Defining parameters
Level: | \( N \) | = | \( 7569 = 3^{2} \cdot 29^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 24 \) | ||
Sturm bound: | \(8477280\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(7569))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2128952 | 1678976 | 449976 |
Cusp forms | 2109689 | 1668639 | 441050 |
Eisenstein series | 19263 | 10337 | 8926 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(7569))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(7569))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(7569)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(87))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(261))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(841))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2523))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7569))\)\(^{\oplus 1}\)