Properties

Label 7569.2.a.bg.1.5
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.14884000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 36x^{4} - 31x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.183172\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.183172 q^{2} -1.96645 q^{4} +3.26086 q^{5} -0.215332 q^{7} -0.726543 q^{8} +0.597298 q^{10} +2.92503 q^{11} -3.58448 q^{13} -0.0394428 q^{14} +3.79981 q^{16} -7.11447 q^{17} -1.38197 q^{19} -6.41230 q^{20} +0.535785 q^{22} +6.71760 q^{23} +5.63318 q^{25} -0.656577 q^{26} +0.423439 q^{28} -6.41785 q^{31} +2.14910 q^{32} -1.30317 q^{34} -0.702166 q^{35} +6.11468 q^{37} -0.253138 q^{38} -2.36915 q^{40} -6.50285 q^{41} +6.24776 q^{43} -5.75193 q^{44} +1.23048 q^{46} -9.04988 q^{47} -6.95363 q^{49} +1.03184 q^{50} +7.04870 q^{52} -4.53691 q^{53} +9.53811 q^{55} +0.156448 q^{56} -12.0737 q^{59} -1.58215 q^{61} -1.17557 q^{62} -7.20597 q^{64} -11.6885 q^{65} -7.18411 q^{67} +13.9902 q^{68} -0.128617 q^{70} +13.4403 q^{71} +13.8844 q^{73} +1.12004 q^{74} +2.71756 q^{76} -0.629853 q^{77} +3.35979 q^{79} +12.3906 q^{80} -1.19114 q^{82} +5.23502 q^{83} -23.1993 q^{85} +1.14441 q^{86} -2.12516 q^{88} -12.9834 q^{89} +0.771853 q^{91} -13.2098 q^{92} -1.65769 q^{94} -4.50639 q^{95} -3.92913 q^{97} -1.27371 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} + 12 q^{10} + 2 q^{13} - 2 q^{16} - 20 q^{19} - 14 q^{22} + 2 q^{25} - 20 q^{28} - 10 q^{31} - 36 q^{34} - 18 q^{37} + 10 q^{40} - 28 q^{43} - 26 q^{46} + 4 q^{49} + 44 q^{52} - 14 q^{55}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.183172 0.129522 0.0647611 0.997901i \(-0.479371\pi\)
0.0647611 + 0.997901i \(0.479371\pi\)
\(3\) 0 0
\(4\) −1.96645 −0.983224
\(5\) 3.26086 1.45830 0.729149 0.684354i \(-0.239916\pi\)
0.729149 + 0.684354i \(0.239916\pi\)
\(6\) 0 0
\(7\) −0.215332 −0.0813877 −0.0406939 0.999172i \(-0.512957\pi\)
−0.0406939 + 0.999172i \(0.512957\pi\)
\(8\) −0.726543 −0.256872
\(9\) 0 0
\(10\) 0.597298 0.188882
\(11\) 2.92503 0.881931 0.440965 0.897524i \(-0.354636\pi\)
0.440965 + 0.897524i \(0.354636\pi\)
\(12\) 0 0
\(13\) −3.58448 −0.994156 −0.497078 0.867706i \(-0.665594\pi\)
−0.497078 + 0.867706i \(0.665594\pi\)
\(14\) −0.0394428 −0.0105415
\(15\) 0 0
\(16\) 3.79981 0.949953
\(17\) −7.11447 −1.72551 −0.862756 0.505620i \(-0.831264\pi\)
−0.862756 + 0.505620i \(0.831264\pi\)
\(18\) 0 0
\(19\) −1.38197 −0.317045 −0.158522 0.987355i \(-0.550673\pi\)
−0.158522 + 0.987355i \(0.550673\pi\)
\(20\) −6.41230 −1.43383
\(21\) 0 0
\(22\) 0.535785 0.114230
\(23\) 6.71760 1.40072 0.700358 0.713791i \(-0.253024\pi\)
0.700358 + 0.713791i \(0.253024\pi\)
\(24\) 0 0
\(25\) 5.63318 1.12664
\(26\) −0.656577 −0.128765
\(27\) 0 0
\(28\) 0.423439 0.0800224
\(29\) 0 0
\(30\) 0 0
\(31\) −6.41785 −1.15268 −0.576340 0.817210i \(-0.695519\pi\)
−0.576340 + 0.817210i \(0.695519\pi\)
\(32\) 2.14910 0.379912
\(33\) 0 0
\(34\) −1.30317 −0.223492
\(35\) −0.702166 −0.118688
\(36\) 0 0
\(37\) 6.11468 1.00525 0.502623 0.864506i \(-0.332368\pi\)
0.502623 + 0.864506i \(0.332368\pi\)
\(38\) −0.253138 −0.0410643
\(39\) 0 0
\(40\) −2.36915 −0.374596
\(41\) −6.50285 −1.01557 −0.507787 0.861483i \(-0.669536\pi\)
−0.507787 + 0.861483i \(0.669536\pi\)
\(42\) 0 0
\(43\) 6.24776 0.952774 0.476387 0.879236i \(-0.341946\pi\)
0.476387 + 0.879236i \(0.341946\pi\)
\(44\) −5.75193 −0.867136
\(45\) 0 0
\(46\) 1.23048 0.181424
\(47\) −9.04988 −1.32006 −0.660030 0.751239i \(-0.729457\pi\)
−0.660030 + 0.751239i \(0.729457\pi\)
\(48\) 0 0
\(49\) −6.95363 −0.993376
\(50\) 1.03184 0.145924
\(51\) 0 0
\(52\) 7.04870 0.977478
\(53\) −4.53691 −0.623193 −0.311597 0.950214i \(-0.600864\pi\)
−0.311597 + 0.950214i \(0.600864\pi\)
\(54\) 0 0
\(55\) 9.53811 1.28612
\(56\) 0.156448 0.0209062
\(57\) 0 0
\(58\) 0 0
\(59\) −12.0737 −1.57186 −0.785930 0.618315i \(-0.787815\pi\)
−0.785930 + 0.618315i \(0.787815\pi\)
\(60\) 0 0
\(61\) −1.58215 −0.202574 −0.101287 0.994857i \(-0.532296\pi\)
−0.101287 + 0.994857i \(0.532296\pi\)
\(62\) −1.17557 −0.149298
\(63\) 0 0
\(64\) −7.20597 −0.900746
\(65\) −11.6885 −1.44978
\(66\) 0 0
\(67\) −7.18411 −0.877679 −0.438839 0.898566i \(-0.644610\pi\)
−0.438839 + 0.898566i \(0.644610\pi\)
\(68\) 13.9902 1.69656
\(69\) 0 0
\(70\) −0.128617 −0.0153727
\(71\) 13.4403 1.59507 0.797534 0.603273i \(-0.206137\pi\)
0.797534 + 0.603273i \(0.206137\pi\)
\(72\) 0 0
\(73\) 13.8844 1.62505 0.812523 0.582930i \(-0.198094\pi\)
0.812523 + 0.582930i \(0.198094\pi\)
\(74\) 1.12004 0.130202
\(75\) 0 0
\(76\) 2.71756 0.311726
\(77\) −0.629853 −0.0717784
\(78\) 0 0
\(79\) 3.35979 0.378006 0.189003 0.981977i \(-0.439474\pi\)
0.189003 + 0.981977i \(0.439474\pi\)
\(80\) 12.3906 1.38532
\(81\) 0 0
\(82\) −1.19114 −0.131539
\(83\) 5.23502 0.574618 0.287309 0.957838i \(-0.407239\pi\)
0.287309 + 0.957838i \(0.407239\pi\)
\(84\) 0 0
\(85\) −23.1993 −2.51631
\(86\) 1.14441 0.123405
\(87\) 0 0
\(88\) −2.12516 −0.226543
\(89\) −12.9834 −1.37624 −0.688119 0.725598i \(-0.741563\pi\)
−0.688119 + 0.725598i \(0.741563\pi\)
\(90\) 0 0
\(91\) 0.771853 0.0809121
\(92\) −13.2098 −1.37722
\(93\) 0 0
\(94\) −1.65769 −0.170977
\(95\) −4.50639 −0.462346
\(96\) 0 0
\(97\) −3.92913 −0.398942 −0.199471 0.979904i \(-0.563922\pi\)
−0.199471 + 0.979904i \(0.563922\pi\)
\(98\) −1.27371 −0.128664
\(99\) 0 0
\(100\) −11.0774 −1.10774
\(101\) −13.3415 −1.32753 −0.663765 0.747941i \(-0.731043\pi\)
−0.663765 + 0.747941i \(0.731043\pi\)
\(102\) 0 0
\(103\) 6.08458 0.599531 0.299766 0.954013i \(-0.403091\pi\)
0.299766 + 0.954013i \(0.403091\pi\)
\(104\) 2.60428 0.255371
\(105\) 0 0
\(106\) −0.831036 −0.0807174
\(107\) 0.238072 0.0230153 0.0115076 0.999934i \(-0.496337\pi\)
0.0115076 + 0.999934i \(0.496337\pi\)
\(108\) 0 0
\(109\) 2.75112 0.263509 0.131755 0.991282i \(-0.457939\pi\)
0.131755 + 0.991282i \(0.457939\pi\)
\(110\) 1.74712 0.166581
\(111\) 0 0
\(112\) −0.818220 −0.0773146
\(113\) 3.14487 0.295845 0.147922 0.988999i \(-0.452741\pi\)
0.147922 + 0.988999i \(0.452741\pi\)
\(114\) 0 0
\(115\) 21.9051 2.04266
\(116\) 0 0
\(117\) 0 0
\(118\) −2.21156 −0.203591
\(119\) 1.53197 0.140436
\(120\) 0 0
\(121\) −2.44417 −0.222198
\(122\) −0.289806 −0.0262378
\(123\) 0 0
\(124\) 12.6204 1.13334
\(125\) 2.06471 0.184673
\(126\) 0 0
\(127\) −16.5567 −1.46917 −0.734585 0.678516i \(-0.762623\pi\)
−0.734585 + 0.678516i \(0.762623\pi\)
\(128\) −5.61814 −0.496578
\(129\) 0 0
\(130\) −2.14100 −0.187778
\(131\) 6.91349 0.604035 0.302017 0.953302i \(-0.402340\pi\)
0.302017 + 0.953302i \(0.402340\pi\)
\(132\) 0 0
\(133\) 0.297581 0.0258036
\(134\) −1.31593 −0.113679
\(135\) 0 0
\(136\) 5.16896 0.443235
\(137\) −8.62415 −0.736811 −0.368405 0.929665i \(-0.620096\pi\)
−0.368405 + 0.929665i \(0.620096\pi\)
\(138\) 0 0
\(139\) 18.5083 1.56986 0.784928 0.619587i \(-0.212700\pi\)
0.784928 + 0.619587i \(0.212700\pi\)
\(140\) 1.38077 0.116697
\(141\) 0 0
\(142\) 2.46189 0.206597
\(143\) −10.4847 −0.876777
\(144\) 0 0
\(145\) 0 0
\(146\) 2.54323 0.210479
\(147\) 0 0
\(148\) −12.0242 −0.988382
\(149\) −14.4166 −1.18105 −0.590527 0.807018i \(-0.701080\pi\)
−0.590527 + 0.807018i \(0.701080\pi\)
\(150\) 0 0
\(151\) −20.4202 −1.66177 −0.830885 0.556444i \(-0.812165\pi\)
−0.830885 + 0.556444i \(0.812165\pi\)
\(152\) 1.00406 0.0814398
\(153\) 0 0
\(154\) −0.115371 −0.00929689
\(155\) −20.9277 −1.68095
\(156\) 0 0
\(157\) −16.6561 −1.32930 −0.664649 0.747156i \(-0.731419\pi\)
−0.664649 + 0.747156i \(0.731419\pi\)
\(158\) 0.615420 0.0489602
\(159\) 0 0
\(160\) 7.00792 0.554025
\(161\) −1.44651 −0.114001
\(162\) 0 0
\(163\) −4.98140 −0.390173 −0.195087 0.980786i \(-0.562499\pi\)
−0.195087 + 0.980786i \(0.562499\pi\)
\(164\) 12.7875 0.998537
\(165\) 0 0
\(166\) 0.958909 0.0744258
\(167\) −10.3671 −0.802230 −0.401115 0.916028i \(-0.631377\pi\)
−0.401115 + 0.916028i \(0.631377\pi\)
\(168\) 0 0
\(169\) −0.151489 −0.0116530
\(170\) −4.24946 −0.325918
\(171\) 0 0
\(172\) −12.2859 −0.936790
\(173\) −11.1873 −0.850554 −0.425277 0.905063i \(-0.639823\pi\)
−0.425277 + 0.905063i \(0.639823\pi\)
\(174\) 0 0
\(175\) −1.21300 −0.0916943
\(176\) 11.1146 0.837793
\(177\) 0 0
\(178\) −2.37820 −0.178253
\(179\) 16.4559 1.22997 0.614985 0.788539i \(-0.289162\pi\)
0.614985 + 0.788539i \(0.289162\pi\)
\(180\) 0 0
\(181\) 22.6090 1.68051 0.840256 0.542189i \(-0.182404\pi\)
0.840256 + 0.542189i \(0.182404\pi\)
\(182\) 0.141382 0.0104799
\(183\) 0 0
\(184\) −4.88062 −0.359804
\(185\) 19.9391 1.46595
\(186\) 0 0
\(187\) −20.8101 −1.52178
\(188\) 17.7961 1.29792
\(189\) 0 0
\(190\) −0.825445 −0.0598841
\(191\) −6.08877 −0.440568 −0.220284 0.975436i \(-0.570698\pi\)
−0.220284 + 0.975436i \(0.570698\pi\)
\(192\) 0 0
\(193\) −11.7756 −0.847628 −0.423814 0.905749i \(-0.639309\pi\)
−0.423814 + 0.905749i \(0.639309\pi\)
\(194\) −0.719706 −0.0516719
\(195\) 0 0
\(196\) 13.6740 0.976711
\(197\) −5.85070 −0.416845 −0.208423 0.978039i \(-0.566833\pi\)
−0.208423 + 0.978039i \(0.566833\pi\)
\(198\) 0 0
\(199\) 7.35979 0.521722 0.260861 0.965376i \(-0.415994\pi\)
0.260861 + 0.965376i \(0.415994\pi\)
\(200\) −4.09274 −0.289401
\(201\) 0 0
\(202\) −2.44379 −0.171945
\(203\) 0 0
\(204\) 0 0
\(205\) −21.2048 −1.48101
\(206\) 1.11452 0.0776526
\(207\) 0 0
\(208\) −13.6204 −0.944402
\(209\) −4.04230 −0.279612
\(210\) 0 0
\(211\) −8.96086 −0.616891 −0.308445 0.951242i \(-0.599809\pi\)
−0.308445 + 0.951242i \(0.599809\pi\)
\(212\) 8.92161 0.612738
\(213\) 0 0
\(214\) 0.0436081 0.00298099
\(215\) 20.3730 1.38943
\(216\) 0 0
\(217\) 1.38197 0.0938140
\(218\) 0.503928 0.0341303
\(219\) 0 0
\(220\) −18.7562 −1.26454
\(221\) 25.5017 1.71543
\(222\) 0 0
\(223\) −24.3679 −1.63180 −0.815898 0.578196i \(-0.803757\pi\)
−0.815898 + 0.578196i \(0.803757\pi\)
\(224\) −0.462770 −0.0309201
\(225\) 0 0
\(226\) 0.576053 0.0383185
\(227\) 13.5151 0.897030 0.448515 0.893775i \(-0.351953\pi\)
0.448515 + 0.893775i \(0.351953\pi\)
\(228\) 0 0
\(229\) 21.5775 1.42588 0.712939 0.701226i \(-0.247364\pi\)
0.712939 + 0.701226i \(0.247364\pi\)
\(230\) 4.01241 0.264570
\(231\) 0 0
\(232\) 0 0
\(233\) 27.6676 1.81256 0.906281 0.422675i \(-0.138909\pi\)
0.906281 + 0.422675i \(0.138909\pi\)
\(234\) 0 0
\(235\) −29.5103 −1.92504
\(236\) 23.7423 1.54549
\(237\) 0 0
\(238\) 0.280614 0.0181895
\(239\) 25.3247 1.63812 0.819058 0.573711i \(-0.194497\pi\)
0.819058 + 0.573711i \(0.194497\pi\)
\(240\) 0 0
\(241\) 20.8831 1.34520 0.672598 0.740008i \(-0.265178\pi\)
0.672598 + 0.740008i \(0.265178\pi\)
\(242\) −0.447705 −0.0287795
\(243\) 0 0
\(244\) 3.11122 0.199175
\(245\) −22.6748 −1.44864
\(246\) 0 0
\(247\) 4.95363 0.315192
\(248\) 4.66284 0.296091
\(249\) 0 0
\(250\) 0.378197 0.0239193
\(251\) −9.97440 −0.629578 −0.314789 0.949162i \(-0.601934\pi\)
−0.314789 + 0.949162i \(0.601934\pi\)
\(252\) 0 0
\(253\) 19.6492 1.23534
\(254\) −3.03273 −0.190290
\(255\) 0 0
\(256\) 13.3829 0.836428
\(257\) 5.04570 0.314742 0.157371 0.987540i \(-0.449698\pi\)
0.157371 + 0.987540i \(0.449698\pi\)
\(258\) 0 0
\(259\) −1.31668 −0.0818147
\(260\) 22.9848 1.42546
\(261\) 0 0
\(262\) 1.26636 0.0782359
\(263\) 15.1575 0.934652 0.467326 0.884085i \(-0.345217\pi\)
0.467326 + 0.884085i \(0.345217\pi\)
\(264\) 0 0
\(265\) −14.7942 −0.908802
\(266\) 0.0545085 0.00334213
\(267\) 0 0
\(268\) 14.1272 0.862955
\(269\) 7.83550 0.477739 0.238869 0.971052i \(-0.423223\pi\)
0.238869 + 0.971052i \(0.423223\pi\)
\(270\) 0 0
\(271\) −18.6054 −1.13020 −0.565099 0.825023i \(-0.691162\pi\)
−0.565099 + 0.825023i \(0.691162\pi\)
\(272\) −27.0337 −1.63916
\(273\) 0 0
\(274\) −1.57970 −0.0954333
\(275\) 16.4772 0.993615
\(276\) 0 0
\(277\) −1.37292 −0.0824908 −0.0412454 0.999149i \(-0.513133\pi\)
−0.0412454 + 0.999149i \(0.513133\pi\)
\(278\) 3.39021 0.203331
\(279\) 0 0
\(280\) 0.510153 0.0304875
\(281\) 9.28350 0.553807 0.276904 0.960898i \(-0.410692\pi\)
0.276904 + 0.960898i \(0.410692\pi\)
\(282\) 0 0
\(283\) −15.7164 −0.934245 −0.467123 0.884193i \(-0.654709\pi\)
−0.467123 + 0.884193i \(0.654709\pi\)
\(284\) −26.4296 −1.56831
\(285\) 0 0
\(286\) −1.92051 −0.113562
\(287\) 1.40027 0.0826553
\(288\) 0 0
\(289\) 33.6157 1.97739
\(290\) 0 0
\(291\) 0 0
\(292\) −27.3029 −1.59778
\(293\) −26.3891 −1.54167 −0.770834 0.637036i \(-0.780160\pi\)
−0.770834 + 0.637036i \(0.780160\pi\)
\(294\) 0 0
\(295\) −39.3705 −2.29224
\(296\) −4.44257 −0.258219
\(297\) 0 0
\(298\) −2.64072 −0.152973
\(299\) −24.0791 −1.39253
\(300\) 0 0
\(301\) −1.34534 −0.0775441
\(302\) −3.74041 −0.215236
\(303\) 0 0
\(304\) −5.25121 −0.301178
\(305\) −5.15917 −0.295413
\(306\) 0 0
\(307\) −9.16136 −0.522866 −0.261433 0.965222i \(-0.584195\pi\)
−0.261433 + 0.965222i \(0.584195\pi\)
\(308\) 1.23857 0.0705742
\(309\) 0 0
\(310\) −3.83337 −0.217721
\(311\) 14.1374 0.801657 0.400828 0.916153i \(-0.368722\pi\)
0.400828 + 0.916153i \(0.368722\pi\)
\(312\) 0 0
\(313\) −12.7558 −0.720999 −0.360500 0.932759i \(-0.617394\pi\)
−0.360500 + 0.932759i \(0.617394\pi\)
\(314\) −3.05092 −0.172174
\(315\) 0 0
\(316\) −6.60685 −0.371664
\(317\) 17.4394 0.979493 0.489747 0.871865i \(-0.337089\pi\)
0.489747 + 0.871865i \(0.337089\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −23.4976 −1.31356
\(321\) 0 0
\(322\) −0.264961 −0.0147657
\(323\) 9.83195 0.547065
\(324\) 0 0
\(325\) −20.1920 −1.12005
\(326\) −0.912453 −0.0505361
\(327\) 0 0
\(328\) 4.72459 0.260872
\(329\) 1.94873 0.107437
\(330\) 0 0
\(331\) −24.4053 −1.34144 −0.670720 0.741711i \(-0.734015\pi\)
−0.670720 + 0.741711i \(0.734015\pi\)
\(332\) −10.2944 −0.564978
\(333\) 0 0
\(334\) −1.89896 −0.103907
\(335\) −23.4263 −1.27992
\(336\) 0 0
\(337\) −0.660946 −0.0360040 −0.0180020 0.999838i \(-0.505731\pi\)
−0.0180020 + 0.999838i \(0.505731\pi\)
\(338\) −0.0277485 −0.00150932
\(339\) 0 0
\(340\) 45.6201 2.47410
\(341\) −18.7724 −1.01658
\(342\) 0 0
\(343\) 3.00466 0.162236
\(344\) −4.53926 −0.244741
\(345\) 0 0
\(346\) −2.04920 −0.110166
\(347\) −24.1703 −1.29753 −0.648765 0.760989i \(-0.724714\pi\)
−0.648765 + 0.760989i \(0.724714\pi\)
\(348\) 0 0
\(349\) 2.29727 0.122970 0.0614849 0.998108i \(-0.480416\pi\)
0.0614849 + 0.998108i \(0.480416\pi\)
\(350\) −0.222188 −0.0118765
\(351\) 0 0
\(352\) 6.28621 0.335056
\(353\) −23.1694 −1.23318 −0.616592 0.787283i \(-0.711487\pi\)
−0.616592 + 0.787283i \(0.711487\pi\)
\(354\) 0 0
\(355\) 43.8268 2.32609
\(356\) 25.5312 1.35315
\(357\) 0 0
\(358\) 3.01426 0.159308
\(359\) −28.0233 −1.47901 −0.739506 0.673150i \(-0.764941\pi\)
−0.739506 + 0.673150i \(0.764941\pi\)
\(360\) 0 0
\(361\) −17.0902 −0.899483
\(362\) 4.14134 0.217664
\(363\) 0 0
\(364\) −1.51781 −0.0795548
\(365\) 45.2750 2.36980
\(366\) 0 0
\(367\) −20.8182 −1.08670 −0.543351 0.839506i \(-0.682845\pi\)
−0.543351 + 0.839506i \(0.682845\pi\)
\(368\) 25.5256 1.33062
\(369\) 0 0
\(370\) 3.65228 0.189873
\(371\) 0.976941 0.0507203
\(372\) 0 0
\(373\) −4.60107 −0.238234 −0.119117 0.992880i \(-0.538006\pi\)
−0.119117 + 0.992880i \(0.538006\pi\)
\(374\) −3.81182 −0.197105
\(375\) 0 0
\(376\) 6.57512 0.339086
\(377\) 0 0
\(378\) 0 0
\(379\) 3.56029 0.182880 0.0914399 0.995811i \(-0.470853\pi\)
0.0914399 + 0.995811i \(0.470853\pi\)
\(380\) 8.86158 0.454590
\(381\) 0 0
\(382\) −1.11529 −0.0570634
\(383\) 19.8155 1.01252 0.506262 0.862380i \(-0.331027\pi\)
0.506262 + 0.862380i \(0.331027\pi\)
\(384\) 0 0
\(385\) −2.05386 −0.104674
\(386\) −2.15697 −0.109787
\(387\) 0 0
\(388\) 7.72642 0.392250
\(389\) 29.6983 1.50576 0.752882 0.658155i \(-0.228663\pi\)
0.752882 + 0.658155i \(0.228663\pi\)
\(390\) 0 0
\(391\) −47.7922 −2.41695
\(392\) 5.05211 0.255170
\(393\) 0 0
\(394\) −1.07169 −0.0539907
\(395\) 10.9558 0.551246
\(396\) 0 0
\(397\) −3.28011 −0.164624 −0.0823119 0.996607i \(-0.526230\pi\)
−0.0823119 + 0.996607i \(0.526230\pi\)
\(398\) 1.34811 0.0675745
\(399\) 0 0
\(400\) 21.4050 1.07025
\(401\) −25.8859 −1.29268 −0.646339 0.763050i \(-0.723701\pi\)
−0.646339 + 0.763050i \(0.723701\pi\)
\(402\) 0 0
\(403\) 23.0047 1.14594
\(404\) 26.2354 1.30526
\(405\) 0 0
\(406\) 0 0
\(407\) 17.8856 0.886558
\(408\) 0 0
\(409\) −30.7354 −1.51977 −0.759883 0.650060i \(-0.774744\pi\)
−0.759883 + 0.650060i \(0.774744\pi\)
\(410\) −3.88414 −0.191824
\(411\) 0 0
\(412\) −11.9650 −0.589474
\(413\) 2.59985 0.127930
\(414\) 0 0
\(415\) 17.0706 0.837965
\(416\) −7.70343 −0.377692
\(417\) 0 0
\(418\) −0.740436 −0.0362159
\(419\) −9.64429 −0.471155 −0.235577 0.971856i \(-0.575698\pi\)
−0.235577 + 0.971856i \(0.575698\pi\)
\(420\) 0 0
\(421\) −29.4135 −1.43352 −0.716762 0.697318i \(-0.754377\pi\)
−0.716762 + 0.697318i \(0.754377\pi\)
\(422\) −1.64138 −0.0799011
\(423\) 0 0
\(424\) 3.29626 0.160081
\(425\) −40.0771 −1.94402
\(426\) 0 0
\(427\) 0.340688 0.0164870
\(428\) −0.468156 −0.0226292
\(429\) 0 0
\(430\) 3.73177 0.179962
\(431\) −10.2903 −0.495668 −0.247834 0.968803i \(-0.579719\pi\)
−0.247834 + 0.968803i \(0.579719\pi\)
\(432\) 0 0
\(433\) −26.7403 −1.28506 −0.642529 0.766262i \(-0.722115\pi\)
−0.642529 + 0.766262i \(0.722115\pi\)
\(434\) 0.253138 0.0121510
\(435\) 0 0
\(436\) −5.40993 −0.259089
\(437\) −9.28350 −0.444090
\(438\) 0 0
\(439\) −1.28671 −0.0614112 −0.0307056 0.999528i \(-0.509775\pi\)
−0.0307056 + 0.999528i \(0.509775\pi\)
\(440\) −6.92985 −0.330367
\(441\) 0 0
\(442\) 4.67120 0.222186
\(443\) −29.3364 −1.39382 −0.696908 0.717161i \(-0.745441\pi\)
−0.696908 + 0.717161i \(0.745441\pi\)
\(444\) 0 0
\(445\) −42.3370 −2.00697
\(446\) −4.46352 −0.211354
\(447\) 0 0
\(448\) 1.55167 0.0733097
\(449\) −26.7561 −1.26270 −0.631349 0.775499i \(-0.717498\pi\)
−0.631349 + 0.775499i \(0.717498\pi\)
\(450\) 0 0
\(451\) −19.0211 −0.895666
\(452\) −6.18423 −0.290882
\(453\) 0 0
\(454\) 2.47559 0.116185
\(455\) 2.51690 0.117994
\(456\) 0 0
\(457\) 29.0329 1.35810 0.679052 0.734090i \(-0.262391\pi\)
0.679052 + 0.734090i \(0.262391\pi\)
\(458\) 3.95239 0.184683
\(459\) 0 0
\(460\) −43.0753 −2.00840
\(461\) 23.9508 1.11550 0.557751 0.830008i \(-0.311664\pi\)
0.557751 + 0.830008i \(0.311664\pi\)
\(462\) 0 0
\(463\) 22.8040 1.05979 0.529895 0.848063i \(-0.322231\pi\)
0.529895 + 0.848063i \(0.322231\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 5.06793 0.234767
\(467\) −8.10901 −0.375240 −0.187620 0.982242i \(-0.560077\pi\)
−0.187620 + 0.982242i \(0.560077\pi\)
\(468\) 0 0
\(469\) 1.54697 0.0714323
\(470\) −5.40547 −0.249336
\(471\) 0 0
\(472\) 8.77205 0.403766
\(473\) 18.2749 0.840281
\(474\) 0 0
\(475\) −7.78486 −0.357194
\(476\) −3.01254 −0.138080
\(477\) 0 0
\(478\) 4.63877 0.212172
\(479\) 23.1307 1.05687 0.528433 0.848975i \(-0.322780\pi\)
0.528433 + 0.848975i \(0.322780\pi\)
\(480\) 0 0
\(481\) −21.9179 −0.999372
\(482\) 3.82520 0.174233
\(483\) 0 0
\(484\) 4.80634 0.218470
\(485\) −12.8123 −0.581777
\(486\) 0 0
\(487\) −8.24795 −0.373750 −0.186875 0.982384i \(-0.559836\pi\)
−0.186875 + 0.982384i \(0.559836\pi\)
\(488\) 1.14950 0.0520355
\(489\) 0 0
\(490\) −4.15339 −0.187631
\(491\) −39.1461 −1.76664 −0.883319 0.468772i \(-0.844697\pi\)
−0.883319 + 0.468772i \(0.844697\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.907367 0.0408244
\(495\) 0 0
\(496\) −24.3866 −1.09499
\(497\) −2.89412 −0.129819
\(498\) 0 0
\(499\) −21.5288 −0.963759 −0.481880 0.876237i \(-0.660046\pi\)
−0.481880 + 0.876237i \(0.660046\pi\)
\(500\) −4.06014 −0.181575
\(501\) 0 0
\(502\) −1.82703 −0.0815444
\(503\) −11.5903 −0.516788 −0.258394 0.966040i \(-0.583193\pi\)
−0.258394 + 0.966040i \(0.583193\pi\)
\(504\) 0 0
\(505\) −43.5048 −1.93594
\(506\) 3.59919 0.160003
\(507\) 0 0
\(508\) 32.5579 1.44452
\(509\) 1.59645 0.0707612 0.0353806 0.999374i \(-0.488736\pi\)
0.0353806 + 0.999374i \(0.488736\pi\)
\(510\) 0 0
\(511\) −2.98975 −0.132259
\(512\) 13.6877 0.604914
\(513\) 0 0
\(514\) 0.924231 0.0407661
\(515\) 19.8409 0.874296
\(516\) 0 0
\(517\) −26.4712 −1.16420
\(518\) −0.241180 −0.0105968
\(519\) 0 0
\(520\) 8.49218 0.372407
\(521\) −9.45950 −0.414428 −0.207214 0.978296i \(-0.566440\pi\)
−0.207214 + 0.978296i \(0.566440\pi\)
\(522\) 0 0
\(523\) −31.9147 −1.39553 −0.697766 0.716326i \(-0.745822\pi\)
−0.697766 + 0.716326i \(0.745822\pi\)
\(524\) −13.5950 −0.593901
\(525\) 0 0
\(526\) 2.77643 0.121058
\(527\) 45.6596 1.98896
\(528\) 0 0
\(529\) 22.1262 0.962007
\(530\) −2.70989 −0.117710
\(531\) 0 0
\(532\) −0.585178 −0.0253707
\(533\) 23.3093 1.00964
\(534\) 0 0
\(535\) 0.776318 0.0335631
\(536\) 5.21956 0.225451
\(537\) 0 0
\(538\) 1.43524 0.0618778
\(539\) −20.3396 −0.876089
\(540\) 0 0
\(541\) −4.49299 −0.193169 −0.0965844 0.995325i \(-0.530792\pi\)
−0.0965844 + 0.995325i \(0.530792\pi\)
\(542\) −3.40799 −0.146386
\(543\) 0 0
\(544\) −15.2897 −0.655542
\(545\) 8.97099 0.384275
\(546\) 0 0
\(547\) 23.3569 0.998669 0.499335 0.866409i \(-0.333578\pi\)
0.499335 + 0.866409i \(0.333578\pi\)
\(548\) 16.9589 0.724450
\(549\) 0 0
\(550\) 3.01817 0.128695
\(551\) 0 0
\(552\) 0 0
\(553\) −0.723469 −0.0307650
\(554\) −0.251481 −0.0106844
\(555\) 0 0
\(556\) −36.3957 −1.54352
\(557\) 4.50084 0.190707 0.0953534 0.995443i \(-0.469602\pi\)
0.0953534 + 0.995443i \(0.469602\pi\)
\(558\) 0 0
\(559\) −22.3950 −0.947207
\(560\) −2.66810 −0.112748
\(561\) 0 0
\(562\) 1.70048 0.0717303
\(563\) −31.1391 −1.31236 −0.656179 0.754606i \(-0.727828\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(564\) 0 0
\(565\) 10.2550 0.431430
\(566\) −2.87881 −0.121006
\(567\) 0 0
\(568\) −9.76494 −0.409728
\(569\) −10.1235 −0.424398 −0.212199 0.977226i \(-0.568063\pi\)
−0.212199 + 0.977226i \(0.568063\pi\)
\(570\) 0 0
\(571\) 8.61244 0.360420 0.180210 0.983628i \(-0.442322\pi\)
0.180210 + 0.983628i \(0.442322\pi\)
\(572\) 20.6177 0.862069
\(573\) 0 0
\(574\) 0.256490 0.0107057
\(575\) 37.8415 1.57810
\(576\) 0 0
\(577\) 2.97518 0.123858 0.0619292 0.998081i \(-0.480275\pi\)
0.0619292 + 0.998081i \(0.480275\pi\)
\(578\) 6.15745 0.256116
\(579\) 0 0
\(580\) 0 0
\(581\) −1.12727 −0.0467668
\(582\) 0 0
\(583\) −13.2706 −0.549613
\(584\) −10.0876 −0.417428
\(585\) 0 0
\(586\) −4.83375 −0.199680
\(587\) 1.66166 0.0685840 0.0342920 0.999412i \(-0.489082\pi\)
0.0342920 + 0.999412i \(0.489082\pi\)
\(588\) 0 0
\(589\) 8.86925 0.365451
\(590\) −7.21159 −0.296896
\(591\) 0 0
\(592\) 23.2346 0.954937
\(593\) 14.5417 0.597157 0.298579 0.954385i \(-0.403488\pi\)
0.298579 + 0.954385i \(0.403488\pi\)
\(594\) 0 0
\(595\) 4.99553 0.204797
\(596\) 28.3495 1.16124
\(597\) 0 0
\(598\) −4.41062 −0.180364
\(599\) 44.6964 1.82625 0.913123 0.407684i \(-0.133664\pi\)
0.913123 + 0.407684i \(0.133664\pi\)
\(600\) 0 0
\(601\) 2.47245 0.100853 0.0504267 0.998728i \(-0.483942\pi\)
0.0504267 + 0.998728i \(0.483942\pi\)
\(602\) −0.246429 −0.0100437
\(603\) 0 0
\(604\) 40.1552 1.63389
\(605\) −7.97010 −0.324031
\(606\) 0 0
\(607\) −32.7470 −1.32916 −0.664581 0.747216i \(-0.731390\pi\)
−0.664581 + 0.747216i \(0.731390\pi\)
\(608\) −2.96999 −0.120449
\(609\) 0 0
\(610\) −0.945016 −0.0382626
\(611\) 32.4391 1.31235
\(612\) 0 0
\(613\) 0.487087 0.0196733 0.00983663 0.999952i \(-0.496869\pi\)
0.00983663 + 0.999952i \(0.496869\pi\)
\(614\) −1.67810 −0.0677228
\(615\) 0 0
\(616\) 0.457615 0.0184378
\(617\) 22.3660 0.900420 0.450210 0.892923i \(-0.351349\pi\)
0.450210 + 0.892923i \(0.351349\pi\)
\(618\) 0 0
\(619\) 20.0488 0.805828 0.402914 0.915238i \(-0.367997\pi\)
0.402914 + 0.915238i \(0.367997\pi\)
\(620\) 41.1532 1.65275
\(621\) 0 0
\(622\) 2.58957 0.103832
\(623\) 2.79574 0.112009
\(624\) 0 0
\(625\) −21.4332 −0.857327
\(626\) −2.33650 −0.0933854
\(627\) 0 0
\(628\) 32.7533 1.30700
\(629\) −43.5027 −1.73456
\(630\) 0 0
\(631\) −4.35043 −0.173188 −0.0865939 0.996244i \(-0.527598\pi\)
−0.0865939 + 0.996244i \(0.527598\pi\)
\(632\) −2.44103 −0.0970990
\(633\) 0 0
\(634\) 3.19441 0.126866
\(635\) −53.9891 −2.14249
\(636\) 0 0
\(637\) 24.9252 0.987571
\(638\) 0 0
\(639\) 0 0
\(640\) −18.3200 −0.724160
\(641\) 47.0709 1.85919 0.929594 0.368586i \(-0.120158\pi\)
0.929594 + 0.368586i \(0.120158\pi\)
\(642\) 0 0
\(643\) 27.6486 1.09036 0.545178 0.838320i \(-0.316462\pi\)
0.545178 + 0.838320i \(0.316462\pi\)
\(644\) 2.84449 0.112089
\(645\) 0 0
\(646\) 1.80094 0.0708570
\(647\) 13.4530 0.528891 0.264445 0.964401i \(-0.414811\pi\)
0.264445 + 0.964401i \(0.414811\pi\)
\(648\) 0 0
\(649\) −35.3159 −1.38627
\(650\) −3.69862 −0.145072
\(651\) 0 0
\(652\) 9.79566 0.383628
\(653\) −17.8470 −0.698407 −0.349203 0.937047i \(-0.613548\pi\)
−0.349203 + 0.937047i \(0.613548\pi\)
\(654\) 0 0
\(655\) 22.5439 0.880863
\(656\) −24.7096 −0.964748
\(657\) 0 0
\(658\) 0.356952 0.0139154
\(659\) −42.0430 −1.63776 −0.818882 0.573963i \(-0.805406\pi\)
−0.818882 + 0.573963i \(0.805406\pi\)
\(660\) 0 0
\(661\) 2.10493 0.0818724 0.0409362 0.999162i \(-0.486966\pi\)
0.0409362 + 0.999162i \(0.486966\pi\)
\(662\) −4.47038 −0.173746
\(663\) 0 0
\(664\) −3.80346 −0.147603
\(665\) 0.970369 0.0376293
\(666\) 0 0
\(667\) 0 0
\(668\) 20.3864 0.788772
\(669\) 0 0
\(670\) −4.29105 −0.165778
\(671\) −4.62785 −0.178656
\(672\) 0 0
\(673\) 20.6268 0.795106 0.397553 0.917579i \(-0.369859\pi\)
0.397553 + 0.917579i \(0.369859\pi\)
\(674\) −0.121067 −0.00466332
\(675\) 0 0
\(676\) 0.297895 0.0114575
\(677\) 39.0923 1.50244 0.751219 0.660053i \(-0.229466\pi\)
0.751219 + 0.660053i \(0.229466\pi\)
\(678\) 0 0
\(679\) 0.846065 0.0324690
\(680\) 16.8552 0.646369
\(681\) 0 0
\(682\) −3.43858 −0.131670
\(683\) 18.1402 0.694114 0.347057 0.937844i \(-0.387181\pi\)
0.347057 + 0.937844i \(0.387181\pi\)
\(684\) 0 0
\(685\) −28.1221 −1.07449
\(686\) 0.550370 0.0210132
\(687\) 0 0
\(688\) 23.7403 0.905091
\(689\) 16.2625 0.619551
\(690\) 0 0
\(691\) −3.25680 −0.123895 −0.0619473 0.998079i \(-0.519731\pi\)
−0.0619473 + 0.998079i \(0.519731\pi\)
\(692\) 21.9992 0.836285
\(693\) 0 0
\(694\) −4.42732 −0.168059
\(695\) 60.3530 2.28932
\(696\) 0 0
\(697\) 46.2643 1.75239
\(698\) 0.420795 0.0159273
\(699\) 0 0
\(700\) 2.38531 0.0901561
\(701\) −32.3256 −1.22092 −0.610460 0.792047i \(-0.709015\pi\)
−0.610460 + 0.792047i \(0.709015\pi\)
\(702\) 0 0
\(703\) −8.45027 −0.318708
\(704\) −21.0777 −0.794396
\(705\) 0 0
\(706\) −4.24399 −0.159725
\(707\) 2.87285 0.108045
\(708\) 0 0
\(709\) −33.1286 −1.24417 −0.622085 0.782950i \(-0.713714\pi\)
−0.622085 + 0.782950i \(0.713714\pi\)
\(710\) 8.02785 0.301280
\(711\) 0 0
\(712\) 9.43299 0.353516
\(713\) −43.1125 −1.61458
\(714\) 0 0
\(715\) −34.1892 −1.27860
\(716\) −32.3596 −1.20934
\(717\) 0 0
\(718\) −5.13308 −0.191565
\(719\) 28.9305 1.07892 0.539462 0.842010i \(-0.318627\pi\)
0.539462 + 0.842010i \(0.318627\pi\)
\(720\) 0 0
\(721\) −1.31020 −0.0487945
\(722\) −3.13044 −0.116503
\(723\) 0 0
\(724\) −44.4594 −1.65232
\(725\) 0 0
\(726\) 0 0
\(727\) −22.6821 −0.841231 −0.420616 0.907239i \(-0.638186\pi\)
−0.420616 + 0.907239i \(0.638186\pi\)
\(728\) −0.560784 −0.0207840
\(729\) 0 0
\(730\) 8.29312 0.306942
\(731\) −44.4495 −1.64402
\(732\) 0 0
\(733\) −9.98505 −0.368806 −0.184403 0.982851i \(-0.559035\pi\)
−0.184403 + 0.982851i \(0.559035\pi\)
\(734\) −3.81332 −0.140752
\(735\) 0 0
\(736\) 14.4368 0.532149
\(737\) −21.0138 −0.774052
\(738\) 0 0
\(739\) 9.80051 0.360518 0.180259 0.983619i \(-0.442306\pi\)
0.180259 + 0.983619i \(0.442306\pi\)
\(740\) −39.2092 −1.44136
\(741\) 0 0
\(742\) 0.178948 0.00656940
\(743\) −50.7572 −1.86210 −0.931051 0.364888i \(-0.881107\pi\)
−0.931051 + 0.364888i \(0.881107\pi\)
\(744\) 0 0
\(745\) −47.0104 −1.72233
\(746\) −0.842787 −0.0308566
\(747\) 0 0
\(748\) 40.9219 1.49625
\(749\) −0.0512644 −0.00187316
\(750\) 0 0
\(751\) 0.556715 0.0203148 0.0101574 0.999948i \(-0.496767\pi\)
0.0101574 + 0.999948i \(0.496767\pi\)
\(752\) −34.3879 −1.25400
\(753\) 0 0
\(754\) 0 0
\(755\) −66.5872 −2.42336
\(756\) 0 0
\(757\) 38.4699 1.39821 0.699106 0.715018i \(-0.253582\pi\)
0.699106 + 0.715018i \(0.253582\pi\)
\(758\) 0.652146 0.0236870
\(759\) 0 0
\(760\) 3.27409 0.118764
\(761\) −13.4890 −0.488977 −0.244489 0.969652i \(-0.578620\pi\)
−0.244489 + 0.969652i \(0.578620\pi\)
\(762\) 0 0
\(763\) −0.592403 −0.0214464
\(764\) 11.9733 0.433177
\(765\) 0 0
\(766\) 3.62965 0.131144
\(767\) 43.2779 1.56267
\(768\) 0 0
\(769\) 29.5712 1.06637 0.533183 0.846000i \(-0.320996\pi\)
0.533183 + 0.846000i \(0.320996\pi\)
\(770\) −0.376209 −0.0135576
\(771\) 0 0
\(772\) 23.1561 0.833408
\(773\) 17.8469 0.641908 0.320954 0.947095i \(-0.395997\pi\)
0.320954 + 0.947095i \(0.395997\pi\)
\(774\) 0 0
\(775\) −36.1529 −1.29865
\(776\) 2.85468 0.102477
\(777\) 0 0
\(778\) 5.43990 0.195030
\(779\) 8.98671 0.321982
\(780\) 0 0
\(781\) 39.3133 1.40674
\(782\) −8.75419 −0.313049
\(783\) 0 0
\(784\) −26.4225 −0.943661
\(785\) −54.3130 −1.93851
\(786\) 0 0
\(787\) −24.8647 −0.886330 −0.443165 0.896440i \(-0.646144\pi\)
−0.443165 + 0.896440i \(0.646144\pi\)
\(788\) 11.5051 0.409852
\(789\) 0 0
\(790\) 2.00679 0.0713986
\(791\) −0.677191 −0.0240781
\(792\) 0 0
\(793\) 5.67120 0.201390
\(794\) −0.600824 −0.0213224
\(795\) 0 0
\(796\) −14.4726 −0.512969
\(797\) −16.4041 −0.581062 −0.290531 0.956866i \(-0.593832\pi\)
−0.290531 + 0.956866i \(0.593832\pi\)
\(798\) 0 0
\(799\) 64.3851 2.27778
\(800\) 12.1063 0.428022
\(801\) 0 0
\(802\) −4.74157 −0.167431
\(803\) 40.6123 1.43318
\(804\) 0 0
\(805\) −4.71687 −0.166248
\(806\) 4.21381 0.148425
\(807\) 0 0
\(808\) 9.69318 0.341005
\(809\) −6.14159 −0.215927 −0.107963 0.994155i \(-0.534433\pi\)
−0.107963 + 0.994155i \(0.534433\pi\)
\(810\) 0 0
\(811\) 9.01608 0.316597 0.158299 0.987391i \(-0.449399\pi\)
0.158299 + 0.987391i \(0.449399\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3.27615 0.114829
\(815\) −16.2436 −0.568989
\(816\) 0 0
\(817\) −8.63419 −0.302072
\(818\) −5.62986 −0.196843
\(819\) 0 0
\(820\) 41.6982 1.45617
\(821\) −2.27437 −0.0793762 −0.0396881 0.999212i \(-0.512636\pi\)
−0.0396881 + 0.999212i \(0.512636\pi\)
\(822\) 0 0
\(823\) 0.873948 0.0304639 0.0152320 0.999884i \(-0.495151\pi\)
0.0152320 + 0.999884i \(0.495151\pi\)
\(824\) −4.42071 −0.154003
\(825\) 0 0
\(826\) 0.476219 0.0165698
\(827\) 10.5733 0.367668 0.183834 0.982957i \(-0.441149\pi\)
0.183834 + 0.982957i \(0.441149\pi\)
\(828\) 0 0
\(829\) 12.3245 0.428049 0.214024 0.976828i \(-0.431343\pi\)
0.214024 + 0.976828i \(0.431343\pi\)
\(830\) 3.12686 0.108535
\(831\) 0 0
\(832\) 25.8297 0.895483
\(833\) 49.4714 1.71408
\(834\) 0 0
\(835\) −33.8056 −1.16989
\(836\) 7.94897 0.274921
\(837\) 0 0
\(838\) −1.76657 −0.0610250
\(839\) −5.10166 −0.176129 −0.0880644 0.996115i \(-0.528068\pi\)
−0.0880644 + 0.996115i \(0.528068\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −5.38772 −0.185673
\(843\) 0 0
\(844\) 17.6211 0.606542
\(845\) −0.493984 −0.0169936
\(846\) 0 0
\(847\) 0.526308 0.0180842
\(848\) −17.2394 −0.592004
\(849\) 0 0
\(850\) −7.34100 −0.251794
\(851\) 41.0760 1.40807
\(852\) 0 0
\(853\) −3.94074 −0.134928 −0.0674642 0.997722i \(-0.521491\pi\)
−0.0674642 + 0.997722i \(0.521491\pi\)
\(854\) 0.0624044 0.00213544
\(855\) 0 0
\(856\) −0.172969 −0.00591197
\(857\) 17.7219 0.605369 0.302685 0.953091i \(-0.402117\pi\)
0.302685 + 0.953091i \(0.402117\pi\)
\(858\) 0 0
\(859\) 17.2468 0.588454 0.294227 0.955736i \(-0.404938\pi\)
0.294227 + 0.955736i \(0.404938\pi\)
\(860\) −40.0625 −1.36612
\(861\) 0 0
\(862\) −1.88490 −0.0642000
\(863\) −6.44660 −0.219445 −0.109722 0.993962i \(-0.534996\pi\)
−0.109722 + 0.993962i \(0.534996\pi\)
\(864\) 0 0
\(865\) −36.4801 −1.24036
\(866\) −4.89808 −0.166444
\(867\) 0 0
\(868\) −2.71756 −0.0922401
\(869\) 9.82750 0.333375
\(870\) 0 0
\(871\) 25.7513 0.872550
\(872\) −1.99880 −0.0676880
\(873\) 0 0
\(874\) −1.70048 −0.0575195
\(875\) −0.444597 −0.0150301
\(876\) 0 0
\(877\) −38.1105 −1.28690 −0.643450 0.765488i \(-0.722497\pi\)
−0.643450 + 0.765488i \(0.722497\pi\)
\(878\) −0.235689 −0.00795411
\(879\) 0 0
\(880\) 36.2431 1.22175
\(881\) −5.81612 −0.195950 −0.0979750 0.995189i \(-0.531237\pi\)
−0.0979750 + 0.995189i \(0.531237\pi\)
\(882\) 0 0
\(883\) 34.6346 1.16555 0.582774 0.812634i \(-0.301967\pi\)
0.582774 + 0.812634i \(0.301967\pi\)
\(884\) −50.1477 −1.68665
\(885\) 0 0
\(886\) −5.37362 −0.180530
\(887\) −4.44026 −0.149089 −0.0745447 0.997218i \(-0.523750\pi\)
−0.0745447 + 0.997218i \(0.523750\pi\)
\(888\) 0 0
\(889\) 3.56519 0.119572
\(890\) −7.75496 −0.259947
\(891\) 0 0
\(892\) 47.9182 1.60442
\(893\) 12.5066 0.418518
\(894\) 0 0
\(895\) 53.6602 1.79366
\(896\) 1.20976 0.0404154
\(897\) 0 0
\(898\) −4.90097 −0.163547
\(899\) 0 0
\(900\) 0 0
\(901\) 32.2777 1.07533
\(902\) −3.48413 −0.116009
\(903\) 0 0
\(904\) −2.28489 −0.0759942
\(905\) 73.7246 2.45069
\(906\) 0 0
\(907\) 48.7959 1.62024 0.810121 0.586262i \(-0.199401\pi\)
0.810121 + 0.586262i \(0.199401\pi\)
\(908\) −26.5768 −0.881981
\(909\) 0 0
\(910\) 0.461026 0.0152829
\(911\) −13.4600 −0.445950 −0.222975 0.974824i \(-0.571577\pi\)
−0.222975 + 0.974824i \(0.571577\pi\)
\(912\) 0 0
\(913\) 15.3126 0.506773
\(914\) 5.31802 0.175905
\(915\) 0 0
\(916\) −42.4309 −1.40196
\(917\) −1.48869 −0.0491610
\(918\) 0 0
\(919\) −3.71411 −0.122517 −0.0612586 0.998122i \(-0.519511\pi\)
−0.0612586 + 0.998122i \(0.519511\pi\)
\(920\) −15.9150 −0.524702
\(921\) 0 0
\(922\) 4.38713 0.144482
\(923\) −48.1765 −1.58575
\(924\) 0 0
\(925\) 34.4451 1.13255
\(926\) 4.17705 0.137266
\(927\) 0 0
\(928\) 0 0
\(929\) 6.54651 0.214784 0.107392 0.994217i \(-0.465750\pi\)
0.107392 + 0.994217i \(0.465750\pi\)
\(930\) 0 0
\(931\) 9.60968 0.314945
\(932\) −54.4068 −1.78216
\(933\) 0 0
\(934\) −1.48534 −0.0486019
\(935\) −67.8586 −2.21921
\(936\) 0 0
\(937\) −40.1304 −1.31100 −0.655502 0.755193i \(-0.727543\pi\)
−0.655502 + 0.755193i \(0.727543\pi\)
\(938\) 0.283361 0.00925207
\(939\) 0 0
\(940\) 58.0306 1.89275
\(941\) 4.22105 0.137602 0.0688012 0.997630i \(-0.478083\pi\)
0.0688012 + 0.997630i \(0.478083\pi\)
\(942\) 0 0
\(943\) −43.6835 −1.42253
\(944\) −45.8778 −1.49319
\(945\) 0 0
\(946\) 3.34745 0.108835
\(947\) −10.7656 −0.349836 −0.174918 0.984583i \(-0.555966\pi\)
−0.174918 + 0.984583i \(0.555966\pi\)
\(948\) 0 0
\(949\) −49.7684 −1.61555
\(950\) −1.42597 −0.0462646
\(951\) 0 0
\(952\) −1.11304 −0.0360739
\(953\) 37.2593 1.20695 0.603474 0.797383i \(-0.293783\pi\)
0.603474 + 0.797383i \(0.293783\pi\)
\(954\) 0 0
\(955\) −19.8546 −0.642480
\(956\) −49.7996 −1.61063
\(957\) 0 0
\(958\) 4.23689 0.136888
\(959\) 1.85705 0.0599673
\(960\) 0 0
\(961\) 10.1888 0.328670
\(962\) −4.01476 −0.129441
\(963\) 0 0
\(964\) −41.0655 −1.32263
\(965\) −38.3986 −1.23609
\(966\) 0 0
\(967\) −13.6210 −0.438022 −0.219011 0.975722i \(-0.570283\pi\)
−0.219011 + 0.975722i \(0.570283\pi\)
\(968\) 1.77580 0.0570763
\(969\) 0 0
\(970\) −2.34686 −0.0753531
\(971\) −26.5860 −0.853186 −0.426593 0.904444i \(-0.640286\pi\)
−0.426593 + 0.904444i \(0.640286\pi\)
\(972\) 0 0
\(973\) −3.98543 −0.127767
\(974\) −1.51079 −0.0484090
\(975\) 0 0
\(976\) −6.01188 −0.192436
\(977\) −14.3977 −0.460624 −0.230312 0.973117i \(-0.573975\pi\)
−0.230312 + 0.973117i \(0.573975\pi\)
\(978\) 0 0
\(979\) −37.9769 −1.21375
\(980\) 44.5888 1.42434
\(981\) 0 0
\(982\) −7.17047 −0.228819
\(983\) 20.1243 0.641866 0.320933 0.947102i \(-0.396003\pi\)
0.320933 + 0.947102i \(0.396003\pi\)
\(984\) 0 0
\(985\) −19.0783 −0.607885
\(986\) 0 0
\(987\) 0 0
\(988\) −9.74106 −0.309904
\(989\) 41.9699 1.33457
\(990\) 0 0
\(991\) 23.4189 0.743925 0.371962 0.928248i \(-0.378685\pi\)
0.371962 + 0.928248i \(0.378685\pi\)
\(992\) −13.7926 −0.437916
\(993\) 0 0
\(994\) −0.530122 −0.0168144
\(995\) 23.9992 0.760826
\(996\) 0 0
\(997\) 10.3739 0.328543 0.164272 0.986415i \(-0.447473\pi\)
0.164272 + 0.986415i \(0.447473\pi\)
\(998\) −3.94347 −0.124828
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bg.1.5 yes 8
3.2 odd 2 inner 7569.2.a.bg.1.4 yes 8
29.28 even 2 7569.2.a.bf.1.4 8
87.86 odd 2 7569.2.a.bf.1.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7569.2.a.bf.1.4 8 29.28 even 2
7569.2.a.bf.1.5 yes 8 87.86 odd 2
7569.2.a.bg.1.4 yes 8 3.2 odd 2 inner
7569.2.a.bg.1.5 yes 8 1.1 even 1 trivial