# Properties

 Label 7514.2.a.i Level $7514$ Weight $2$ Character orbit 7514.a Self dual yes Analytic conductor $60.000$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7514,2,Mod(1,7514)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7514, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7514.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7514 = 2 \cdot 13 \cdot 17^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7514.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$59.9995920788$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 26) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + 3 q^{3} + q^{4} + q^{5} + 3 q^{6} - q^{7} + q^{8} + 6 q^{9}+O(q^{10})$$ q + q^2 + 3 * q^3 + q^4 + q^5 + 3 * q^6 - q^7 + q^8 + 6 * q^9 $$q + q^{2} + 3 q^{3} + q^{4} + q^{5} + 3 q^{6} - q^{7} + q^{8} + 6 q^{9} + q^{10} + 2 q^{11} + 3 q^{12} - q^{13} - q^{14} + 3 q^{15} + q^{16} + 6 q^{18} + 6 q^{19} + q^{20} - 3 q^{21} + 2 q^{22} + 4 q^{23} + 3 q^{24} - 4 q^{25} - q^{26} + 9 q^{27} - q^{28} - 2 q^{29} + 3 q^{30} - 4 q^{31} + q^{32} + 6 q^{33} - q^{35} + 6 q^{36} - 3 q^{37} + 6 q^{38} - 3 q^{39} + q^{40} - 3 q^{42} - 5 q^{43} + 2 q^{44} + 6 q^{45} + 4 q^{46} + 13 q^{47} + 3 q^{48} - 6 q^{49} - 4 q^{50} - q^{52} + 12 q^{53} + 9 q^{54} + 2 q^{55} - q^{56} + 18 q^{57} - 2 q^{58} - 10 q^{59} + 3 q^{60} + 8 q^{61} - 4 q^{62} - 6 q^{63} + q^{64} - q^{65} + 6 q^{66} - 2 q^{67} + 12 q^{69} - q^{70} + 5 q^{71} + 6 q^{72} + 10 q^{73} - 3 q^{74} - 12 q^{75} + 6 q^{76} - 2 q^{77} - 3 q^{78} + 4 q^{79} + q^{80} + 9 q^{81} - 3 q^{84} - 5 q^{86} - 6 q^{87} + 2 q^{88} + 6 q^{89} + 6 q^{90} + q^{91} + 4 q^{92} - 12 q^{93} + 13 q^{94} + 6 q^{95} + 3 q^{96} - 14 q^{97} - 6 q^{98} + 12 q^{99}+O(q^{100})$$ q + q^2 + 3 * q^3 + q^4 + q^5 + 3 * q^6 - q^7 + q^8 + 6 * q^9 + q^10 + 2 * q^11 + 3 * q^12 - q^13 - q^14 + 3 * q^15 + q^16 + 6 * q^18 + 6 * q^19 + q^20 - 3 * q^21 + 2 * q^22 + 4 * q^23 + 3 * q^24 - 4 * q^25 - q^26 + 9 * q^27 - q^28 - 2 * q^29 + 3 * q^30 - 4 * q^31 + q^32 + 6 * q^33 - q^35 + 6 * q^36 - 3 * q^37 + 6 * q^38 - 3 * q^39 + q^40 - 3 * q^42 - 5 * q^43 + 2 * q^44 + 6 * q^45 + 4 * q^46 + 13 * q^47 + 3 * q^48 - 6 * q^49 - 4 * q^50 - q^52 + 12 * q^53 + 9 * q^54 + 2 * q^55 - q^56 + 18 * q^57 - 2 * q^58 - 10 * q^59 + 3 * q^60 + 8 * q^61 - 4 * q^62 - 6 * q^63 + q^64 - q^65 + 6 * q^66 - 2 * q^67 + 12 * q^69 - q^70 + 5 * q^71 + 6 * q^72 + 10 * q^73 - 3 * q^74 - 12 * q^75 + 6 * q^76 - 2 * q^77 - 3 * q^78 + 4 * q^79 + q^80 + 9 * q^81 - 3 * q^84 - 5 * q^86 - 6 * q^87 + 2 * q^88 + 6 * q^89 + 6 * q^90 + q^91 + 4 * q^92 - 12 * q^93 + 13 * q^94 + 6 * q^95 + 3 * q^96 - 14 * q^97 - 6 * q^98 + 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 3.00000 1.00000 1.00000 3.00000 −1.00000 1.00000 6.00000 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$13$$ $$+1$$
$$17$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7514.2.a.i 1
17.b even 2 1 26.2.a.b 1
51.c odd 2 1 234.2.a.b 1
68.d odd 2 1 208.2.a.d 1
85.c even 2 1 650.2.a.g 1
85.g odd 4 2 650.2.b.a 2
119.d odd 2 1 1274.2.a.o 1
119.h odd 6 2 1274.2.f.a 2
119.j even 6 2 1274.2.f.l 2
136.e odd 2 1 832.2.a.a 1
136.h even 2 1 832.2.a.j 1
153.h even 6 2 2106.2.e.h 2
153.i odd 6 2 2106.2.e.t 2
187.b odd 2 1 3146.2.a.a 1
204.h even 2 1 1872.2.a.m 1
221.b even 2 1 338.2.a.a 1
221.g odd 4 2 338.2.b.a 2
221.l even 6 2 338.2.c.c 2
221.n even 6 2 338.2.c.g 2
221.w odd 12 4 338.2.e.d 4
255.h odd 2 1 5850.2.a.bn 1
255.o even 4 2 5850.2.e.v 2
272.k odd 4 2 3328.2.b.k 2
272.r even 4 2 3328.2.b.g 2
323.c odd 2 1 9386.2.a.f 1
340.d odd 2 1 5200.2.a.c 1
408.b odd 2 1 7488.2.a.w 1
408.h even 2 1 7488.2.a.v 1
663.g odd 2 1 3042.2.a.l 1
663.q even 4 2 3042.2.b.f 2
884.h odd 2 1 2704.2.a.n 1
884.t even 4 2 2704.2.f.j 2
1105.h even 2 1 8450.2.a.y 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.a.b 1 17.b even 2 1
208.2.a.d 1 68.d odd 2 1
234.2.a.b 1 51.c odd 2 1
338.2.a.a 1 221.b even 2 1
338.2.b.a 2 221.g odd 4 2
338.2.c.c 2 221.l even 6 2
338.2.c.g 2 221.n even 6 2
338.2.e.d 4 221.w odd 12 4
650.2.a.g 1 85.c even 2 1
650.2.b.a 2 85.g odd 4 2
832.2.a.a 1 136.e odd 2 1
832.2.a.j 1 136.h even 2 1
1274.2.a.o 1 119.d odd 2 1
1274.2.f.a 2 119.h odd 6 2
1274.2.f.l 2 119.j even 6 2
1872.2.a.m 1 204.h even 2 1
2106.2.e.h 2 153.h even 6 2
2106.2.e.t 2 153.i odd 6 2
2704.2.a.n 1 884.h odd 2 1
2704.2.f.j 2 884.t even 4 2
3042.2.a.l 1 663.g odd 2 1
3042.2.b.f 2 663.q even 4 2
3146.2.a.a 1 187.b odd 2 1
3328.2.b.g 2 272.r even 4 2
3328.2.b.k 2 272.k odd 4 2
5200.2.a.c 1 340.d odd 2 1
5850.2.a.bn 1 255.h odd 2 1
5850.2.e.v 2 255.o even 4 2
7488.2.a.v 1 408.h even 2 1
7488.2.a.w 1 408.b odd 2 1
7514.2.a.i 1 1.a even 1 1 trivial
8450.2.a.y 1 1105.h even 2 1
9386.2.a.f 1 323.c odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7514))$$:

 $$T_{3} - 3$$ T3 - 3 $$T_{5} - 1$$ T5 - 1 $$T_{7} + 1$$ T7 + 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T - 3$$
$5$ $$T - 1$$
$7$ $$T + 1$$
$11$ $$T - 2$$
$13$ $$T + 1$$
$17$ $$T$$
$19$ $$T - 6$$
$23$ $$T - 4$$
$29$ $$T + 2$$
$31$ $$T + 4$$
$37$ $$T + 3$$
$41$ $$T$$
$43$ $$T + 5$$
$47$ $$T - 13$$
$53$ $$T - 12$$
$59$ $$T + 10$$
$61$ $$T - 8$$
$67$ $$T + 2$$
$71$ $$T - 5$$
$73$ $$T - 10$$
$79$ $$T - 4$$
$83$ $$T$$
$89$ $$T - 6$$
$97$ $$T + 14$$