gp: [N,k,chi] = [750,2,Mod(31,750)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(750, base_ring=CyclotomicField(50))
chi = DirichletCharacter(H, H._module([0, 24]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("750.31");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [140,0,0,0,-20,0,5,0,0,20]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{140} - 5 T_{7}^{139} + 165 T_{7}^{138} - 755 T_{7}^{137} + 14990 T_{7}^{136} + \cdots + 13\!\cdots\!76 \)
T7^140 - 5*T7^139 + 165*T7^138 - 755*T7^137 + 14990*T7^136 - 62583*T7^135 + 993435*T7^134 - 3807480*T7^133 + 53591335*T7^132 - 189704455*T7^131 + 2473954088*T7^130 - 8093296280*T7^129 + 100398374840*T7^128 - 302388454155*T7^127 + 3645801818140*T7^126 - 10049464870021*T7^125 + 119987501864500*T7^124 - 300231950882850*T7^123 + 3611241317399450*T7^122 - 8106315103339050*T7^121 + 100030170352830730*T7^120 - 198073974283846350*T7^119 + 2562638532582166300*T7^118 - 4371532812909075475*T7^117 + 60958624162455000650*T7^116 - 86554521403233201500*T7^115 + 1350617370460508871200*T7^114 - 1512619372744954897500*T7^113 + 27943381888758818378250*T7^112 - 22473491698439584967350*T7^111 + 541070101171729326679095*T7^110 - 255546196415574684770225*T7^109 + 9826677302559479406635375*T7^108 - 1229132023606957675206375*T7^107 + 167760131953999697942572075*T7^106 + 39386880009573726364530440*T7^105 + 2698162512456122212932081500*T7^104 + 1625285512622447013245128800*T7^103 + 40979337835748184175337509650*T7^102 + 39735958766177064341576762425*T7^101 + 589180972396690097337984583585*T7^100 + 781021232038414331673754718375*T7^99 + 8037905884450494762763044079025*T7^98 + 13323020999086312041904052564450*T7^97 + 104246915684752323660569487939700*T7^96 + 203629050253331799630249042234705*T7^95 + 1286713616331515237166290620832400*T7^94 + 2835575178393774009485775173664925*T7^93 + 15117771880230728576496319234744775*T7^92 + 36336654835134852424243706928471525*T7^91 + 168977465556833696539445064970656365*T7^90 + 431250164028945696485899202230165375*T7^89 + 1794653127492810910804515750670415350*T7^88 + 4760121145023014127776249025101161175*T7^87 + 18080452531748982434210201836235559875*T7^86 + 48997581777306868301585572423272305075*T7^85 + 172438320229440512469583277049371588550*T7^84 + 471049998746594275827782264493761755925*T7^83 + 1553395946558455495337728330249028670650*T7^82 + 4232259112203113868081131068834230735375*T7^81 + 13186222718012085807409250273769666591360*T7^80 + 35533198049025289543127167389399694896925*T7^79 + 105206585618142654861046103661253725406525*T7^78 + 278542501702326523717241793034850839162075*T7^77 + 786784281027196079642831863553823959431150*T7^76 + 2035669943908642180492545503201893919066995*T7^75 + 5498905415668968329627700519885134409454750*T7^74 + 13842346524651636189963556988543951129753775*T7^73 + 35803854558475515865450951401951563309784950*T7^72 + 87358213577465131116785032430728433545843325*T7^71 + 216429185586712176947778761915798545896872130*T7^70 + 510111651007334621659146606544873824433240275*T7^69 + 1210021898978367821418993505802365575490798050*T7^68 + 2746541424054322060822034550902496858689665400*T7^67 + 6232358802552054930934165817513854596900140900*T7^66 + 13586219723133848101472565764235534808567781770*T7^65 + 29459073489933129650802540339702313748255845475*T7^64 + 61522754314197425669425426356886524233131556050*T7^63 + 127292454547380233719528904203852074211181257650*T7^62 + 254029527366956228539939878375342307203053137075*T7^61 + 500590306170897723643141085849049193669321556035*T7^60 + 951966902873909137849340006391223031956707086975*T7^59 + 1782880220187244652524478872995098334957346541650*T7^58 + 3222866794558185042793549950261630602597319387950*T7^57 + 5728235059322118286329490210387377416411465546600*T7^56 + 9831824912480945760167516371386129979466666478650*T7^55 + 16586507750238899129572030336092903465681565795525*T7^54 + 27044341054944272868731808393438555459772680527975*T7^53 + 43354712520552005556440624364904936931491059503675*T7^52 + 67194134832111522826163417350655997110862213897475*T7^51 + 102375200736226567341950114848259829310350210802090*T7^50 + 150659437466178757307211608312985243134277890743000*T7^49 + 217830276342222273060654541397158490472866594224275*T7^48 + 303833630182214879479271094047235706567144766076450*T7^47 + 416565177346584972142189391760486869273745563991075*T7^46 + 550755436014676045566811105786326654072713893900580*T7^45 + 717124228938323023579665293383606978358760191501400*T7^44 + 899831303193394253190795843209940907699216603837675*T7^43 + 1113034530864373967688793107578709787182426248877400*T7^42 + 1321813527746957722454948367964681831049850923566650*T7^41 + 1546342406170433645697398789914355203670737815648360*T7^40 + 1728831393291150129187981186047537686584908958593775*T7^39 + 1909842846497126402093415546224273185506461783840400*T7^38 + 2014375846679185769222670073767446545141928224054450*T7^37 + 2116452259163203913562423886951228912211298697590675*T7^36 + 2118115138316388337178225173099227203100953149506740*T7^35 + 2120869492613436810581611346534093987450581134799125*T7^34 + 1995818479957107511115130631475536665258779452832325*T7^33 + 1875974168775584222136300840645770824715306471721600*T7^32 + 1630678417774441131399718756567013934724091904278400*T7^31 + 1441872241918344440133166722331500054549753790720170*T7^30 + 1182038478127011483407477097960021605703179016420450*T7^29 + 1016231367597970638398237335147015318391603220975700*T7^28 + 778741796370252797915087804479166071743417890785475*T7^27 + 613154859219053653635017848398129615356277460396200*T7^26 + 400087853485343606555491160035082744498749152398100*T7^25 + 289523486602585319070799392607988905498608789313125*T7^24 + 175429770471579901003199378139981854528672849232025*T7^23 + 134470988942231661730030145023413356808534265502825*T7^22 + 72926555583680732808253046876712697194393113768075*T7^21 + 51635409128287766273745343112805582826359508380605*T7^20 + 20782042346428557607091627438147422045389038662900*T7^19 + 15331108209824887646407010369884047411852948751800*T7^18 + 4209856978581801831404274650507656602988796725400*T7^17 + 3733348335700238661882795537099758020501729148400*T7^16 + 410616944676122143507341507432693620102650677504*T7^15 + 1128061793185830720580298383080238072514388711680*T7^14 + 68299246835920664655899381119610300103494476160*T7^13 + 161901244537640850756887612920186467266732180480*T7^12 - 9227217627604718549711764720693418138800944640*T7^11 + 14488994081716486449852134899419672601616421888*T7^10 - 408254271001517993149843467772557746453135360*T7^9 + 1612228016585685882356643793381038276087214080*T7^8 - 35811777207443600681449851875217461832540160*T7^7 + 105870678541594348757089180399928751594618880*T7^6 - 11092401853272246278591934339484554234462208*T7^5 + 5177195488634549481663665817177440687226880*T7^4 - 586624942608145576167432486826571264163840*T7^3 + 90145460176646833414694978251518048993280*T7^2 - 5236922437562393734348171125522644336640*T7 + 136796229623581759376507498490810597376
acting on \(S_{2}^{\mathrm{new}}(750, [\chi])\).