pi\)
\(68\) −0.419546 −0.0508775
\(69\) 0 0
\(70\) 0.995411 0.118974
\(71\) 9.30889 1.10476 0.552381 0.833592i \(-0.313719\pi\)
0.552381 + 0.833592i \(0.313719\pi\)
\(72\) 0 0
\(73\) −9.28647 −1.08690 −0.543450 0.839442i \(-0.682882\pi\)
−0.543450 + 0.839442i \(0.682882\pi\)
\(74\) −0.0139310 −0.00161945
\(75\) 0 0
\(76\) 2.58586 0.296619
\(77\) 7.66092 0.873042
\(78\) 0 0
\(79\) −11.0410 −1.24220 −0.621102 0.783730i \(-0.713315\pi\)
−0.621102 + 0.783730i \(0.713315\pi\)
\(80\) −0.838652 −0.0937641
\(81\) 0 0
\(82\) −10.8523 −1.19844
\(83\) −12.8784 −1.41359 −0.706795 0.707418i \(-0.749860\pi\)
−0.706795 + 0.707418i \(0.749860\pi\)
\(84\) 0 0
\(85\) 0.239009 0.0259241
\(86\) 3.94177 0.425052
\(87\) 0 0
\(88\) −10.9337 −1.16554
\(89\) 2.23999 0.237438 0.118719 0.992928i \(-0.462121\pi\)
0.118719 + 0.992928i \(0.462121\pi\)
\(90\) 0 0
\(91\) −0.208486 −0.0218553
\(92\) 5.90873 0.616028
\(93\) 0 0
\(94\) 3.75634 0.387437
\(95\) −1.47312 −0.151139
\(96\) 0 0
\(97\) 5.72809 0.581599 0.290800 0.956784i \(-0.406079\pi\)
0.290800 + 0.956784i \(0.406079\pi\)
\(98\) −2.66397 −0.269102
\(99\) 0 0
\(100\) 3.45509 0.345509
\(101\) −15.9995 −1.59201 −0.796006 0.605289i \(-0.793058\pi\)
−0.796006 + 0.605289i \(0.793058\pi\)
\(102\) 0 0
\(103\) −11.2267 −1.10620 −0.553101 0.833114i \(-0.686556\pi\)
−0.553101 + 0.833114i \(0.686556\pi\)
\(104\) 0.297554 0.0291776
\(105\) 0 0
\(106\) −7.80664 −0.758248
\(107\) 10.5022 1.01529 0.507645 0.861566i \(-0.330516\pi\)
0.507645 + 0.861566i \(0.330516\pi\)
\(108\) 0 0
\(109\) 3.87115 0.370789 0.185394 0.982664i \(-0.440644\pi\)
0.185394 + 0.982664i \(0.440644\pi\)
\(110\) 1.63988 0.156356
\(111\) 0 0
\(112\) −4.44172 −0.419703
\(113\) 11.5563 1.08712 0.543561 0.839370i \(-0.317076\pi\)
0.543561 + 0.839370i \(0.317076\pi\)
\(114\) 0 0
\(115\) −3.36611 −0.313891
\(116\) 0 0
\(117\) 0 0
\(118\) 7.31395 0.673304
\(119\) 1.26585 0.116041
\(120\) 0 0
\(121\) 1.62087 0.147352
\(122\) −10.9717 −0.993335
\(123\) 0 0
\(124\) −1.19914 −0.107686
\(125\) −4.00412 −0.358139
\(126\) 0 0
\(127\) 9.69886 0.860634 0.430317 0.902678i \(-0.358402\pi\)
0.430317 + 0.902678i \(0.358402\pi\)
\(128\) 1.93993 0.171467
\(129\) 0 0
\(130\) −0.0446281 −0.00391414
\(131\) −17.3488 −1.51577 −0.757887 0.652386i \(-0.773768\pi\)
−0.757887 + 0.652386i \(0.773768\pi\)
\(132\) 0 0
\(133\) −7.80205 −0.676523
\(134\) 9.09551 0.785732
\(135\) 0 0
\(136\) −1.80664 −0.154918
\(137\) 20.7061 1.76904 0.884520 0.466502i \(-0.154486\pi\)
0.884520 + 0.466502i \(0.154486\pi\)
\(138\) 0 0
\(139\) 16.3187 1.38413 0.692067 0.721833i \(-0.256700\pi\)
0.692067 + 0.721833i \(0.256700\pi\)
\(140\) −0.627532 −0.0530361
\(141\) 0 0
\(142\) 10.5535 0.885632
\(143\) −0.343468 −0.0287222
\(144\) 0 0
\(145\) 0 0
\(146\) −10.5281 −0.871313
\(147\) 0 0
\(148\) 0.00878246 0.000721914 0
\(149\) −5.71650 −0.468314 −0.234157 0.972199i \(-0.575233\pi\)
−0.234157 + 0.972199i \(0.575233\pi\)
\(150\) 0 0
\(151\) −0.741109 −0.0603106 −0.0301553 0.999545i \(-0.509600\pi\)
−0.0301553 + 0.999545i \(0.509600\pi\)
\(152\) 11.1352 0.903181
\(153\) 0 0
\(154\) 8.68521 0.699874
\(155\) 0.683130 0.0548703
\(156\) 0 0
\(157\) −20.1518 −1.60829 −0.804146 0.594432i \(-0.797377\pi\)
−0.804146 + 0.594432i \(0.797377\pi\)
\(158\) −12.5172 −0.995813
\(159\) 0 0
\(160\) 1.55545 0.122969
\(161\) −17.8278 −1.40503
\(162\) 0 0
\(163\) −23.1453 −1.81288 −0.906441 0.422332i \(-0.861212\pi\)
−0.906441 + 0.422332i \(0.861212\pi\)
\(164\) 6.84159 0.534238
\(165\) 0 0
\(166\) −14.6003 −1.13320
\(167\) −15.7922 −1.22204 −0.611020 0.791615i \(-0.709241\pi\)
−0.611020 + 0.791615i \(0.709241\pi\)
\(168\) 0 0
\(169\) −12.9907 −0.999281
\(170\) 0.270965 0.0207821
\(171\) 0 0
\(172\) −2.48499 −0.189479
\(173\) −17.6792 −1.34412 −0.672062 0.740495i \(-0.734591\pi\)
−0.672062 + 0.740495i \(0.734591\pi\)
\(174\) 0 0
\(175\) −10.4247 −0.788031
\(176\) −7.31745 −0.551573
\(177\) 0 0
\(178\) 2.53948 0.190342
\(179\) 22.1429 1.65504 0.827521 0.561435i \(-0.189751\pi\)
0.827521 + 0.561435i \(0.189751\pi\)
\(180\) 0 0
\(181\) 24.1746 1.79688 0.898441 0.439095i \(-0.144701\pi\)
0.898441 + 0.439095i \(0.144701\pi\)
\(182\) −0.236362 −0.0175203
\(183\) 0 0
\(184\) 25.4440 1.87576
\(185\) −0.00500322 −0.000367844 0
\(186\) 0 0
\(187\) 2.08541 0.152500
\(188\) −2.36809 −0.172711
\(189\) 0 0
\(190\) −1.67009 −0.121161
\(191\) −6.35069 −0.459520 −0.229760 0.973247i \(-0.573794\pi\)
−0.229760 + 0.973247i \(0.573794\pi\)
\(192\) 0 0
\(193\) −17.9490 −1.29200 −0.646000 0.763338i \(-0.723559\pi\)
−0.646000 + 0.763338i \(0.723559\pi\)
\(194\) 6.49395 0.466239
\(195\) 0 0
\(196\) 1.67943 0.119960
\(197\) 4.15154 0.295785 0.147893 0.989003i \(-0.452751\pi\)
0.147893 + 0.989003i \(0.452751\pi\)
\(198\) 0 0
\(199\) −7.04095 −0.499120 −0.249560 0.968359i \(-0.580286\pi\)
−0.249560 + 0.968359i \(0.580286\pi\)
\(200\) 14.8782 1.05205
\(201\) 0 0
\(202\) −18.1387 −1.27624
\(203\) 0 0
\(204\) 0 0
\(205\) −3.89754 −0.272216
\(206\) −12.7278 −0.886786
\(207\) 0 0
\(208\) 0.199139 0.0138078
\(209\) −12.8534 −0.889087
\(210\) 0 0
\(211\) −1.57816 −0.108645 −0.0543227 0.998523i \(-0.517300\pi\)
−0.0543227 + 0.998523i \(0.517300\pi\)
\(212\) 4.92150 0.338010
\(213\) 0 0
\(214\) 11.9064 0.813907
\(215\) 1.41566 0.0965471
\(216\) 0 0
\(217\) 3.61803 0.245608
\(218\) 4.38874 0.297243
\(219\) 0 0
\(220\) −1.03382 −0.0697000
\(221\) −0.0567530 −0.00381762
\(222\) 0 0
\(223\) 23.1323 1.54905 0.774527 0.632541i \(-0.217988\pi\)
0.774527 + 0.632541i \(0.217988\pi\)
\(224\) 8.23804 0.550427
\(225\) 0 0
\(226\) 13.1014 0.871490
\(227\) −14.4670 −0.960208 −0.480104 0.877212i \(-0.659401\pi\)
−0.480104 + 0.877212i \(0.659401\pi\)
\(228\) 0 0
\(229\) −6.77849 −0.447935 −0.223968 0.974597i \(-0.571901\pi\)
−0.223968 + 0.974597i \(0.571901\pi\)
\(230\) −3.81617 −0.251631
\(231\) 0 0
\(232\) 0 0
\(233\) 12.4345 0.814614 0.407307 0.913291i \(-0.366468\pi\)
0.407307 + 0.913291i \(0.366468\pi\)
\(234\) 0 0
\(235\) 1.34906 0.0880031
\(236\) −4.61089 −0.300144
\(237\) 0 0
\(238\) 1.43510 0.0930239
\(239\) 0.266676 0.0172498 0.00862491 0.999963i \(-0.497255\pi\)
0.00862491 + 0.999963i \(0.497255\pi\)
\(240\) 0 0
\(241\) 23.7084 1.52719 0.763595 0.645695i \(-0.223432\pi\)
0.763595 + 0.645695i \(0.223432\pi\)
\(242\) 1.83759 0.118125
\(243\) 0 0
\(244\) 6.91686 0.442807
\(245\) −0.956746 −0.0611243
\(246\) 0 0
\(247\) 0.349795 0.0222570
\(248\) −5.16369 −0.327895
\(249\) 0 0
\(250\) −4.53948 −0.287102
\(251\) 26.7465 1.68822 0.844111 0.536169i \(-0.180129\pi\)
0.844111 + 0.536169i \(0.180129\pi\)
\(252\) 0 0
\(253\) −29.3701 −1.84648
\(254\) 10.9956 0.689927
\(255\) 0 0
\(256\) −14.7017 −0.918856
\(257\) −15.4693 −0.964946 −0.482473 0.875911i \(-0.660261\pi\)
−0.482473 + 0.875911i \(0.660261\pi\)
\(258\) 0 0
\(259\) −0.0264984 −0.00164653
\(260\) 0.0281346 0.00174484
\(261\) 0 0
\(262\) −19.6684 −1.21512
\(263\) −5.72078 −0.352759 −0.176379 0.984322i \(-0.556439\pi\)
−0.176379 + 0.984322i \(0.556439\pi\)
\(264\) 0 0
\(265\) −2.80370 −0.172230
\(266\) −8.84521 −0.542335
\(267\) 0 0
\(268\) −5.73403 −0.350262
\(269\) −10.2232 −0.623318 −0.311659 0.950194i \(-0.600885\pi\)
−0.311659 + 0.950194i \(0.600885\pi\)
\(270\) 0 0
\(271\) 14.6298 0.888694 0.444347 0.895855i \(-0.353436\pi\)
0.444347 + 0.895855i \(0.353436\pi\)
\(272\) −1.20910 −0.0733124
\(273\) 0 0
\(274\) 23.4746 1.41815
\(275\) −17.1740 −1.03563
\(276\) 0 0
\(277\) −7.41063 −0.445262 −0.222631 0.974903i \(-0.571464\pi\)
−0.222631 + 0.974903i \(0.571464\pi\)
\(278\) 18.5006 1.10959
\(279\) 0 0
\(280\) −2.70226 −0.161491
\(281\) −29.9112 −1.78435 −0.892176 0.451687i \(-0.850822\pi\)
−0.892176 + 0.451687i \(0.850822\pi\)
\(282\) 0 0
\(283\) −13.9339 −0.828285 −0.414142 0.910212i \(-0.635918\pi\)
−0.414142 + 0.910212i \(0.635918\pi\)
\(284\) −6.65320 −0.394795
\(285\) 0 0
\(286\) −0.389391 −0.0230252
\(287\) −20.6424 −1.21848
\(288\) 0 0
\(289\) −16.6554 −0.979730
\(290\) 0 0
\(291\) 0 0
\(292\) 6.63718 0.388412
\(293\) 17.2303 1.00660 0.503302 0.864110i \(-0.332118\pi\)
0.503302 + 0.864110i \(0.332118\pi\)
\(294\) 0 0
\(295\) 2.62675 0.152935
\(296\) 0.0378187 0.00219817
\(297\) 0 0
\(298\) −6.48081 −0.375423
\(299\) 0.799287 0.0462240
\(300\) 0 0
\(301\) 7.49769 0.432160
\(302\) −0.840198 −0.0483480
\(303\) 0 0
\(304\) 7.45225 0.427416
\(305\) −3.94042 −0.225628
\(306\) 0 0
\(307\) −24.7246 −1.41111 −0.705553 0.708657i \(-0.749301\pi\)
−0.705553 + 0.708657i \(0.749301\pi\)
\(308\) −5.47537 −0.311988
\(309\) 0 0
\(310\) 0.774467 0.0439868
\(311\) −17.4125 −0.987374 −0.493687 0.869640i \(-0.664351\pi\)
−0.493687 + 0.869640i \(0.664351\pi\)
\(312\) 0 0
\(313\) 9.29106 0.525162 0.262581 0.964910i \(-0.415426\pi\)
0.262581 + 0.964910i \(0.415426\pi\)
\(314\) −22.8462 −1.28929
\(315\) 0 0
\(316\) 7.89114 0.443911
\(317\) −4.37858 −0.245926 −0.122963 0.992411i \(-0.539240\pi\)
−0.122963 + 0.992411i \(0.539240\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 3.44072 0.192342
\(321\) 0 0
\(322\) −20.2114 −1.12634
\(323\) −2.12383 −0.118173
\(324\) 0 0
\(325\) 0.467378 0.0259254
\(326\) −26.2400 −1.45330
\(327\) 0 0
\(328\) 29.4610 1.62671
\(329\) 7.14498 0.393915
\(330\) 0 0
\(331\) −30.0440 −1.65137 −0.825683 0.564135i \(-0.809210\pi\)
−0.825683 + 0.564135i \(0.809210\pi\)
\(332\) 9.20440 0.505157
\(333\) 0 0
\(334\) −17.9037 −0.979649
\(335\) 3.26659 0.178473
\(336\) 0 0
\(337\) −12.9613 −0.706048 −0.353024 0.935614i \(-0.614847\pi\)
−0.353024 + 0.935614i \(0.614847\pi\)
\(338\) −14.7276 −0.801073
\(339\) 0 0
\(340\) −0.170823 −0.00926419
\(341\) 5.96048 0.322778
\(342\) 0 0
\(343\) −20.1622 −1.08866
\(344\) −10.7008 −0.576947
\(345\) 0 0
\(346\) −20.0430 −1.07752
\(347\) 2.77454 0.148945 0.0744724 0.997223i \(-0.476273\pi\)
0.0744724 + 0.997223i \(0.476273\pi\)
\(348\) 0 0
\(349\) −22.8887 −1.22520 −0.612602 0.790391i \(-0.709877\pi\)
−0.612602 + 0.790391i \(0.709877\pi\)
\(350\) −11.8185 −0.631725
\(351\) 0 0
\(352\) 13.5717 0.723372
\(353\) 5.01067 0.266691 0.133346 0.991070i \(-0.457428\pi\)
0.133346 + 0.991070i \(0.457428\pi\)
\(354\) 0 0
\(355\) 3.79022 0.201164
\(356\) −1.60095 −0.0848503
\(357\) 0 0
\(358\) 25.1035 1.32676
\(359\) −7.48801 −0.395202 −0.197601 0.980283i \(-0.563315\pi\)
−0.197601 + 0.980283i \(0.563315\pi\)
\(360\) 0 0
\(361\) −5.90983 −0.311044
\(362\) 27.4068 1.44047
\(363\) 0 0
\(364\) 0.149008 0.00781016
\(365\) −3.78109 −0.197912
\(366\) 0 0
\(367\) −24.4417 −1.27585 −0.637924 0.770100i \(-0.720206\pi\)
−0.637924 + 0.770100i \(0.720206\pi\)
\(368\) 17.0285 0.887672
\(369\) 0 0
\(370\) −0.00567217 −0.000294882 0
\(371\) −14.8491 −0.770927
\(372\) 0 0
\(373\) −11.6191 −0.601615 −0.300808 0.953685i \(-0.597256\pi\)
−0.300808 + 0.953685i \(0.597256\pi\)
\(374\) 2.36424 0.122252
\(375\) 0 0
\(376\) −10.1974 −0.525890
\(377\) 0 0
\(378\) 0 0
\(379\) 12.1055 0.621816 0.310908 0.950440i \(-0.399367\pi\)
0.310908 + 0.950440i \(0.399367\pi\)
\(380\) 1.05286 0.0540108
\(381\) 0 0
\(382\) −7.19981 −0.368374
\(383\) 15.8595 0.810381 0.405191 0.914232i \(-0.367205\pi\)
0.405191 + 0.914232i \(0.367205\pi\)
\(384\) 0 0
\(385\) 3.11923 0.158971
\(386\) −20.3489 −1.03573
\(387\) 0 0
\(388\) −4.09395 −0.207839
\(389\) −27.1255 −1.37532 −0.687658 0.726035i \(-0.741361\pi\)
−0.687658 + 0.726035i \(0.741361\pi\)
\(390\) 0 0
\(391\) −4.85298 −0.245426
\(392\) 7.23193 0.365267
\(393\) 0 0
\(394\) 4.70662 0.237116
\(395\) −4.49545 −0.226191
\(396\) 0 0
\(397\) −14.9952 −0.752590 −0.376295 0.926500i \(-0.622802\pi\)
−0.376295 + 0.926500i \(0.622802\pi\)
\(398\) −7.98236 −0.400119
\(399\) 0 0
\(400\) 9.95729 0.497865
\(401\) 13.5045 0.674384 0.337192 0.941436i \(-0.390523\pi\)
0.337192 + 0.941436i \(0.390523\pi\)
\(402\) 0 0
\(403\) −0.162210 −0.00808027
\(404\) 11.4351 0.568917
\(405\) 0 0
\(406\) 0 0
\(407\) −0.0436544 −0.00216387
\(408\) 0 0
\(409\) −27.8752 −1.37834 −0.689171 0.724599i \(-0.742025\pi\)
−0.689171 + 0.724599i \(0.742025\pi\)
\(410\) −4.41866 −0.218222
\(411\) 0 0
\(412\) 8.02391 0.395310
\(413\) 13.9120 0.684563
\(414\) 0 0
\(415\) −5.24360 −0.257398
\(416\) −0.369343 −0.0181085
\(417\) 0 0
\(418\) −14.5719 −0.712736
\(419\) 9.01435 0.440380 0.220190 0.975457i \(-0.429332\pi\)
0.220190 + 0.975457i \(0.429332\pi\)
\(420\) 0 0
\(421\) −1.95260 −0.0951639 −0.0475820 0.998867i \(-0.515152\pi\)
−0.0475820 + 0.998867i \(0.515152\pi\)
\(422\) −1.78917 −0.0870955
\(423\) 0 0
\(424\) 21.1928 1.02921
\(425\) −2.83775 −0.137651
\(426\) 0 0
\(427\) −20.8695 −1.00995
\(428\) −7.50611 −0.362821
\(429\) 0 0
\(430\) 1.60494 0.0773969
\(431\) 28.0908 1.35308 0.676542 0.736404i \(-0.263478\pi\)
0.676542 + 0.736404i \(0.263478\pi\)
\(432\) 0 0
\(433\) 4.16154 0.199991 0.0999954 0.994988i \(-0.468117\pi\)
0.0999954 + 0.994988i \(0.468117\pi\)
\(434\) 4.10178 0.196892
\(435\) 0 0
\(436\) −2.76677 −0.132504
\(437\) 29.9112 1.43085
\(438\) 0 0
\(439\) −33.5455 −1.60104 −0.800520 0.599305i \(-0.795444\pi\)
−0.800520 + 0.599305i \(0.795444\pi\)
\(440\) −4.45180 −0.212231
\(441\) 0 0
\(442\) −0.0643411 −0.00306039
\(443\) −7.70722 −0.366181 −0.183091 0.983096i \(-0.558610\pi\)
−0.183091 + 0.983096i \(0.558610\pi\)
\(444\) 0 0
\(445\) 0.912037 0.0432347
\(446\) 26.2252 1.24180
\(447\) 0 0
\(448\) 18.2229 0.860953
\(449\) 26.2196 1.23738 0.618690 0.785635i \(-0.287664\pi\)
0.618690 + 0.785635i \(0.287664\pi\)
\(450\) 0 0
\(451\) −34.0070 −1.60133
\(452\) −8.25943 −0.388491
\(453\) 0 0
\(454\) −16.4013 −0.769750
\(455\) −0.0848876 −0.00397959
\(456\) 0 0
\(457\) 18.0732 0.845428 0.422714 0.906263i \(-0.361077\pi\)
0.422714 + 0.906263i \(0.361077\pi\)
\(458\) −7.68480 −0.359087
\(459\) 0 0
\(460\) 2.40581 0.112171
\(461\) 7.43554 0.346308 0.173154 0.984895i \(-0.444604\pi\)
0.173154 + 0.984895i \(0.444604\pi\)
\(462\) 0 0
\(463\) 4.33818 0.201612 0.100806 0.994906i \(-0.467858\pi\)
0.100806 + 0.994906i \(0.467858\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 14.0971 0.653035
\(467\) 1.68084 0.0777799 0.0388899 0.999244i \(-0.487618\pi\)
0.0388899 + 0.999244i \(0.487618\pi\)
\(468\) 0 0
\(469\) 17.3007 0.798871
\(470\) 1.52944 0.0705476
\(471\) 0 0
\(472\) −19.8553 −0.913914
\(473\) 12.3520 0.567944
\(474\) 0 0
\(475\) 17.4904 0.802513
\(476\) −0.904724 −0.0414680
\(477\) 0 0
\(478\) 0.302331 0.0138283
\(479\) 5.54859 0.253521 0.126761 0.991933i \(-0.459542\pi\)
0.126761 + 0.991933i \(0.459542\pi\)
\(480\) 0 0
\(481\) 0.00118802 5.41692e−5 0
\(482\) 26.8783 1.22427
\(483\) 0 0
\(484\) −1.15846 −0.0526573
\(485\) 2.33226 0.105902
\(486\) 0 0
\(487\) 22.1699 1.00461 0.502307 0.864689i \(-0.332485\pi\)
0.502307 + 0.864689i \(0.332485\pi\)
\(488\) 29.7852 1.34831
\(489\) 0 0
\(490\) −1.08467 −0.0490003
\(491\) 15.8015 0.713113 0.356557 0.934274i \(-0.383951\pi\)
0.356557 + 0.934274i \(0.383951\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.396565 0.0178423
\(495\) 0 0
\(496\) −3.45582 −0.155171
\(497\) 20.0740 0.900442
\(498\) 0 0
\(499\) −0.152409 −0.00682277 −0.00341139 0.999994i \(-0.501086\pi\)
−0.00341139 + 0.999994i \(0.501086\pi\)
\(500\) 2.86180 0.127984
\(501\) 0 0
\(502\) 30.3226 1.35336
\(503\) 4.52672 0.201837 0.100918 0.994895i \(-0.467822\pi\)
0.100918 + 0.994895i \(0.467822\pi\)
\(504\) 0 0
\(505\) −6.51439 −0.289886
\(506\) −33.2970 −1.48023
\(507\) 0 0
\(508\) −6.93192 −0.307554
\(509\) 42.2346 1.87202 0.936008 0.351979i \(-0.114491\pi\)
0.936008 + 0.351979i \(0.114491\pi\)
\(510\) 0 0
\(511\) −20.0257 −0.885883
\(512\) −20.5472 −0.908068
\(513\) 0 0
\(514\) −17.5376 −0.773549
\(515\) −4.57109 −0.201426
\(516\) 0 0
\(517\) 11.7709 0.517683
\(518\) −0.0300413 −0.00131994
\(519\) 0 0
\(520\) 0.121152 0.00531289
\(521\) 37.1917 1.62940 0.814698 0.579885i \(-0.196903\pi\)
0.814698 + 0.579885i \(0.196903\pi\)
\(522\) 0 0
\(523\) 7.71884 0.337521 0.168761 0.985657i \(-0.446023\pi\)
0.168761 + 0.985657i \(0.446023\pi\)
\(524\) 12.3995 0.541673
\(525\) 0 0
\(526\) −6.48568 −0.282789
\(527\) 0.984881 0.0429021
\(528\) 0 0
\(529\) 45.3475 1.97163
\(530\) −3.17856 −0.138068
\(531\) 0 0
\(532\) 5.57624 0.241761
\(533\) 0.925477 0.0400869
\(534\) 0 0
\(535\) 4.27611 0.184872
\(536\) −24.6917 −1.06652
\(537\) 0 0
\(538\) −11.5901 −0.499683
\(539\) −8.34785 −0.359567
\(540\) 0 0
\(541\) −38.1817 −1.64156 −0.820780 0.571245i \(-0.806461\pi\)
−0.820780 + 0.571245i \(0.806461\pi\)
\(542\) 16.5858 0.712422
\(543\) 0 0
\(544\) 2.24251 0.0961470
\(545\) 1.57618 0.0675163
\(546\) 0 0
\(547\) −28.5182 −1.21935 −0.609675 0.792651i \(-0.708700\pi\)
−0.609675 + 0.792651i \(0.708700\pi\)
\(548\) −14.7990 −0.632180
\(549\) 0 0
\(550\) −19.4702 −0.830213
\(551\) 0 0
\(552\) 0 0
\(553\) −23.8091 −1.01247
\(554\) −8.40146 −0.356944
\(555\) 0 0
\(556\) −11.6632 −0.494631
\(557\) 20.1026 0.851773 0.425887 0.904777i \(-0.359962\pi\)
0.425887 + 0.904777i \(0.359962\pi\)
\(558\) 0 0
\(559\) −0.336150 −0.0142176
\(560\) −1.80850 −0.0764229
\(561\) 0 0
\(562\) −33.9105 −1.43043
\(563\) 23.8844 1.00661 0.503303 0.864110i \(-0.332118\pi\)
0.503303 + 0.864110i \(0.332118\pi\)
\(564\) 0 0
\(565\) 4.70526 0.197952
\(566\) −15.7969 −0.663994
\(567\) 0 0
\(568\) −28.6498 −1.20212
\(569\) −23.9195 −1.00276 −0.501378 0.865228i \(-0.667173\pi\)
−0.501378 + 0.865228i \(0.667173\pi\)
\(570\) 0 0
\(571\) 0.245415 0.0102703 0.00513515 0.999987i \(-0.498365\pi\)
0.00513515 + 0.999987i \(0.498365\pi\)
\(572\) 0.245482 0.0102641
\(573\) 0 0
\(574\) −23.4024 −0.976796
\(575\) 39.9657 1.66669
\(576\) 0 0
\(577\) −19.1645 −0.797830 −0.398915 0.916988i \(-0.630613\pi\)
−0.398915 + 0.916988i \(0.630613\pi\)
\(578\) −18.8823 −0.785401
\(579\) 0 0
\(580\) 0 0
\(581\) −27.7715 −1.15215
\(582\) 0 0
\(583\) −24.4630 −1.01315
\(584\) 28.5808 1.18268
\(585\) 0 0
\(586\) 19.5341 0.806944
\(587\) 18.2018 0.751269 0.375634 0.926768i \(-0.377425\pi\)
0.375634 + 0.926768i \(0.377425\pi\)
\(588\) 0 0
\(589\) −6.07029 −0.250122
\(590\) 2.97796 0.122601
\(591\) 0 0
\(592\) 0.0253103 0.00104025
\(593\) 39.2972 1.61374 0.806870 0.590729i \(-0.201160\pi\)
0.806870 + 0.590729i \(0.201160\pi\)
\(594\) 0 0
\(595\) 0.515407 0.0211296
\(596\) 4.08567 0.167355
\(597\) 0 0
\(598\) 0.906155 0.0370554
\(599\) −18.7676 −0.766821 −0.383411 0.923578i \(-0.625251\pi\)
−0.383411 + 0.923578i \(0.625251\pi\)
\(600\) 0 0
\(601\) 10.6145 0.432976 0.216488 0.976285i \(-0.430540\pi\)
0.216488 + 0.976285i \(0.430540\pi\)
\(602\) 8.50016 0.346441
\(603\) 0 0
\(604\) 0.529682 0.0215524
\(605\) 0.659956 0.0268310
\(606\) 0 0
\(607\) −31.5882 −1.28213 −0.641063 0.767488i \(-0.721506\pi\)
−0.641063 + 0.767488i \(0.721506\pi\)
\(608\) −13.8217 −0.560543
\(609\) 0 0
\(610\) −4.46727 −0.180875
\(611\) −0.320337 −0.0129594
\(612\) 0 0
\(613\) 10.9585 0.442609 0.221304 0.975205i \(-0.428969\pi\)
0.221304 + 0.975205i \(0.428969\pi\)
\(614\) −28.0304 −1.13121
\(615\) 0 0
\(616\) −23.5779 −0.949980
\(617\) 33.1167 1.33323 0.666615 0.745402i \(-0.267743\pi\)
0.666615 + 0.745402i \(0.267743\pi\)
\(618\) 0 0
\(619\) −1.81592 −0.0729880 −0.0364940 0.999334i \(-0.511619\pi\)
−0.0364940 + 0.999334i \(0.511619\pi\)
\(620\) −0.488243 −0.0196083
\(621\) 0 0
\(622\) −19.7406 −0.791528
\(623\) 4.83038 0.193525
\(624\) 0 0
\(625\) 22.5408 0.901631
\(626\) 10.5333 0.420996
\(627\) 0 0
\(628\) 14.4028 0.574735
\(629\) −0.00721324 −0.000287611 0
\(630\) 0 0
\(631\) 23.3350 0.928952 0.464476 0.885586i \(-0.346243\pi\)
0.464476 + 0.885586i \(0.346243\pi\)
\(632\) 33.9806 1.35167
\(633\) 0 0
\(634\) −4.96401 −0.197146
\(635\) 3.94900 0.156711
\(636\) 0 0
\(637\) 0.227181 0.00900123
\(638\) 0 0
\(639\) 0 0
\(640\) 0.789866 0.0312222
\(641\) 5.77018 0.227908 0.113954 0.993486i \(-0.463648\pi\)
0.113954 + 0.993486i \(0.463648\pi\)
\(642\) 0 0
\(643\) 26.0363 1.02677 0.513385 0.858158i \(-0.328391\pi\)
0.513385 + 0.858158i \(0.328391\pi\)
\(644\) 12.7418 0.502097
\(645\) 0 0
\(646\) −2.40779 −0.0947334
\(647\) 30.4369 1.19660 0.598299 0.801273i \(-0.295843\pi\)
0.598299 + 0.801273i \(0.295843\pi\)
\(648\) 0 0
\(649\) 22.9191 0.899652
\(650\) 0.529868 0.0207831
\(651\) 0 0
\(652\) 16.5423 0.647847
\(653\) 43.2292 1.69169 0.845845 0.533429i \(-0.179097\pi\)
0.845845 + 0.533429i \(0.179097\pi\)
\(654\) 0 0
\(655\) −7.06378 −0.276005
\(656\) 19.7169 0.769816
\(657\) 0 0
\(658\) 8.10029 0.315782
\(659\) −5.52426 −0.215195 −0.107597 0.994195i \(-0.534316\pi\)
−0.107597 + 0.994195i \(0.534316\pi\)
\(660\) 0 0
\(661\) 2.45323 0.0954197 0.0477098 0.998861i \(-0.484808\pi\)
0.0477098 + 0.998861i \(0.484808\pi\)
\(662\) −34.0610 −1.32382
\(663\) 0 0
\(664\) 39.6357 1.53816
\(665\) −3.17669 −0.123187
\(666\) 0 0
\(667\) 0 0
\(668\) 11.2870 0.436705
\(669\) 0 0
\(670\) 3.70334 0.143073
\(671\) −34.3812 −1.32727
\(672\) 0 0
\(673\) −17.3823 −0.670039 −0.335020 0.942211i \(-0.608743\pi\)
−0.335020 + 0.942211i \(0.608743\pi\)
\(674\) −14.6943 −0.566003
\(675\) 0 0
\(676\) 9.28462 0.357101
\(677\) −49.5563 −1.90460 −0.952302 0.305156i \(-0.901291\pi\)
−0.952302 + 0.305156i \(0.901291\pi\)
\(678\) 0 0
\(679\) 12.3522 0.474035
\(680\) −0.735593 −0.0282087
\(681\) 0 0
\(682\) 6.75742 0.258755
\(683\) −21.4856 −0.822124 −0.411062 0.911607i \(-0.634842\pi\)
−0.411062 + 0.911607i \(0.634842\pi\)
\(684\) 0 0
\(685\) 8.43072 0.322121
\(686\) −22.8580 −0.872722
\(687\) 0 0
\(688\) −7.16154 −0.273031
\(689\) 0.665742 0.0253627
\(690\) 0 0
\(691\) 3.31570 0.126135 0.0630676 0.998009i \(-0.479912\pi\)
0.0630676 + 0.998009i \(0.479912\pi\)
\(692\) 12.6356 0.480333
\(693\) 0 0
\(694\) 3.14550 0.119402
\(695\) 6.64435 0.252035
\(696\) 0 0
\(697\) −5.61916 −0.212841
\(698\) −25.9490 −0.982185
\(699\) 0 0
\(700\) 7.45067 0.281609
\(701\) −34.0148 −1.28472 −0.642361 0.766402i \(-0.722045\pi\)
−0.642361 + 0.766402i \(0.722045\pi\)
\(702\) 0 0
\(703\) 0.0444586 0.00167679
\(704\) 30.0211 1.13146
\(705\) 0 0
\(706\) 5.68062 0.213793
\(707\) −34.5019 −1.29758
\(708\) 0 0
\(709\) 27.6139 1.03706 0.518531 0.855059i \(-0.326479\pi\)
0.518531 + 0.855059i \(0.326479\pi\)
\(710\) 4.29699 0.161263
\(711\) 0 0
\(712\) −6.89397 −0.258363
\(713\) −13.8707 −0.519461
\(714\) 0 0
\(715\) −0.139847 −0.00522998
\(716\) −15.8259 −0.591441
\(717\) 0 0
\(718\) −8.48918 −0.316813
\(719\) 42.2582 1.57596 0.787982 0.615698i \(-0.211126\pi\)
0.787982 + 0.615698i \(0.211126\pi\)
\(720\) 0 0
\(721\) −24.2097 −0.901615
\(722\) −6.70000 −0.249348
\(723\) 0 0
\(724\) −17.2779 −0.642129
\(725\) 0 0
\(726\) 0 0
\(727\) 22.4119 0.831212 0.415606 0.909545i \(-0.363569\pi\)
0.415606 + 0.909545i \(0.363569\pi\)
\(728\) 0.641655 0.0237813
\(729\) 0 0
\(730\) −4.28664 −0.158656
\(731\) 2.04098 0.0754884
\(732\) 0 0
\(733\) 9.43062 0.348328 0.174164 0.984717i \(-0.444278\pi\)
0.174164 + 0.984717i \(0.444278\pi\)
\(734\) −27.7097 −1.02278
\(735\) 0 0
\(736\) −31.5827 −1.16415
\(737\) 28.5018 1.04988
\(738\) 0 0
\(739\) 1.26732 0.0466193 0.0233096 0.999728i \(-0.492580\pi\)
0.0233096 + 0.999728i \(0.492580\pi\)
\(740\) 0.00357588 0.000131452 0
\(741\) 0 0
\(742\) −16.8345 −0.618014
\(743\) −38.5725 −1.41509 −0.707543 0.706670i \(-0.750197\pi\)
−0.707543 + 0.706670i \(0.750197\pi\)
\(744\) 0 0
\(745\) −2.32754 −0.0852744
\(746\) −13.1726 −0.482285
\(747\) 0 0
\(748\) −1.49048 −0.0544972
\(749\) 22.6474 0.827517
\(750\) 0 0
\(751\) −25.6989 −0.937765 −0.468882 0.883261i \(-0.655343\pi\)
−0.468882 + 0.883261i \(0.655343\pi\)
\(752\) −6.82464 −0.248869
\(753\) 0 0
\(754\) 0 0
\(755\) −0.301751 −0.0109818
\(756\) 0 0
\(757\) 26.2239 0.953126 0.476563 0.879140i \(-0.341882\pi\)
0.476563 + 0.879140i \(0.341882\pi\)
\(758\) 13.7240 0.498479
\(759\) 0 0
\(760\) 4.53381 0.164459
\(761\) −17.2203 −0.624235 −0.312117 0.950044i \(-0.601038\pi\)
−0.312117 + 0.950044i \(0.601038\pi\)
\(762\) 0 0
\(763\) 8.34787 0.302213
\(764\) 4.53894 0.164213
\(765\) 0 0
\(766\) 17.9799 0.649642
\(767\) −0.623726 −0.0225214
\(768\) 0 0
\(769\) −17.1271 −0.617620 −0.308810 0.951124i \(-0.599931\pi\)
−0.308810 + 0.951124i \(0.599931\pi\)
\(770\) 3.53628 0.127439
\(771\) 0 0
\(772\) 12.8284 0.461706
\(773\) 10.5156 0.378220 0.189110 0.981956i \(-0.439440\pi\)
0.189110 + 0.981956i \(0.439440\pi\)
\(774\) 0 0
\(775\) −8.11079 −0.291348
\(776\) −17.6292 −0.632853
\(777\) 0 0
\(778\) −30.7523 −1.10252
\(779\) 34.6335 1.24087
\(780\) 0 0
\(781\) 33.0706 1.18336
\(782\) −5.50184 −0.196745
\(783\) 0 0
\(784\) 4.84000 0.172857
\(785\) −8.20506 −0.292851
\(786\) 0 0
\(787\) −18.2069 −0.649006 −0.324503 0.945885i \(-0.605197\pi\)
−0.324503 + 0.945885i \(0.605197\pi\)
\(788\) −2.96717 −0.105701
\(789\) 0 0
\(790\) −5.09651 −0.181326
\(791\) 24.9203 0.886064
\(792\) 0 0
\(793\) 0.935659 0.0332262
\(794\) −17.0002 −0.603313
\(795\) 0 0
\(796\) 5.03228 0.178364
\(797\) −2.30221 −0.0815485 −0.0407742 0.999168i \(-0.512982\pi\)
−0.0407742 + 0.999168i \(0.512982\pi\)
\(798\) 0 0
\(799\) 1.94497 0.0688080
\(800\) −18.4678 −0.652934
\(801\) 0 0
\(802\) 15.3101 0.540620
\(803\) −32.9910 −1.16423
\(804\) 0 0
\(805\) −7.25879 −0.255839
\(806\) −0.183898 −0.00647754
\(807\) 0 0
\(808\) 49.2414 1.73231
\(809\) −33.1485 −1.16544 −0.582719 0.812674i \(-0.698011\pi\)
−0.582719 + 0.812674i \(0.698011\pi\)
\(810\) 0 0
\(811\) 30.0826 1.05634 0.528171 0.849138i \(-0.322878\pi\)
0.528171 + 0.849138i \(0.322878\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.0494911 −0.00173466
\(815\) −9.42389 −0.330104
\(816\) 0 0
\(817\) −12.5795 −0.440102
\(818\) −31.6023 −1.10495
\(819\) 0 0
\(820\) 2.78563 0.0972785
\(821\) 47.6872 1.66430 0.832148 0.554554i \(-0.187111\pi\)
0.832148 + 0.554554i \(0.187111\pi\)
\(822\) 0 0
\(823\) 22.3860 0.780327 0.390163 0.920746i \(-0.372419\pi\)
0.390163 + 0.920746i \(0.372419\pi\)
\(824\) 34.5523 1.20369
\(825\) 0 0
\(826\) 15.7720 0.548780
\(827\) 4.65264 0.161788 0.0808940 0.996723i \(-0.474222\pi\)
0.0808940 + 0.996723i \(0.474222\pi\)
\(828\) 0 0
\(829\) 42.4282 1.47359 0.736796 0.676115i \(-0.236338\pi\)
0.736796 + 0.676115i \(0.236338\pi\)
\(830\) −5.94469 −0.206343
\(831\) 0 0
\(832\) −0.817004 −0.0283245
\(833\) −1.37936 −0.0477919
\(834\) 0 0
\(835\) −6.42999 −0.222519
\(836\) 9.18650 0.317722
\(837\) 0 0
\(838\) 10.2196 0.353030
\(839\) 30.4870 1.05253 0.526264 0.850321i \(-0.323592\pi\)
0.526264 + 0.850321i \(0.323592\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −2.21367 −0.0762881
\(843\) 0 0
\(844\) 1.12794 0.0388252
\(845\) −5.28929 −0.181957
\(846\) 0 0
\(847\) 3.49530 0.120100
\(848\) 14.1834 0.487059
\(849\) 0 0
\(850\) −3.21716 −0.110348
\(851\) 0.101588 0.00348241
\(852\) 0 0
\(853\) −10.8699 −0.372178 −0.186089 0.982533i \(-0.559581\pi\)
−0.186089 + 0.982533i \(0.559581\pi\)
\(854\) −23.6598 −0.809623
\(855\) 0 0
\(856\) −32.3226 −1.10476
\(857\) 10.1511 0.346754 0.173377 0.984856i \(-0.444532\pi\)
0.173377 + 0.984856i \(0.444532\pi\)
\(858\) 0 0
\(859\) −14.8219 −0.505716 −0.252858 0.967503i \(-0.581370\pi\)
−0.252858 + 0.967503i \(0.581370\pi\)
\(860\) −1.01179 −0.0345018
\(861\) 0 0
\(862\) 31.8466 1.08470
\(863\) 47.3684 1.61244 0.806219 0.591617i \(-0.201510\pi\)
0.806219 + 0.591617i \(0.201510\pi\)
\(864\) 0 0
\(865\) −7.19829 −0.244749
\(866\) 4.71796 0.160323
\(867\) 0 0
\(868\) −2.58586 −0.0877699
\(869\) −39.2239 −1.33058
\(870\) 0 0
\(871\) −0.775655 −0.0262821
\(872\) −11.9142 −0.403465
\(873\) 0 0
\(874\) 33.9105 1.14704
\(875\) −8.63461 −0.291903
\(876\) 0 0
\(877\) 15.0287 0.507483 0.253742 0.967272i \(-0.418339\pi\)
0.253742 + 0.967272i \(0.418339\pi\)
\(878\) −38.0307 −1.28347
\(879\) 0 0
\(880\) −2.97938 −0.100435
\(881\) 28.4507 0.958530 0.479265 0.877670i \(-0.340903\pi\)
0.479265 + 0.877670i \(0.340903\pi\)
\(882\) 0 0
\(883\) −53.5603 −1.80245 −0.901224 0.433353i \(-0.857330\pi\)
−0.901224 + 0.433353i \(0.857330\pi\)
\(884\) 0.0405622 0.00136425
\(885\) 0 0
\(886\) −8.73771 −0.293549
\(887\) 35.1959 1.18176 0.590882 0.806758i \(-0.298780\pi\)
0.590882 + 0.806758i \(0.298780\pi\)
\(888\) 0 0
\(889\) 20.9149 0.701464
\(890\) 1.03398 0.0346591
\(891\) 0 0
\(892\) −16.5330 −0.553566
\(893\) −11.9877 −0.401155
\(894\) 0 0
\(895\) 9.01575 0.301363
\(896\) 4.18333 0.139755
\(897\) 0 0
\(898\) 29.7253 0.991945
\(899\) 0 0
\(900\) 0 0
\(901\) −4.04214 −0.134663
\(902\) −38.5539 −1.28370
\(903\) 0 0
\(904\) −35.5665 −1.18292
\(905\) 9.84295 0.327191
\(906\) 0 0
\(907\) 13.0105 0.432006 0.216003 0.976393i \(-0.430698\pi\)
0.216003 + 0.976393i \(0.430698\pi\)
\(908\) 10.3398 0.343137
\(909\) 0 0
\(910\) −0.0962374 −0.00319024
\(911\) 25.7084 0.851756 0.425878 0.904781i \(-0.359965\pi\)
0.425878 + 0.904781i \(0.359965\pi\)
\(912\) 0 0
\(913\) −45.7517 −1.51416
\(914\) 20.4896 0.677737
\(915\) 0 0
\(916\) 4.84469 0.160073
\(917\) −37.4116 −1.23544
\(918\) 0 0
\(919\) −13.5150 −0.445819 −0.222910 0.974839i \(-0.571555\pi\)
−0.222910 + 0.974839i \(0.571555\pi\)
\(920\) 10.3598 0.341553
\(921\) 0 0
\(922\) 8.42970 0.277618
\(923\) −0.899993 −0.0296236
\(924\) 0 0
\(925\) 0.0594031 0.00195316
\(926\) 4.91821 0.161622
\(927\) 0 0
\(928\) 0 0
\(929\) −8.35952 −0.274267 −0.137134 0.990553i \(-0.543789\pi\)
−0.137134 + 0.990553i \(0.543789\pi\)
\(930\) 0 0
\(931\) 8.50164 0.278630
\(932\) −8.88716 −0.291109
\(933\) 0 0
\(934\) 1.90557 0.0623522
\(935\) 0.849099 0.0277685
\(936\) 0 0
\(937\) −59.9449 −1.95831 −0.979157 0.203107i \(-0.934896\pi\)
−0.979157 + 0.203107i \(0.934896\pi\)
\(938\) 19.6139 0.640415
\(939\) 0 0
\(940\) −0.964194 −0.0314486
\(941\) −54.4563 −1.77523 −0.887613 0.460591i \(-0.847638\pi\)
−0.887613 + 0.460591i \(0.847638\pi\)
\(942\) 0 0
\(943\) 79.1380 2.57709
\(944\) −13.2882 −0.432495
\(945\) 0 0
\(946\) 14.0035 0.455292
\(947\) −19.1728 −0.623032 −0.311516 0.950241i \(-0.600837\pi\)
−0.311516 + 0.950241i \(0.600837\pi\)
\(948\) 0 0
\(949\) 0.897826 0.0291447
\(950\) 19.8289 0.643335
\(951\) 0 0
\(952\) −3.89589 −0.126267
\(953\) 48.5810 1.57369 0.786846 0.617149i \(-0.211712\pi\)
0.786846 + 0.617149i \(0.211712\pi\)
\(954\) 0 0
\(955\) −2.58576 −0.0836732
\(956\) −0.190597 −0.00616435
\(957\) 0 0
\(958\) 6.29046 0.203235
\(959\) 44.6513 1.44187
\(960\) 0 0
\(961\) −28.1850 −0.909195
\(962\) 0.00134687 4.34247e−5 0
\(963\) 0 0
\(964\) −16.9447 −0.545753
\(965\) −7.30815 −0.235258
\(966\) 0 0
\(967\) −33.9742 −1.09254 −0.546268 0.837610i \(-0.683952\pi\)
−0.546268 + 0.837610i \(0.683952\pi\)
\(968\) −4.98853 −0.160337
\(969\) 0 0
\(970\) 2.64409 0.0848966
\(971\) 19.3548 0.621126 0.310563 0.950553i \(-0.399482\pi\)
0.310563 + 0.950553i \(0.399482\pi\)
\(972\) 0 0
\(973\) 35.1902 1.12815
\(974\) 25.1341 0.805349
\(975\) 0 0
\(976\) 19.9338 0.638067
\(977\) −14.4746 −0.463085 −0.231542 0.972825i \(-0.574377\pi\)
−0.231542 + 0.972825i \(0.574377\pi\)
\(978\) 0 0
\(979\) 7.95775 0.254331
\(980\) 0.683801 0.0218432
\(981\) 0 0
\(982\) 17.9143 0.571667
\(983\) −16.3005 −0.519906 −0.259953 0.965621i \(-0.583707\pi\)
−0.259953 + 0.965621i \(0.583707\pi\)
\(984\) 0 0
\(985\) 1.69035 0.0538590
\(986\) 0 0
\(987\) 0 0
\(988\) −0.250004 −0.00795369
\(989\) −28.7444 −0.914018
\(990\) 0 0
\(991\) 29.7360 0.944594 0.472297 0.881440i \(-0.343425\pi\)
0.472297 + 0.881440i \(0.343425\pi\)
\(992\) 6.40951 0.203502
\(993\) 0 0
\(994\) 22.7580 0.721839
\(995\) −2.86681 −0.0908838
\(996\) 0 0
\(997\) 45.7094 1.44763 0.723815 0.689994i \(-0.242387\pi\)
0.723815 + 0.689994i \(0.242387\pi\)
\(998\) −0.172787 −0.00546947
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bg.1.6 yes 8
3.2 odd 2 inner 7569.2.a.bg.1.3 yes 8
29.28 even 2 7569.2.a.bf.1.3 8
87.86 odd 2 7569.2.a.bf.1.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7569.2.a.bf.1.3 8 29.28 even 2
7569.2.a.bf.1.6 yes 8 87.86 odd 2
7569.2.a.bg.1.3 yes 8 3.2 odd 2 inner
7569.2.a.bg.1.6 yes 8 1.1 even 1 trivial