Properties

Label 7569.2.a.bf.1.2
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.14884000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 36x^{4} - 31x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.08529\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.08529 q^{2} +2.34841 q^{4} -0.992398 q^{5} +2.45140 q^{7} -0.726543 q^{8} +2.06943 q^{10} -0.745407 q^{11} +0.730380 q^{13} -5.11187 q^{14} -3.18178 q^{16} +4.76333 q^{17} +1.38197 q^{19} -2.33056 q^{20} +1.55439 q^{22} -5.31562 q^{23} -4.01515 q^{25} -1.52305 q^{26} +5.75690 q^{28} -0.563746 q^{31} +8.08800 q^{32} -9.93290 q^{34} -2.43277 q^{35} +9.49664 q^{37} -2.88179 q^{38} +0.721020 q^{40} -5.63637 q^{41} +11.0117 q^{43} -1.75052 q^{44} +11.0846 q^{46} -11.3183 q^{47} -0.990640 q^{49} +8.37272 q^{50} +1.71523 q^{52} -4.53691 q^{53} +0.739740 q^{55} -1.78105 q^{56} -8.54697 q^{59} +8.56375 q^{61} +1.17557 q^{62} -10.5022 q^{64} -0.724828 q^{65} +11.0939 q^{67} +11.1863 q^{68} +5.07301 q^{70} +6.10935 q^{71} +5.41226 q^{73} -19.8032 q^{74} +3.24543 q^{76} -1.82729 q^{77} -7.67465 q^{79} +3.15759 q^{80} +11.7534 q^{82} +15.9212 q^{83} -4.72712 q^{85} -22.9625 q^{86} +0.541570 q^{88} +9.90572 q^{89} +1.79045 q^{91} -12.4833 q^{92} +23.6020 q^{94} -1.37146 q^{95} +13.5775 q^{97} +2.06577 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4} - 12 q^{10} + 2 q^{13} - 2 q^{16} + 20 q^{19} - 14 q^{22} + 2 q^{25} - 20 q^{28} + 10 q^{31} - 36 q^{34} + 18 q^{37} - 10 q^{40} + 28 q^{43} + 26 q^{46} + 4 q^{49} + 44 q^{52} + 14 q^{55}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08529 −1.47452 −0.737260 0.675610i \(-0.763881\pi\)
−0.737260 + 0.675610i \(0.763881\pi\)
\(3\) 0 0
\(4\) 2.34841 1.17421
\(5\) −0.992398 −0.443814 −0.221907 0.975068i \(-0.571228\pi\)
−0.221907 + 0.975068i \(0.571228\pi\)
\(6\) 0 0
\(7\) 2.45140 0.926542 0.463271 0.886217i \(-0.346676\pi\)
0.463271 + 0.886217i \(0.346676\pi\)
\(8\) −0.726543 −0.256872
\(9\) 0 0
\(10\) 2.06943 0.654412
\(11\) −0.745407 −0.224749 −0.112374 0.993666i \(-0.535846\pi\)
−0.112374 + 0.993666i \(0.535846\pi\)
\(12\) 0 0
\(13\) 0.730380 0.202571 0.101285 0.994857i \(-0.467704\pi\)
0.101285 + 0.994857i \(0.467704\pi\)
\(14\) −5.11187 −1.36620
\(15\) 0 0
\(16\) −3.18178 −0.795445
\(17\) 4.76333 1.15528 0.577638 0.816293i \(-0.303974\pi\)
0.577638 + 0.816293i \(0.303974\pi\)
\(18\) 0 0
\(19\) 1.38197 0.317045 0.158522 0.987355i \(-0.449327\pi\)
0.158522 + 0.987355i \(0.449327\pi\)
\(20\) −2.33056 −0.521130
\(21\) 0 0
\(22\) 1.55439 0.331396
\(23\) −5.31562 −1.10838 −0.554191 0.832389i \(-0.686972\pi\)
−0.554191 + 0.832389i \(0.686972\pi\)
\(24\) 0 0
\(25\) −4.01515 −0.803029
\(26\) −1.52305 −0.298695
\(27\) 0 0
\(28\) 5.75690 1.08795
\(29\) 0 0
\(30\) 0 0
\(31\) −0.563746 −0.101252 −0.0506259 0.998718i \(-0.516122\pi\)
−0.0506259 + 0.998718i \(0.516122\pi\)
\(32\) 8.08800 1.42977
\(33\) 0 0
\(34\) −9.93290 −1.70348
\(35\) −2.43277 −0.411212
\(36\) 0 0
\(37\) 9.49664 1.56124 0.780619 0.625007i \(-0.214904\pi\)
0.780619 + 0.625007i \(0.214904\pi\)
\(38\) −2.88179 −0.467489
\(39\) 0 0
\(40\) 0.721020 0.114003
\(41\) −5.63637 −0.880254 −0.440127 0.897936i \(-0.645067\pi\)
−0.440127 + 0.897936i \(0.645067\pi\)
\(42\) 0 0
\(43\) 11.0117 1.67927 0.839633 0.543153i \(-0.182770\pi\)
0.839633 + 0.543153i \(0.182770\pi\)
\(44\) −1.75052 −0.263901
\(45\) 0 0
\(46\) 11.0846 1.63433
\(47\) −11.3183 −1.65095 −0.825474 0.564439i \(-0.809092\pi\)
−0.825474 + 0.564439i \(0.809092\pi\)
\(48\) 0 0
\(49\) −0.990640 −0.141520
\(50\) 8.37272 1.18408
\(51\) 0 0
\(52\) 1.71523 0.237860
\(53\) −4.53691 −0.623193 −0.311597 0.950214i \(-0.600864\pi\)
−0.311597 + 0.950214i \(0.600864\pi\)
\(54\) 0 0
\(55\) 0.739740 0.0997466
\(56\) −1.78105 −0.238002
\(57\) 0 0
\(58\) 0 0
\(59\) −8.54697 −1.11272 −0.556361 0.830941i \(-0.687803\pi\)
−0.556361 + 0.830941i \(0.687803\pi\)
\(60\) 0 0
\(61\) 8.56375 1.09648 0.548238 0.836323i \(-0.315299\pi\)
0.548238 + 0.836323i \(0.315299\pi\)
\(62\) 1.17557 0.149298
\(63\) 0 0
\(64\) −10.5022 −1.31278
\(65\) −0.724828 −0.0899038
\(66\) 0 0
\(67\) 11.0939 1.35534 0.677670 0.735366i \(-0.262990\pi\)
0.677670 + 0.735366i \(0.262990\pi\)
\(68\) 11.1863 1.35653
\(69\) 0 0
\(70\) 5.07301 0.606341
\(71\) 6.10935 0.725047 0.362523 0.931975i \(-0.381915\pi\)
0.362523 + 0.931975i \(0.381915\pi\)
\(72\) 0 0
\(73\) 5.41226 0.633457 0.316728 0.948516i \(-0.397416\pi\)
0.316728 + 0.948516i \(0.397416\pi\)
\(74\) −19.8032 −2.30208
\(75\) 0 0
\(76\) 3.24543 0.372276
\(77\) −1.82729 −0.208239
\(78\) 0 0
\(79\) −7.67465 −0.863466 −0.431733 0.902001i \(-0.642098\pi\)
−0.431733 + 0.902001i \(0.642098\pi\)
\(80\) 3.15759 0.353030
\(81\) 0 0
\(82\) 11.7534 1.29795
\(83\) 15.9212 1.74757 0.873787 0.486309i \(-0.161657\pi\)
0.873787 + 0.486309i \(0.161657\pi\)
\(84\) 0 0
\(85\) −4.72712 −0.512728
\(86\) −22.9625 −2.47611
\(87\) 0 0
\(88\) 0.541570 0.0577315
\(89\) 9.90572 1.05000 0.525002 0.851101i \(-0.324065\pi\)
0.525002 + 0.851101i \(0.324065\pi\)
\(90\) 0 0
\(91\) 1.79045 0.187691
\(92\) −12.4833 −1.30147
\(93\) 0 0
\(94\) 23.6020 2.43436
\(95\) −1.37146 −0.140709
\(96\) 0 0
\(97\) 13.5775 1.37858 0.689291 0.724485i \(-0.257922\pi\)
0.689291 + 0.724485i \(0.257922\pi\)
\(98\) 2.06577 0.208674
\(99\) 0 0
\(100\) −9.42922 −0.942922
\(101\) −13.0106 −1.29460 −0.647299 0.762236i \(-0.724102\pi\)
−0.647299 + 0.762236i \(0.724102\pi\)
\(102\) 0 0
\(103\) −6.23048 −0.613907 −0.306954 0.951724i \(-0.599310\pi\)
−0.306954 + 0.951724i \(0.599310\pi\)
\(104\) −0.530652 −0.0520347
\(105\) 0 0
\(106\) 9.46076 0.918910
\(107\) 4.83435 0.467355 0.233677 0.972314i \(-0.424924\pi\)
0.233677 + 0.972314i \(0.424924\pi\)
\(108\) 0 0
\(109\) 1.10299 0.105647 0.0528234 0.998604i \(-0.483178\pi\)
0.0528234 + 0.998604i \(0.483178\pi\)
\(110\) −1.54257 −0.147078
\(111\) 0 0
\(112\) −7.79981 −0.737013
\(113\) −17.8067 −1.67512 −0.837559 0.546347i \(-0.816018\pi\)
−0.837559 + 0.546347i \(0.816018\pi\)
\(114\) 0 0
\(115\) 5.27521 0.491916
\(116\) 0 0
\(117\) 0 0
\(118\) 17.8229 1.64073
\(119\) 11.6768 1.07041
\(120\) 0 0
\(121\) −10.4444 −0.949488
\(122\) −17.8579 −1.61677
\(123\) 0 0
\(124\) −1.32391 −0.118890
\(125\) 8.94662 0.800210
\(126\) 0 0
\(127\) 4.24166 0.376386 0.188193 0.982132i \(-0.439737\pi\)
0.188193 + 0.982132i \(0.439737\pi\)
\(128\) 5.72414 0.505948
\(129\) 0 0
\(130\) 1.51147 0.132565
\(131\) 8.64644 0.755443 0.377721 0.925919i \(-0.376708\pi\)
0.377721 + 0.925919i \(0.376708\pi\)
\(132\) 0 0
\(133\) 3.38775 0.293755
\(134\) −23.1340 −1.99848
\(135\) 0 0
\(136\) −3.46076 −0.296758
\(137\) 14.2650 1.21874 0.609369 0.792886i \(-0.291423\pi\)
0.609369 + 0.792886i \(0.291423\pi\)
\(138\) 0 0
\(139\) −14.3624 −1.21821 −0.609103 0.793091i \(-0.708470\pi\)
−0.609103 + 0.793091i \(0.708470\pi\)
\(140\) −5.71314 −0.482848
\(141\) 0 0
\(142\) −12.7397 −1.06910
\(143\) −0.544430 −0.0455275
\(144\) 0 0
\(145\) 0 0
\(146\) −11.2861 −0.934044
\(147\) 0 0
\(148\) 22.3020 1.83322
\(149\) 20.8910 1.71146 0.855729 0.517424i \(-0.173109\pi\)
0.855729 + 0.517424i \(0.173109\pi\)
\(150\) 0 0
\(151\) −2.14213 −0.174324 −0.0871620 0.996194i \(-0.527780\pi\)
−0.0871620 + 0.996194i \(0.527780\pi\)
\(152\) −1.00406 −0.0814398
\(153\) 0 0
\(154\) 3.81042 0.307052
\(155\) 0.559460 0.0449369
\(156\) 0 0
\(157\) 14.3784 1.14752 0.573760 0.819023i \(-0.305484\pi\)
0.573760 + 0.819023i \(0.305484\pi\)
\(158\) 16.0038 1.27320
\(159\) 0 0
\(160\) −8.02652 −0.634552
\(161\) −13.0307 −1.02696
\(162\) 0 0
\(163\) 7.01860 0.549739 0.274870 0.961482i \(-0.411365\pi\)
0.274870 + 0.961482i \(0.411365\pi\)
\(164\) −13.2365 −1.03360
\(165\) 0 0
\(166\) −33.2001 −2.57683
\(167\) 23.3159 1.80424 0.902120 0.431486i \(-0.142011\pi\)
0.902120 + 0.431486i \(0.142011\pi\)
\(168\) 0 0
\(169\) −12.4665 −0.958965
\(170\) 9.85739 0.756027
\(171\) 0 0
\(172\) 25.8600 1.97181
\(173\) −11.7018 −0.889674 −0.444837 0.895612i \(-0.646738\pi\)
−0.444837 + 0.895612i \(0.646738\pi\)
\(174\) 0 0
\(175\) −9.84273 −0.744040
\(176\) 2.37172 0.178775
\(177\) 0 0
\(178\) −20.6562 −1.54825
\(179\) −1.11218 −0.0831281 −0.0415640 0.999136i \(-0.513234\pi\)
−0.0415640 + 0.999136i \(0.513234\pi\)
\(180\) 0 0
\(181\) 2.68281 0.199412 0.0997058 0.995017i \(-0.468210\pi\)
0.0997058 + 0.995017i \(0.468210\pi\)
\(182\) −3.73361 −0.276753
\(183\) 0 0
\(184\) 3.86202 0.284712
\(185\) −9.42445 −0.692900
\(186\) 0 0
\(187\) −3.55062 −0.259647
\(188\) −26.5801 −1.93856
\(189\) 0 0
\(190\) 2.85989 0.207478
\(191\) 22.2037 1.60661 0.803303 0.595571i \(-0.203074\pi\)
0.803303 + 0.595571i \(0.203074\pi\)
\(192\) 0 0
\(193\) −5.48383 −0.394734 −0.197367 0.980330i \(-0.563239\pi\)
−0.197367 + 0.980330i \(0.563239\pi\)
\(194\) −28.3129 −2.03274
\(195\) 0 0
\(196\) −2.32643 −0.166174
\(197\) −17.3694 −1.23752 −0.618759 0.785581i \(-0.712364\pi\)
−0.618759 + 0.785581i \(0.712364\pi\)
\(198\) 0 0
\(199\) 11.6747 0.827594 0.413797 0.910369i \(-0.364202\pi\)
0.413797 + 0.910369i \(0.364202\pi\)
\(200\) 2.91717 0.206275
\(201\) 0 0
\(202\) 27.1307 1.90891
\(203\) 0 0
\(204\) 0 0
\(205\) 5.59353 0.390669
\(206\) 12.9923 0.905218
\(207\) 0 0
\(208\) −2.32391 −0.161134
\(209\) −1.03013 −0.0712553
\(210\) 0 0
\(211\) −7.66906 −0.527960 −0.263980 0.964528i \(-0.585035\pi\)
−0.263980 + 0.964528i \(0.585035\pi\)
\(212\) −10.6546 −0.731758
\(213\) 0 0
\(214\) −10.0810 −0.689123
\(215\) −10.9280 −0.745282
\(216\) 0 0
\(217\) −1.38197 −0.0938140
\(218\) −2.30004 −0.155778
\(219\) 0 0
\(220\) 1.73722 0.117123
\(221\) 3.47904 0.234026
\(222\) 0 0
\(223\) −13.7010 −0.917485 −0.458743 0.888569i \(-0.651700\pi\)
−0.458743 + 0.888569i \(0.651700\pi\)
\(224\) 19.8269 1.32474
\(225\) 0 0
\(226\) 37.1322 2.46999
\(227\) 4.83709 0.321049 0.160525 0.987032i \(-0.448681\pi\)
0.160525 + 0.987032i \(0.448681\pi\)
\(228\) 0 0
\(229\) −11.9291 −0.788299 −0.394149 0.919046i \(-0.628961\pi\)
−0.394149 + 0.919046i \(0.628961\pi\)
\(230\) −11.0003 −0.725340
\(231\) 0 0
\(232\) 0 0
\(233\) −25.9346 −1.69903 −0.849517 0.527562i \(-0.823106\pi\)
−0.849517 + 0.527562i \(0.823106\pi\)
\(234\) 0 0
\(235\) 11.2323 0.732714
\(236\) −20.0718 −1.30657
\(237\) 0 0
\(238\) −24.3495 −1.57834
\(239\) 3.50336 0.226613 0.113307 0.993560i \(-0.463856\pi\)
0.113307 + 0.993560i \(0.463856\pi\)
\(240\) 0 0
\(241\) −1.32077 −0.0850781 −0.0425390 0.999095i \(-0.513545\pi\)
−0.0425390 + 0.999095i \(0.513545\pi\)
\(242\) 21.7795 1.40004
\(243\) 0 0
\(244\) 20.1112 1.28749
\(245\) 0.983109 0.0628085
\(246\) 0 0
\(247\) 1.00936 0.0642241
\(248\) 0.409585 0.0260087
\(249\) 0 0
\(250\) −18.6562 −1.17992
\(251\) 2.64346 0.166854 0.0834268 0.996514i \(-0.473414\pi\)
0.0834268 + 0.996514i \(0.473414\pi\)
\(252\) 0 0
\(253\) 3.96230 0.249107
\(254\) −8.84507 −0.554989
\(255\) 0 0
\(256\) 9.06799 0.566750
\(257\) 4.76819 0.297431 0.148716 0.988880i \(-0.452486\pi\)
0.148716 + 0.988880i \(0.452486\pi\)
\(258\) 0 0
\(259\) 23.2801 1.44655
\(260\) −1.70220 −0.105566
\(261\) 0 0
\(262\) −18.0303 −1.11392
\(263\) −14.5370 −0.896388 −0.448194 0.893936i \(-0.647933\pi\)
−0.448194 + 0.893936i \(0.647933\pi\)
\(264\) 0 0
\(265\) 4.50243 0.276582
\(266\) −7.06443 −0.433148
\(267\) 0 0
\(268\) 26.0532 1.59145
\(269\) −10.8477 −0.661394 −0.330697 0.943737i \(-0.607284\pi\)
−0.330697 + 0.943737i \(0.607284\pi\)
\(270\) 0 0
\(271\) 0.956894 0.0581271 0.0290636 0.999578i \(-0.490747\pi\)
0.0290636 + 0.999578i \(0.490747\pi\)
\(272\) −15.1559 −0.918959
\(273\) 0 0
\(274\) −29.7465 −1.79705
\(275\) 2.99292 0.180480
\(276\) 0 0
\(277\) 18.5533 1.11476 0.557379 0.830258i \(-0.311807\pi\)
0.557379 + 0.830258i \(0.311807\pi\)
\(278\) 29.9498 1.79627
\(279\) 0 0
\(280\) 1.76751 0.105629
\(281\) −7.34600 −0.438226 −0.219113 0.975700i \(-0.570316\pi\)
−0.219113 + 0.975700i \(0.570316\pi\)
\(282\) 0 0
\(283\) 9.15413 0.544157 0.272078 0.962275i \(-0.412289\pi\)
0.272078 + 0.962275i \(0.412289\pi\)
\(284\) 14.3473 0.851355
\(285\) 0 0
\(286\) 1.13529 0.0671312
\(287\) −13.8170 −0.815592
\(288\) 0 0
\(289\) 5.68929 0.334664
\(290\) 0 0
\(291\) 0 0
\(292\) 12.7102 0.743809
\(293\) 19.0582 1.11339 0.556695 0.830717i \(-0.312069\pi\)
0.556695 + 0.830717i \(0.312069\pi\)
\(294\) 0 0
\(295\) 8.48200 0.493841
\(296\) −6.89971 −0.401038
\(297\) 0 0
\(298\) −43.5637 −2.52358
\(299\) −3.88242 −0.224526
\(300\) 0 0
\(301\) 26.9941 1.55591
\(302\) 4.46695 0.257044
\(303\) 0 0
\(304\) −4.39711 −0.252192
\(305\) −8.49865 −0.486631
\(306\) 0 0
\(307\) −26.3761 −1.50537 −0.752683 0.658383i \(-0.771241\pi\)
−0.752683 + 0.658383i \(0.771241\pi\)
\(308\) −4.29123 −0.244516
\(309\) 0 0
\(310\) −1.16663 −0.0662604
\(311\) 8.19847 0.464893 0.232446 0.972609i \(-0.425327\pi\)
0.232446 + 0.972609i \(0.425327\pi\)
\(312\) 0 0
\(313\) 11.4853 0.649186 0.324593 0.945854i \(-0.394773\pi\)
0.324593 + 0.945854i \(0.394773\pi\)
\(314\) −29.9830 −1.69204
\(315\) 0 0
\(316\) −18.0233 −1.01389
\(317\) 26.7178 1.50062 0.750309 0.661087i \(-0.229905\pi\)
0.750309 + 0.661087i \(0.229905\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 10.4224 0.582630
\(321\) 0 0
\(322\) 27.1727 1.51428
\(323\) 6.58276 0.366274
\(324\) 0 0
\(325\) −2.93258 −0.162670
\(326\) −14.6358 −0.810601
\(327\) 0 0
\(328\) 4.09507 0.226112
\(329\) −27.7458 −1.52967
\(330\) 0 0
\(331\) −10.1135 −0.555891 −0.277945 0.960597i \(-0.589653\pi\)
−0.277945 + 0.960597i \(0.589653\pi\)
\(332\) 37.3895 2.05201
\(333\) 0 0
\(334\) −48.6203 −2.66039
\(335\) −11.0096 −0.601519
\(336\) 0 0
\(337\) −0.987184 −0.0537754 −0.0268877 0.999638i \(-0.508560\pi\)
−0.0268877 + 0.999638i \(0.508560\pi\)
\(338\) 25.9963 1.41401
\(339\) 0 0
\(340\) −11.1012 −0.602049
\(341\) 0.420220 0.0227562
\(342\) 0 0
\(343\) −19.5883 −1.05767
\(344\) −8.00046 −0.431356
\(345\) 0 0
\(346\) 24.4017 1.31184
\(347\) −11.7941 −0.633138 −0.316569 0.948569i \(-0.602531\pi\)
−0.316569 + 0.948569i \(0.602531\pi\)
\(348\) 0 0
\(349\) 24.5011 1.31151 0.655757 0.754972i \(-0.272350\pi\)
0.655757 + 0.754972i \(0.272350\pi\)
\(350\) 20.5249 1.09710
\(351\) 0 0
\(352\) −6.02885 −0.321339
\(353\) −2.52368 −0.134322 −0.0671609 0.997742i \(-0.521394\pi\)
−0.0671609 + 0.997742i \(0.521394\pi\)
\(354\) 0 0
\(355\) −6.06291 −0.321786
\(356\) 23.2627 1.23292
\(357\) 0 0
\(358\) 2.31921 0.122574
\(359\) 1.67121 0.0882031 0.0441016 0.999027i \(-0.485957\pi\)
0.0441016 + 0.999027i \(0.485957\pi\)
\(360\) 0 0
\(361\) −17.0902 −0.899483
\(362\) −5.59442 −0.294036
\(363\) 0 0
\(364\) 4.20473 0.220388
\(365\) −5.37112 −0.281137
\(366\) 0 0
\(367\) 27.7998 1.45114 0.725569 0.688149i \(-0.241577\pi\)
0.725569 + 0.688149i \(0.241577\pi\)
\(368\) 16.9131 0.881658
\(369\) 0 0
\(370\) 19.6527 1.02169
\(371\) −11.1218 −0.577415
\(372\) 0 0
\(373\) 16.3437 0.846245 0.423123 0.906072i \(-0.360934\pi\)
0.423123 + 0.906072i \(0.360934\pi\)
\(374\) 7.40405 0.382854
\(375\) 0 0
\(376\) 8.22325 0.424082
\(377\) 0 0
\(378\) 0 0
\(379\) 11.0324 0.566698 0.283349 0.959017i \(-0.408555\pi\)
0.283349 + 0.959017i \(0.408555\pi\)
\(380\) −3.22076 −0.165221
\(381\) 0 0
\(382\) −46.3011 −2.36897
\(383\) 17.0153 0.869443 0.434721 0.900565i \(-0.356847\pi\)
0.434721 + 0.900565i \(0.356847\pi\)
\(384\) 0 0
\(385\) 1.81340 0.0924194
\(386\) 11.4353 0.582044
\(387\) 0 0
\(388\) 31.8855 1.61874
\(389\) −1.93366 −0.0980404 −0.0490202 0.998798i \(-0.515610\pi\)
−0.0490202 + 0.998798i \(0.515610\pi\)
\(390\) 0 0
\(391\) −25.3200 −1.28049
\(392\) 0.719742 0.0363525
\(393\) 0 0
\(394\) 36.2201 1.82474
\(395\) 7.61631 0.383218
\(396\) 0 0
\(397\) −20.5396 −1.03085 −0.515425 0.856934i \(-0.672366\pi\)
−0.515425 + 0.856934i \(0.672366\pi\)
\(398\) −24.3450 −1.22030
\(399\) 0 0
\(400\) 12.7753 0.638765
\(401\) 21.3490 1.06612 0.533058 0.846079i \(-0.321043\pi\)
0.533058 + 0.846079i \(0.321043\pi\)
\(402\) 0 0
\(403\) −0.411749 −0.0205107
\(404\) −30.5542 −1.52013
\(405\) 0 0
\(406\) 0 0
\(407\) −7.07886 −0.350886
\(408\) 0 0
\(409\) −22.0616 −1.09088 −0.545438 0.838151i \(-0.683637\pi\)
−0.545438 + 0.838151i \(0.683637\pi\)
\(410\) −11.6641 −0.576049
\(411\) 0 0
\(412\) −14.6317 −0.720854
\(413\) −20.9521 −1.03098
\(414\) 0 0
\(415\) −15.8001 −0.775598
\(416\) 5.90732 0.289630
\(417\) 0 0
\(418\) 2.14811 0.105067
\(419\) −37.0004 −1.80759 −0.903794 0.427967i \(-0.859230\pi\)
−0.903794 + 0.427967i \(0.859230\pi\)
\(420\) 0 0
\(421\) −20.0872 −0.978991 −0.489496 0.872006i \(-0.662819\pi\)
−0.489496 + 0.872006i \(0.662819\pi\)
\(422\) 15.9922 0.778487
\(423\) 0 0
\(424\) 3.29626 0.160081
\(425\) −19.1255 −0.927721
\(426\) 0 0
\(427\) 20.9932 1.01593
\(428\) 11.3531 0.548771
\(429\) 0 0
\(430\) 22.7880 1.09893
\(431\) 28.4380 1.36981 0.684905 0.728633i \(-0.259844\pi\)
0.684905 + 0.728633i \(0.259844\pi\)
\(432\) 0 0
\(433\) 38.0368 1.82793 0.913965 0.405792i \(-0.133004\pi\)
0.913965 + 0.405792i \(0.133004\pi\)
\(434\) 2.88179 0.138330
\(435\) 0 0
\(436\) 2.59027 0.124051
\(437\) −7.34600 −0.351407
\(438\) 0 0
\(439\) −16.6576 −0.795022 −0.397511 0.917597i \(-0.630126\pi\)
−0.397511 + 0.917597i \(0.630126\pi\)
\(440\) −0.537453 −0.0256221
\(441\) 0 0
\(442\) −7.25479 −0.345075
\(443\) −1.37489 −0.0653230 −0.0326615 0.999466i \(-0.510398\pi\)
−0.0326615 + 0.999466i \(0.510398\pi\)
\(444\) 0 0
\(445\) −9.83042 −0.466007
\(446\) 28.5704 1.35285
\(447\) 0 0
\(448\) −25.7452 −1.21634
\(449\) 39.1073 1.84559 0.922794 0.385294i \(-0.125900\pi\)
0.922794 + 0.385294i \(0.125900\pi\)
\(450\) 0 0
\(451\) 4.20139 0.197836
\(452\) −41.8176 −1.96694
\(453\) 0 0
\(454\) −10.0867 −0.473393
\(455\) −1.77684 −0.0832997
\(456\) 0 0
\(457\) −27.4493 −1.28403 −0.642013 0.766694i \(-0.721901\pi\)
−0.642013 + 0.766694i \(0.721901\pi\)
\(458\) 24.8756 1.16236
\(459\) 0 0
\(460\) 12.3884 0.577611
\(461\) −4.54620 −0.211738 −0.105869 0.994380i \(-0.533762\pi\)
−0.105869 + 0.994380i \(0.533762\pi\)
\(462\) 0 0
\(463\) 35.1190 1.63212 0.816060 0.577968i \(-0.196154\pi\)
0.816060 + 0.577968i \(0.196154\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 54.0811 2.50526
\(467\) −34.4640 −1.59480 −0.797402 0.603448i \(-0.793793\pi\)
−0.797402 + 0.603448i \(0.793793\pi\)
\(468\) 0 0
\(469\) 27.1957 1.25578
\(470\) −23.4225 −1.08040
\(471\) 0 0
\(472\) 6.20974 0.285826
\(473\) −8.20819 −0.377413
\(474\) 0 0
\(475\) −5.54879 −0.254596
\(476\) 27.4220 1.25689
\(477\) 0 0
\(478\) −7.30550 −0.334146
\(479\) 30.4715 1.39228 0.696140 0.717906i \(-0.254899\pi\)
0.696140 + 0.717906i \(0.254899\pi\)
\(480\) 0 0
\(481\) 6.93616 0.316262
\(482\) 2.75418 0.125449
\(483\) 0 0
\(484\) −24.5277 −1.11490
\(485\) −13.4742 −0.611834
\(486\) 0 0
\(487\) 25.0119 1.13340 0.566698 0.823925i \(-0.308221\pi\)
0.566698 + 0.823925i \(0.308221\pi\)
\(488\) −6.22193 −0.281653
\(489\) 0 0
\(490\) −2.05006 −0.0926124
\(491\) 26.3863 1.19080 0.595399 0.803430i \(-0.296994\pi\)
0.595399 + 0.803430i \(0.296994\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −2.10480 −0.0946996
\(495\) 0 0
\(496\) 1.79371 0.0805402
\(497\) 14.9765 0.671786
\(498\) 0 0
\(499\) −17.2139 −0.770600 −0.385300 0.922791i \(-0.625902\pi\)
−0.385300 + 0.922791i \(0.625902\pi\)
\(500\) 21.0104 0.939612
\(501\) 0 0
\(502\) −5.51236 −0.246029
\(503\) −2.51651 −0.112206 −0.0561028 0.998425i \(-0.517867\pi\)
−0.0561028 + 0.998425i \(0.517867\pi\)
\(504\) 0 0
\(505\) 12.9117 0.574561
\(506\) −8.26252 −0.367314
\(507\) 0 0
\(508\) 9.96117 0.441956
\(509\) −24.6901 −1.09437 −0.547185 0.837012i \(-0.684301\pi\)
−0.547185 + 0.837012i \(0.684301\pi\)
\(510\) 0 0
\(511\) 13.2676 0.586924
\(512\) −30.3576 −1.34163
\(513\) 0 0
\(514\) −9.94303 −0.438568
\(515\) 6.18312 0.272461
\(516\) 0 0
\(517\) 8.43676 0.371048
\(518\) −48.5456 −2.13297
\(519\) 0 0
\(520\) 0.526618 0.0230937
\(521\) 40.0205 1.75333 0.876664 0.481103i \(-0.159764\pi\)
0.876664 + 0.481103i \(0.159764\pi\)
\(522\) 0 0
\(523\) 6.67862 0.292035 0.146018 0.989282i \(-0.453354\pi\)
0.146018 + 0.989282i \(0.453354\pi\)
\(524\) 20.3054 0.887046
\(525\) 0 0
\(526\) 30.3137 1.32174
\(527\) −2.68531 −0.116974
\(528\) 0 0
\(529\) 5.25579 0.228513
\(530\) −9.38884 −0.407825
\(531\) 0 0
\(532\) 7.95584 0.344929
\(533\) −4.11669 −0.178314
\(534\) 0 0
\(535\) −4.79760 −0.207419
\(536\) −8.06022 −0.348148
\(537\) 0 0
\(538\) 22.6205 0.975238
\(539\) 0.738429 0.0318064
\(540\) 0 0
\(541\) −2.72906 −0.117331 −0.0586657 0.998278i \(-0.518685\pi\)
−0.0586657 + 0.998278i \(0.518685\pi\)
\(542\) −1.99540 −0.0857096
\(543\) 0 0
\(544\) 38.5258 1.65178
\(545\) −1.09460 −0.0468876
\(546\) 0 0
\(547\) 41.6350 1.78018 0.890091 0.455783i \(-0.150641\pi\)
0.890091 + 0.455783i \(0.150641\pi\)
\(548\) 33.5001 1.43105
\(549\) 0 0
\(550\) −6.24108 −0.266121
\(551\) 0 0
\(552\) 0 0
\(553\) −18.8136 −0.800037
\(554\) −38.6888 −1.64373
\(555\) 0 0
\(556\) −33.7289 −1.43043
\(557\) 38.8044 1.64419 0.822097 0.569347i \(-0.192804\pi\)
0.822097 + 0.569347i \(0.192804\pi\)
\(558\) 0 0
\(559\) 8.04272 0.340171
\(560\) 7.74052 0.327097
\(561\) 0 0
\(562\) 15.3185 0.646172
\(563\) −17.6548 −0.744061 −0.372030 0.928221i \(-0.621338\pi\)
−0.372030 + 0.928221i \(0.621338\pi\)
\(564\) 0 0
\(565\) 17.6714 0.743441
\(566\) −19.0890 −0.802370
\(567\) 0 0
\(568\) −4.43870 −0.186244
\(569\) 12.0256 0.504139 0.252069 0.967709i \(-0.418889\pi\)
0.252069 + 0.967709i \(0.418889\pi\)
\(570\) 0 0
\(571\) −3.70261 −0.154950 −0.0774748 0.996994i \(-0.524686\pi\)
−0.0774748 + 0.996994i \(0.524686\pi\)
\(572\) −1.27855 −0.0534587
\(573\) 0 0
\(574\) 28.8124 1.20261
\(575\) 21.3430 0.890064
\(576\) 0 0
\(577\) −44.4757 −1.85155 −0.925773 0.378079i \(-0.876585\pi\)
−0.925773 + 0.378079i \(0.876585\pi\)
\(578\) −11.8638 −0.493469
\(579\) 0 0
\(580\) 0 0
\(581\) 39.0291 1.61920
\(582\) 0 0
\(583\) 3.38185 0.140062
\(584\) −3.93223 −0.162717
\(585\) 0 0
\(586\) −39.7417 −1.64172
\(587\) 23.1650 0.956120 0.478060 0.878327i \(-0.341340\pi\)
0.478060 + 0.878327i \(0.341340\pi\)
\(588\) 0 0
\(589\) −0.779077 −0.0321013
\(590\) −17.6874 −0.728179
\(591\) 0 0
\(592\) −30.2162 −1.24188
\(593\) −31.9010 −1.31002 −0.655009 0.755621i \(-0.727335\pi\)
−0.655009 + 0.755621i \(0.727335\pi\)
\(594\) 0 0
\(595\) −11.5881 −0.475064
\(596\) 49.0607 2.00961
\(597\) 0 0
\(598\) 8.09595 0.331068
\(599\) 4.65253 0.190097 0.0950485 0.995473i \(-0.469699\pi\)
0.0950485 + 0.995473i \(0.469699\pi\)
\(600\) 0 0
\(601\) 23.4167 0.955188 0.477594 0.878581i \(-0.341509\pi\)
0.477594 + 0.878581i \(0.341509\pi\)
\(602\) −56.2903 −2.29422
\(603\) 0 0
\(604\) −5.03060 −0.204692
\(605\) 10.3650 0.421396
\(606\) 0 0
\(607\) −37.3093 −1.51434 −0.757170 0.653218i \(-0.773419\pi\)
−0.757170 + 0.653218i \(0.773419\pi\)
\(608\) 11.1773 0.453301
\(609\) 0 0
\(610\) 17.7221 0.717547
\(611\) −8.26669 −0.334434
\(612\) 0 0
\(613\) 6.83915 0.276231 0.138115 0.990416i \(-0.455896\pi\)
0.138115 + 0.990416i \(0.455896\pi\)
\(614\) 55.0018 2.21969
\(615\) 0 0
\(616\) 1.32760 0.0534907
\(617\) 13.4967 0.543356 0.271678 0.962388i \(-0.412421\pi\)
0.271678 + 0.962388i \(0.412421\pi\)
\(618\) 0 0
\(619\) 34.3963 1.38250 0.691252 0.722614i \(-0.257059\pi\)
0.691252 + 0.722614i \(0.257059\pi\)
\(620\) 1.31384 0.0527653
\(621\) 0 0
\(622\) −17.0961 −0.685493
\(623\) 24.2829 0.972873
\(624\) 0 0
\(625\) 11.1971 0.447885
\(626\) −23.9501 −0.957237
\(627\) 0 0
\(628\) 33.7664 1.34743
\(629\) 45.2356 1.80366
\(630\) 0 0
\(631\) −14.6283 −0.582343 −0.291171 0.956671i \(-0.594045\pi\)
−0.291171 + 0.956671i \(0.594045\pi\)
\(632\) 5.57596 0.221800
\(633\) 0 0
\(634\) −55.7141 −2.21269
\(635\) −4.20942 −0.167046
\(636\) 0 0
\(637\) −0.723543 −0.0286678
\(638\) 0 0
\(639\) 0 0
\(640\) −5.68063 −0.224547
\(641\) 2.49007 0.0983518 0.0491759 0.998790i \(-0.484341\pi\)
0.0491759 + 0.998790i \(0.484341\pi\)
\(642\) 0 0
\(643\) −17.5372 −0.691599 −0.345799 0.938308i \(-0.612392\pi\)
−0.345799 + 0.938308i \(0.612392\pi\)
\(644\) −30.6015 −1.20587
\(645\) 0 0
\(646\) −13.7269 −0.540079
\(647\) 34.0582 1.33897 0.669483 0.742827i \(-0.266516\pi\)
0.669483 + 0.742827i \(0.266516\pi\)
\(648\) 0 0
\(649\) 6.37097 0.250083
\(650\) 6.11527 0.239861
\(651\) 0 0
\(652\) 16.4826 0.645508
\(653\) 4.91571 0.192367 0.0961834 0.995364i \(-0.469336\pi\)
0.0961834 + 0.995364i \(0.469336\pi\)
\(654\) 0 0
\(655\) −8.58071 −0.335276
\(656\) 17.9337 0.700193
\(657\) 0 0
\(658\) 57.8578 2.25553
\(659\) −29.2987 −1.14132 −0.570658 0.821188i \(-0.693312\pi\)
−0.570658 + 0.821188i \(0.693312\pi\)
\(660\) 0 0
\(661\) −45.1181 −1.75489 −0.877445 0.479677i \(-0.840754\pi\)
−0.877445 + 0.479677i \(0.840754\pi\)
\(662\) 21.0896 0.819672
\(663\) 0 0
\(664\) −11.5674 −0.448902
\(665\) −3.36200 −0.130373
\(666\) 0 0
\(667\) 0 0
\(668\) 54.7554 2.11855
\(669\) 0 0
\(670\) 22.9582 0.886952
\(671\) −6.38347 −0.246431
\(672\) 0 0
\(673\) 17.3306 0.668045 0.334022 0.942565i \(-0.391594\pi\)
0.334022 + 0.942565i \(0.391594\pi\)
\(674\) 2.05856 0.0792928
\(675\) 0 0
\(676\) −29.2766 −1.12602
\(677\) −15.9644 −0.613560 −0.306780 0.951780i \(-0.599252\pi\)
−0.306780 + 0.951780i \(0.599252\pi\)
\(678\) 0 0
\(679\) 33.2838 1.27731
\(680\) 3.43445 0.131705
\(681\) 0 0
\(682\) −0.876278 −0.0335544
\(683\) 51.9292 1.98701 0.993507 0.113768i \(-0.0362922\pi\)
0.993507 + 0.113768i \(0.0362922\pi\)
\(684\) 0 0
\(685\) −14.1565 −0.540893
\(686\) 40.8471 1.55955
\(687\) 0 0
\(688\) −35.0368 −1.33576
\(689\) −3.31367 −0.126241
\(690\) 0 0
\(691\) −5.92354 −0.225342 −0.112671 0.993632i \(-0.535941\pi\)
−0.112671 + 0.993632i \(0.535941\pi\)
\(692\) −27.4807 −1.04466
\(693\) 0 0
\(694\) 24.5940 0.933574
\(695\) 14.2533 0.540657
\(696\) 0 0
\(697\) −26.8479 −1.01694
\(698\) −51.0918 −1.93385
\(699\) 0 0
\(700\) −23.1148 −0.873657
\(701\) 23.4563 0.885931 0.442966 0.896539i \(-0.353926\pi\)
0.442966 + 0.896539i \(0.353926\pi\)
\(702\) 0 0
\(703\) 13.1240 0.494982
\(704\) 7.82843 0.295045
\(705\) 0 0
\(706\) 5.26259 0.198060
\(707\) −31.8941 −1.19950
\(708\) 0 0
\(709\) 1.14986 0.0431840 0.0215920 0.999767i \(-0.493127\pi\)
0.0215920 + 0.999767i \(0.493127\pi\)
\(710\) 12.6429 0.474480
\(711\) 0 0
\(712\) −7.19693 −0.269716
\(713\) 2.99666 0.112226
\(714\) 0 0
\(715\) 0.540292 0.0202058
\(716\) −2.61185 −0.0976095
\(717\) 0 0
\(718\) −3.48495 −0.130057
\(719\) 8.56227 0.319319 0.159659 0.987172i \(-0.448960\pi\)
0.159659 + 0.987172i \(0.448960\pi\)
\(720\) 0 0
\(721\) −15.2734 −0.568811
\(722\) 35.6379 1.32630
\(723\) 0 0
\(724\) 6.30034 0.234150
\(725\) 0 0
\(726\) 0 0
\(727\) −8.30010 −0.307834 −0.153917 0.988084i \(-0.549189\pi\)
−0.153917 + 0.988084i \(0.549189\pi\)
\(728\) −1.30084 −0.0482124
\(729\) 0 0
\(730\) 11.2003 0.414542
\(731\) 52.4523 1.94002
\(732\) 0 0
\(733\) 3.63299 0.134187 0.0670937 0.997747i \(-0.478627\pi\)
0.0670937 + 0.997747i \(0.478627\pi\)
\(734\) −57.9705 −2.13973
\(735\) 0 0
\(736\) −42.9927 −1.58473
\(737\) −8.26950 −0.304611
\(738\) 0 0
\(739\) −14.5044 −0.533555 −0.266777 0.963758i \(-0.585959\pi\)
−0.266777 + 0.963758i \(0.585959\pi\)
\(740\) −22.1325 −0.813607
\(741\) 0 0
\(742\) 23.1921 0.851409
\(743\) 33.9157 1.24425 0.622124 0.782919i \(-0.286270\pi\)
0.622124 + 0.782919i \(0.286270\pi\)
\(744\) 0 0
\(745\) −20.7322 −0.759569
\(746\) −34.0813 −1.24781
\(747\) 0 0
\(748\) −8.33832 −0.304879
\(749\) 11.8509 0.433024
\(750\) 0 0
\(751\) 11.7583 0.429068 0.214534 0.976717i \(-0.431177\pi\)
0.214534 + 0.976717i \(0.431177\pi\)
\(752\) 36.0125 1.31324
\(753\) 0 0
\(754\) 0 0
\(755\) 2.12585 0.0773674
\(756\) 0 0
\(757\) −0.654727 −0.0237965 −0.0118982 0.999929i \(-0.503787\pi\)
−0.0118982 + 0.999929i \(0.503787\pi\)
\(758\) −23.0058 −0.835607
\(759\) 0 0
\(760\) 0.996425 0.0361441
\(761\) 0.209264 0.00758580 0.00379290 0.999993i \(-0.498793\pi\)
0.00379290 + 0.999993i \(0.498793\pi\)
\(762\) 0 0
\(763\) 2.70386 0.0978863
\(764\) 52.1436 1.88649
\(765\) 0 0
\(766\) −35.4818 −1.28201
\(767\) −6.24254 −0.225405
\(768\) 0 0
\(769\) 53.1893 1.91805 0.959027 0.283314i \(-0.0914339\pi\)
0.959027 + 0.283314i \(0.0914339\pi\)
\(770\) −3.78145 −0.136274
\(771\) 0 0
\(772\) −12.8783 −0.463500
\(773\) 40.0741 1.44136 0.720682 0.693266i \(-0.243829\pi\)
0.720682 + 0.693266i \(0.243829\pi\)
\(774\) 0 0
\(775\) 2.26352 0.0813081
\(776\) −9.86460 −0.354118
\(777\) 0 0
\(778\) 4.03223 0.144563
\(779\) −7.78928 −0.279080
\(780\) 0 0
\(781\) −4.55395 −0.162953
\(782\) 52.7995 1.88811
\(783\) 0 0
\(784\) 3.15200 0.112571
\(785\) −14.2691 −0.509286
\(786\) 0 0
\(787\) 11.3024 0.402886 0.201443 0.979500i \(-0.435437\pi\)
0.201443 + 0.979500i \(0.435437\pi\)
\(788\) −40.7905 −1.45310
\(789\) 0 0
\(790\) −15.8822 −0.565063
\(791\) −43.6515 −1.55207
\(792\) 0 0
\(793\) 6.25479 0.222114
\(794\) 42.8308 1.52001
\(795\) 0 0
\(796\) 27.4169 0.971767
\(797\) 39.8500 1.41156 0.705779 0.708432i \(-0.250597\pi\)
0.705779 + 0.708432i \(0.250597\pi\)
\(798\) 0 0
\(799\) −53.9129 −1.90730
\(800\) −32.4745 −1.14815
\(801\) 0 0
\(802\) −44.5187 −1.57201
\(803\) −4.03433 −0.142368
\(804\) 0 0
\(805\) 12.9317 0.455781
\(806\) 0.858613 0.0302434
\(807\) 0 0
\(808\) 9.45272 0.332546
\(809\) 6.93364 0.243774 0.121887 0.992544i \(-0.461105\pi\)
0.121887 + 0.992544i \(0.461105\pi\)
\(810\) 0 0
\(811\) 34.2757 1.20358 0.601792 0.798653i \(-0.294454\pi\)
0.601792 + 0.798653i \(0.294454\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 14.7614 0.517388
\(815\) −6.96525 −0.243982
\(816\) 0 0
\(817\) 15.2178 0.532403
\(818\) 46.0047 1.60852
\(819\) 0 0
\(820\) 13.1359 0.458726
\(821\) 7.47322 0.260817 0.130409 0.991460i \(-0.458371\pi\)
0.130409 + 0.991460i \(0.458371\pi\)
\(822\) 0 0
\(823\) −7.85554 −0.273827 −0.136913 0.990583i \(-0.543718\pi\)
−0.136913 + 0.990583i \(0.543718\pi\)
\(824\) 4.52671 0.157695
\(825\) 0 0
\(826\) 43.6910 1.52020
\(827\) −51.8242 −1.80211 −0.901053 0.433710i \(-0.857204\pi\)
−0.901053 + 0.433710i \(0.857204\pi\)
\(828\) 0 0
\(829\) 28.1574 0.977945 0.488973 0.872299i \(-0.337372\pi\)
0.488973 + 0.872299i \(0.337372\pi\)
\(830\) 32.9478 1.14363
\(831\) 0 0
\(832\) −7.67062 −0.265931
\(833\) −4.71874 −0.163495
\(834\) 0 0
\(835\) −23.1387 −0.800747
\(836\) −2.41916 −0.0836685
\(837\) 0 0
\(838\) 77.1564 2.66532
\(839\) −0.155652 −0.00537369 −0.00268685 0.999996i \(-0.500855\pi\)
−0.00268685 + 0.999996i \(0.500855\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 41.8876 1.44354
\(843\) 0 0
\(844\) −18.0101 −0.619934
\(845\) 12.3718 0.425602
\(846\) 0 0
\(847\) −25.6033 −0.879741
\(848\) 14.4355 0.495716
\(849\) 0 0
\(850\) 39.8820 1.36794
\(851\) −50.4805 −1.73045
\(852\) 0 0
\(853\) 45.4412 1.55588 0.777939 0.628340i \(-0.216265\pi\)
0.777939 + 0.628340i \(0.216265\pi\)
\(854\) −43.7767 −1.49801
\(855\) 0 0
\(856\) −3.51236 −0.120050
\(857\) 43.7310 1.49382 0.746911 0.664924i \(-0.231536\pi\)
0.746911 + 0.664924i \(0.231536\pi\)
\(858\) 0 0
\(859\) 34.9206 1.19148 0.595738 0.803179i \(-0.296860\pi\)
0.595738 + 0.803179i \(0.296860\pi\)
\(860\) −25.6634 −0.875116
\(861\) 0 0
\(862\) −59.3013 −2.01981
\(863\) −34.4638 −1.17316 −0.586580 0.809891i \(-0.699526\pi\)
−0.586580 + 0.809891i \(0.699526\pi\)
\(864\) 0 0
\(865\) 11.6129 0.394850
\(866\) −79.3175 −2.69532
\(867\) 0 0
\(868\) −3.24543 −0.110157
\(869\) 5.72074 0.194063
\(870\) 0 0
\(871\) 8.10279 0.274553
\(872\) −0.801366 −0.0271377
\(873\) 0 0
\(874\) 15.3185 0.518156
\(875\) 21.9317 0.741428
\(876\) 0 0
\(877\) 36.0203 1.21632 0.608160 0.793815i \(-0.291908\pi\)
0.608160 + 0.793815i \(0.291908\pi\)
\(878\) 34.7358 1.17228
\(879\) 0 0
\(880\) −2.35369 −0.0793429
\(881\) 20.4125 0.687714 0.343857 0.939022i \(-0.388266\pi\)
0.343857 + 0.939022i \(0.388266\pi\)
\(882\) 0 0
\(883\) 42.2458 1.42168 0.710842 0.703352i \(-0.248314\pi\)
0.710842 + 0.703352i \(0.248314\pi\)
\(884\) 8.17022 0.274794
\(885\) 0 0
\(886\) 2.86704 0.0963200
\(887\) −29.9288 −1.00491 −0.502455 0.864603i \(-0.667570\pi\)
−0.502455 + 0.864603i \(0.667570\pi\)
\(888\) 0 0
\(889\) 10.3980 0.348738
\(890\) 20.4992 0.687136
\(891\) 0 0
\(892\) −32.1756 −1.07732
\(893\) −15.6416 −0.523425
\(894\) 0 0
\(895\) 1.10372 0.0368934
\(896\) 14.0322 0.468782
\(897\) 0 0
\(898\) −81.5499 −2.72135
\(899\) 0 0
\(900\) 0 0
\(901\) −21.6108 −0.719960
\(902\) −8.76110 −0.291713
\(903\) 0 0
\(904\) 12.9374 0.430290
\(905\) −2.66241 −0.0885017
\(906\) 0 0
\(907\) 42.5943 1.41432 0.707160 0.707053i \(-0.249976\pi\)
0.707160 + 0.707053i \(0.249976\pi\)
\(908\) 11.3595 0.376978
\(909\) 0 0
\(910\) 3.70522 0.122827
\(911\) −37.3420 −1.23720 −0.618598 0.785708i \(-0.712299\pi\)
−0.618598 + 0.785708i \(0.712299\pi\)
\(912\) 0 0
\(913\) −11.8677 −0.392765
\(914\) 57.2397 1.89332
\(915\) 0 0
\(916\) −28.0145 −0.925626
\(917\) 21.1959 0.699950
\(918\) 0 0
\(919\) 9.86001 0.325252 0.162626 0.986688i \(-0.448004\pi\)
0.162626 + 0.986688i \(0.448004\pi\)
\(920\) −3.83267 −0.126359
\(921\) 0 0
\(922\) 9.48013 0.312211
\(923\) 4.46215 0.146873
\(924\) 0 0
\(925\) −38.1304 −1.25372
\(926\) −73.2332 −2.40659
\(927\) 0 0
\(928\) 0 0
\(929\) −28.6956 −0.941471 −0.470736 0.882274i \(-0.656011\pi\)
−0.470736 + 0.882274i \(0.656011\pi\)
\(930\) 0 0
\(931\) −1.36903 −0.0448682
\(932\) −60.9052 −1.99502
\(933\) 0 0
\(934\) 71.8673 2.35157
\(935\) 3.52363 0.115235
\(936\) 0 0
\(937\) 36.9075 1.20572 0.602858 0.797848i \(-0.294028\pi\)
0.602858 + 0.797848i \(0.294028\pi\)
\(938\) −56.7107 −1.85167
\(939\) 0 0
\(940\) 26.3781 0.860358
\(941\) −31.1116 −1.01421 −0.507104 0.861885i \(-0.669284\pi\)
−0.507104 + 0.861885i \(0.669284\pi\)
\(942\) 0 0
\(943\) 29.9608 0.975658
\(944\) 27.1946 0.885109
\(945\) 0 0
\(946\) 17.1164 0.556502
\(947\) 28.3337 0.920720 0.460360 0.887732i \(-0.347720\pi\)
0.460360 + 0.887732i \(0.347720\pi\)
\(948\) 0 0
\(949\) 3.95300 0.128320
\(950\) 11.5708 0.375407
\(951\) 0 0
\(952\) −8.48371 −0.274958
\(953\) −8.84041 −0.286369 −0.143184 0.989696i \(-0.545734\pi\)
−0.143184 + 0.989696i \(0.545734\pi\)
\(954\) 0 0
\(955\) −22.0350 −0.713034
\(956\) 8.22734 0.266091
\(957\) 0 0
\(958\) −63.5418 −2.05294
\(959\) 34.9691 1.12921
\(960\) 0 0
\(961\) −30.6822 −0.989748
\(962\) −14.4639 −0.466334
\(963\) 0 0
\(964\) −3.10171 −0.0998993
\(965\) 5.44214 0.175189
\(966\) 0 0
\(967\) −49.4538 −1.59033 −0.795164 0.606395i \(-0.792615\pi\)
−0.795164 + 0.606395i \(0.792615\pi\)
\(968\) 7.58828 0.243896
\(969\) 0 0
\(970\) 28.0976 0.902161
\(971\) 41.4194 1.32921 0.664606 0.747194i \(-0.268599\pi\)
0.664606 + 0.747194i \(0.268599\pi\)
\(972\) 0 0
\(973\) −35.2081 −1.12872
\(974\) −52.1569 −1.67122
\(975\) 0 0
\(976\) −27.2480 −0.872186
\(977\) 24.5426 0.785187 0.392593 0.919712i \(-0.371578\pi\)
0.392593 + 0.919712i \(0.371578\pi\)
\(978\) 0 0
\(979\) −7.38379 −0.235987
\(980\) 2.30875 0.0737502
\(981\) 0 0
\(982\) −55.0230 −1.75586
\(983\) −29.5289 −0.941825 −0.470913 0.882180i \(-0.656075\pi\)
−0.470913 + 0.882180i \(0.656075\pi\)
\(984\) 0 0
\(985\) 17.2373 0.549228
\(986\) 0 0
\(987\) 0 0
\(988\) 2.37040 0.0754123
\(989\) −58.5339 −1.86127
\(990\) 0 0
\(991\) 2.23362 0.0709532 0.0354766 0.999371i \(-0.488705\pi\)
0.0354766 + 0.999371i \(0.488705\pi\)
\(992\) −4.55958 −0.144767
\(993\) 0 0
\(994\) −31.2302 −0.990562
\(995\) −11.5859 −0.367298
\(996\) 0 0
\(997\) −25.3556 −0.803021 −0.401511 0.915854i \(-0.631515\pi\)
−0.401511 + 0.915854i \(0.631515\pi\)
\(998\) 35.8959 1.13626
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bf.1.2 8
3.2 odd 2 inner 7569.2.a.bf.1.7 yes 8
29.28 even 2 7569.2.a.bg.1.7 yes 8
87.86 odd 2 7569.2.a.bg.1.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7569.2.a.bf.1.2 8 1.1 even 1 trivial
7569.2.a.bf.1.7 yes 8 3.2 odd 2 inner
7569.2.a.bg.1.2 yes 8 87.86 odd 2
7569.2.a.bg.1.7 yes 8 29.28 even 2