Properties

Label 7500.2.a.g
Level $7500$
Weight $2$
Character orbit 7500.a
Self dual yes
Analytic conductor $59.888$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 7500 = 2^{2} \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7500.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(59.8878015160\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Defining polynomial: \(x^{4} - x^{3} - 4 x^{2} + 4 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 300)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + ( -1 + \beta_{1} - \beta_{2} ) q^{7} + q^{9} +O(q^{10})\) \( q + q^{3} + ( -1 + \beta_{1} - \beta_{2} ) q^{7} + q^{9} -\beta_{1} q^{11} + ( 1 + \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{13} + ( -3 + 3 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{17} + ( -3 \beta_{1} + \beta_{3} ) q^{19} + ( -1 + \beta_{1} - \beta_{2} ) q^{21} + ( -2 - 3 \beta_{2} - \beta_{3} ) q^{23} + q^{27} + ( -2 - 3 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{29} + ( -1 - \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{31} -\beta_{1} q^{33} + ( -3 \beta_{1} - \beta_{2} - \beta_{3} ) q^{37} + ( 1 + \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{39} + ( 3 - 2 \beta_{1} + 2 \beta_{2} + 6 \beta_{3} ) q^{41} + ( -9 + 2 \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{43} + ( -\beta_{1} + 5 \beta_{2} + 5 \beta_{3} ) q^{47} + ( -1 - 5 \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{49} + ( -3 + 3 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{51} + ( 3 - 3 \beta_{1} + \beta_{2} + 4 \beta_{3} ) q^{53} + ( -3 \beta_{1} + \beta_{3} ) q^{57} + ( 1 - \beta_{1} - 6 \beta_{2} - 2 \beta_{3} ) q^{59} + ( -3 + 2 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{61} + ( -1 + \beta_{1} - \beta_{2} ) q^{63} + ( -1 - 2 \beta_{1} - 4 \beta_{2} - 7 \beta_{3} ) q^{67} + ( -2 - 3 \beta_{2} - \beta_{3} ) q^{69} + ( -2 - \beta_{1} - 3 \beta_{2} + 4 \beta_{3} ) q^{71} + ( -6 + 6 \beta_{1} - 4 \beta_{2} - 5 \beta_{3} ) q^{73} + ( -2 + 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{77} + ( -6 + 6 \beta_{1} - \beta_{2} - 8 \beta_{3} ) q^{79} + q^{81} + ( -3 + 2 \beta_{2} + 2 \beta_{3} ) q^{83} + ( -2 - 3 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{87} + ( 3 + 3 \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{89} + ( -3 + \beta_{1} - \beta_{2} - \beta_{3} ) q^{91} + ( -1 - \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{93} + ( -11 + 4 \beta_{1} - 6 \beta_{3} ) q^{97} -\beta_{1} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{3} - 4q^{7} + 4q^{9} + O(q^{10}) \) \( 4q + 4q^{3} - 4q^{7} + 4q^{9} - q^{11} + 5q^{13} - 4q^{17} - 5q^{19} - 4q^{21} - 9q^{23} + 4q^{27} - 4q^{29} - 9q^{31} - q^{33} - 2q^{37} + 5q^{39} - 34q^{43} - 6q^{47} - 4q^{49} - 4q^{51} + 2q^{53} - 5q^{57} + q^{59} - 2q^{61} - 4q^{63} + 4q^{67} - 9q^{69} - 20q^{71} - 12q^{73} - 9q^{77} - 3q^{79} + 4q^{81} - 14q^{83} - 4q^{87} + 15q^{89} - 10q^{91} - 9q^{93} - 28q^{97} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.95630
1.82709
1.33826
−0.209057
0 1.00000 0 0 0 −4.78339 0 1.00000 0
1.2 0 1.00000 0 0 0 −0.511170 0 1.00000 0
1.3 0 1.00000 0 0 0 0.547318 0 1.00000 0
1.4 0 1.00000 0 0 0 0.747238 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7500.2.a.g 4
5.b even 2 1 7500.2.a.d 4
5.c odd 4 2 7500.2.d.d 8
25.d even 5 2 300.2.m.a 8
25.e even 10 2 1500.2.m.b 8
25.f odd 20 4 1500.2.o.a 16
75.j odd 10 2 900.2.n.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.2.m.a 8 25.d even 5 2
900.2.n.a 8 75.j odd 10 2
1500.2.m.b 8 25.e even 10 2
1500.2.o.a 16 25.f odd 20 4
7500.2.a.d 4 5.b even 2 1
7500.2.a.g 4 1.a even 1 1 trivial
7500.2.d.d 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 4 T_{7}^{3} - 4 T_{7}^{2} - T_{7} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7500))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( ( -1 + T )^{4} \)
$5$ \( T^{4} \)
$7$ \( 1 - T - 4 T^{2} + 4 T^{3} + T^{4} \)
$11$ \( 1 - 4 T - 4 T^{2} + T^{3} + T^{4} \)
$13$ \( -5 + 20 T - 10 T^{2} - 5 T^{3} + T^{4} \)
$17$ \( 271 - 61 T - 34 T^{2} + 4 T^{3} + T^{4} \)
$19$ \( 145 - 95 T - 25 T^{2} + 5 T^{3} + T^{4} \)
$23$ \( 31 - 126 T - 4 T^{2} + 9 T^{3} + T^{4} \)
$29$ \( -599 - 571 T - 94 T^{2} + 4 T^{3} + T^{4} \)
$31$ \( -279 - 126 T + 6 T^{2} + 9 T^{3} + T^{4} \)
$37$ \( 181 - 17 T - 46 T^{2} + 2 T^{3} + T^{4} \)
$41$ \( -155 + 240 T - 70 T^{2} + T^{4} \)
$43$ \( 2371 + 1844 T + 401 T^{2} + 34 T^{3} + T^{4} \)
$47$ \( 1621 - 339 T - 94 T^{2} + 6 T^{3} + T^{4} \)
$53$ \( -179 + 197 T - 46 T^{2} - 2 T^{3} + T^{4} \)
$59$ \( 2341 - 41 T - 139 T^{2} - T^{3} + T^{4} \)
$61$ \( -449 + 398 T - 96 T^{2} + 2 T^{3} + T^{4} \)
$67$ \( -2459 + 1316 T - 159 T^{2} - 4 T^{3} + T^{4} \)
$71$ \( -3875 - 875 T + 50 T^{2} + 20 T^{3} + T^{4} \)
$73$ \( -1629 - 1062 T - 141 T^{2} + 12 T^{3} + T^{4} \)
$79$ \( -1359 - 1278 T - 186 T^{2} + 3 T^{3} + T^{4} \)
$83$ \( -89 + 34 T + 56 T^{2} + 14 T^{3} + T^{4} \)
$89$ \( 45 + 90 T + 30 T^{2} - 15 T^{3} + T^{4} \)
$97$ \( -4259 - 268 T + 194 T^{2} + 28 T^{3} + T^{4} \)
show more
show less