Properties

Label 756.2.bx
Level 756
Weight 2
Character orbit bx
Rep. character \(\chi_{756}(41,\cdot)\)
Character field \(\Q(\zeta_{18})\)
Dimension 144
Newform subspaces 1
Sturm bound 288
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 756.bx (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 189 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(756, [\chi])\).

Total New Old
Modular forms 900 144 756
Cusp forms 828 144 684
Eisenstein series 72 0 72

Trace form

\( 144q + 6q^{9} + O(q^{10}) \) \( 144q + 6q^{9} - 6q^{11} + 12q^{15} - 30q^{21} + 48q^{23} + 12q^{29} - 27q^{35} - 42q^{39} + 18q^{49} + 18q^{51} + 30q^{57} - 15q^{63} + 42q^{65} + 36q^{71} - 51q^{77} + 36q^{79} + 18q^{81} + 36q^{85} + 9q^{91} + 96q^{93} - 48q^{95} + 36q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(756, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
756.2.bx.a \(144\) \(6.037\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(756, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(756, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database