Properties

Label 756.2.t.b
Level $756$
Weight $2$
Character orbit 756.t
Analytic conductor $6.037$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + 2 \zeta_{6} ) q^{7} +O(q^{10})\) \( q + ( 1 + 2 \zeta_{6} ) q^{7} + ( -3 + 6 \zeta_{6} ) q^{13} + ( -4 + 2 \zeta_{6} ) q^{19} + ( 5 - 5 \zeta_{6} ) q^{25} + ( 5 + 5 \zeta_{6} ) q^{31} + 11 \zeta_{6} q^{37} -5 q^{43} + ( -3 + 8 \zeta_{6} ) q^{49} + ( 10 - 5 \zeta_{6} ) q^{61} + ( -5 + 5 \zeta_{6} ) q^{67} + ( 8 + 8 \zeta_{6} ) q^{73} -17 \zeta_{6} q^{79} + ( -15 + 12 \zeta_{6} ) q^{91} + ( 11 - 22 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{7} + O(q^{10}) \) \( 2 q + 4 q^{7} - 6 q^{19} + 5 q^{25} + 15 q^{31} + 11 q^{37} - 10 q^{43} + 2 q^{49} + 15 q^{61} - 5 q^{67} + 24 q^{73} - 17 q^{79} - 18 q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
269.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 0 0 2.00000 + 1.73205i 0 0 0
593.1 0 0 0 0 0 2.00000 1.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 756.2.t.b 2
3.b odd 2 1 CM 756.2.t.b 2
7.c even 3 1 5292.2.f.a 2
7.d odd 6 1 inner 756.2.t.b 2
7.d odd 6 1 5292.2.f.a 2
9.c even 3 1 2268.2.w.b 2
9.c even 3 1 2268.2.bm.c 2
9.d odd 6 1 2268.2.w.b 2
9.d odd 6 1 2268.2.bm.c 2
21.g even 6 1 inner 756.2.t.b 2
21.g even 6 1 5292.2.f.a 2
21.h odd 6 1 5292.2.f.a 2
63.i even 6 1 2268.2.bm.c 2
63.k odd 6 1 2268.2.w.b 2
63.s even 6 1 2268.2.w.b 2
63.t odd 6 1 2268.2.bm.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.t.b 2 1.a even 1 1 trivial
756.2.t.b 2 3.b odd 2 1 CM
756.2.t.b 2 7.d odd 6 1 inner
756.2.t.b 2 21.g even 6 1 inner
2268.2.w.b 2 9.c even 3 1
2268.2.w.b 2 9.d odd 6 1
2268.2.w.b 2 63.k odd 6 1
2268.2.w.b 2 63.s even 6 1
2268.2.bm.c 2 9.c even 3 1
2268.2.bm.c 2 9.d odd 6 1
2268.2.bm.c 2 63.i even 6 1
2268.2.bm.c 2 63.t odd 6 1
5292.2.f.a 2 7.c even 3 1
5292.2.f.a 2 7.d odd 6 1
5292.2.f.a 2 21.g even 6 1
5292.2.f.a 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(756, [\chi])\):

\( T_{5} \)
\( T_{13}^{2} + 27 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( 7 - 4 T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 27 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( 12 + 6 T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( 75 - 15 T + T^{2} \)
$37$ \( 121 - 11 T + T^{2} \)
$41$ \( T^{2} \)
$43$ \( ( 5 + T )^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( 75 - 15 T + T^{2} \)
$67$ \( 25 + 5 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 192 - 24 T + T^{2} \)
$79$ \( 289 + 17 T + T^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( 363 + T^{2} \)
show more
show less