Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [75,8,Mod(2,75)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(75, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([10, 1]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("75.2");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.l (of order \(20\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(23.4288769113\) |
Analytic rank: | \(0\) |
Dimension: | \(544\) |
Relative dimension: | \(68\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −3.52237 | + | 22.2394i | 2.63401 | + | 46.6911i | −360.447 | − | 117.116i | −181.072 | + | 212.927i | −1047.66 | − | 105.885i | −180.295 | − | 180.295i | 2565.76 | − | 5035.59i | −2173.12 | + | 245.970i | −4097.56 | − | 4776.93i |
2.2 | −3.30156 | + | 20.8452i | −46.7631 | − | 0.456621i | −301.887 | − | 98.0892i | 263.042 | + | 94.5194i | 163.910 | − | 973.280i | 47.5755 | + | 47.5755i | 1814.96 | − | 3562.05i | 2186.58 | + | 42.7061i | −2838.73 | + | 5171.10i |
2.3 | −3.27990 | + | 20.7085i | 45.8746 | + | 9.08428i | −296.348 | − | 96.2892i | 264.930 | − | 89.0893i | −338.585 | + | 920.196i | −826.593 | − | 826.593i | 1747.61 | − | 3429.87i | 2021.95 | + | 833.475i | 975.957 | + | 5778.51i |
2.4 | −3.19418 | + | 20.1673i | 38.5888 | − | 26.4179i | −274.781 | − | 89.2816i | −278.663 | + | 21.7191i | 409.517 | + | 862.614i | 365.838 | + | 365.838i | 1491.72 | − | 2927.67i | 791.191 | − | 2038.87i | 452.087 | − | 5689.25i |
2.5 | −3.09412 | + | 19.5355i | 4.16744 | − | 46.5793i | −250.326 | − | 81.3359i | 138.197 | − | 242.954i | 897.055 | + | 225.535i | 3.00418 | + | 3.00418i | 1214.10 | − | 2382.81i | −2152.26 | − | 388.233i | 4318.62 | + | 3451.48i |
2.6 | −3.08634 | + | 19.4864i | −41.4224 | − | 21.7068i | −248.459 | − | 80.7292i | −249.237 | − | 126.515i | 550.831 | − | 740.179i | −994.647 | − | 994.647i | 1193.47 | − | 2342.31i | 1244.63 | + | 1798.30i | 3234.55 | − | 4466.26i |
2.7 | −3.04456 | + | 19.2226i | −36.2819 | + | 29.5063i | −238.504 | − | 77.4946i | −121.311 | − | 251.811i | −456.725 | − | 787.267i | 962.826 | + | 962.826i | 1084.82 | − | 2129.08i | 445.759 | − | 2141.09i | 5209.79 | − | 1565.27i |
2.8 | −3.00217 | + | 18.9549i | −13.4723 | − | 44.7828i | −228.542 | − | 74.2578i | 56.3184 | + | 273.776i | 889.301 | − | 120.922i | 507.559 | + | 507.559i | 978.456 | − | 1920.33i | −1823.99 | + | 1206.66i | −5358.49 | + | 245.591i |
2.9 | −2.78472 | + | 17.5820i | 42.5275 | + | 19.4528i | −179.638 | − | 58.3678i | −75.2428 | − | 269.190i | −460.446 | + | 693.549i | 758.406 | + | 758.406i | 492.023 | − | 965.649i | 1430.18 | + | 1654.55i | 4942.44 | − | 573.301i |
2.10 | −2.68688 | + | 16.9643i | 2.70038 | + | 46.6873i | −158.832 | − | 51.6076i | 277.208 | + | 35.7878i | −799.272 | − | 79.6331i | 577.729 | + | 577.729i | 304.152 | − | 596.931i | −2172.42 | + | 252.147i | −1351.94 | + | 4606.47i |
2.11 | −2.55265 | + | 16.1168i | 36.2961 | − | 29.4889i | −131.500 | − | 42.7270i | 40.5144 | + | 276.557i | 382.616 | + | 660.251i | −970.273 | − | 970.273i | 76.0619 | − | 149.280i | 447.807 | − | 2140.66i | −4560.63 | − | 52.9906i |
2.12 | −2.55129 | + | 16.1082i | −12.9716 | + | 44.9304i | −131.229 | − | 42.6390i | 79.1005 | − | 268.082i | −690.652 | − | 323.579i | −1066.81 | − | 1066.81i | 73.9138 | − | 145.064i | −1850.47 | − | 1165.64i | 4116.51 | + | 1958.12i |
2.13 | −2.53512 | + | 16.0061i | 41.4008 | + | 21.7479i | −128.035 | − | 41.6010i | 67.8172 | + | 271.156i | −453.056 | + | 607.535i | 364.928 | + | 364.928i | 48.7316 | − | 95.6411i | 1241.06 | + | 1800.76i | −4512.10 | + | 398.077i |
2.14 | −2.30743 | + | 14.5685i | −38.7959 | + | 26.1128i | −85.1830 | − | 27.6776i | −102.175 | + | 260.164i | −290.906 | − | 625.453i | −331.771 | − | 331.771i | −257.366 | + | 505.109i | 823.247 | − | 2026.14i | −3554.45 | − | 2088.85i |
2.15 | −2.27542 | + | 14.3665i | −40.9482 | − | 22.5886i | −79.4821 | − | 25.8253i | −249.935 | + | 125.130i | 417.693 | − | 536.882i | 933.969 | + | 933.969i | −293.379 | + | 575.788i | 1166.51 | + | 1849.93i | −1228.96 | − | 3875.40i |
2.16 | −2.19123 | + | 13.8349i | 26.4684 | + | 38.5542i | −64.8671 | − | 21.0766i | −278.769 | − | 20.3187i | −591.390 | + | 281.706i | −491.802 | − | 491.802i | −380.246 | + | 746.275i | −785.845 | + | 2040.94i | 891.953 | − | 3812.21i |
2.17 | −1.89065 | + | 11.9371i | 5.16139 | − | 46.4797i | −17.1845 | − | 5.58357i | −260.391 | − | 101.596i | 545.074 | + | 149.489i | −382.688 | − | 382.688i | −603.179 | + | 1183.81i | −2133.72 | − | 479.799i | 1705.07 | − | 2916.22i |
2.18 | −1.88257 | + | 11.8861i | 33.2863 | − | 32.8484i | −15.9995 | − | 5.19856i | 279.504 | − | 1.66925i | 327.775 | + | 457.484i | 759.321 | + | 759.321i | −607.408 | + | 1192.11i | 28.9621 | − | 2186.81i | −506.344 | + | 3325.34i |
2.19 | −1.85418 | + | 11.7069i | −46.5389 | + | 4.59638i | −11.8772 | − | 3.85915i | 250.787 | − | 123.414i | 32.4826 | − | 553.347i | −2.39286 | − | 2.39286i | −621.573 | + | 1219.91i | 2144.75 | − | 427.821i | 979.788 | + | 3164.76i |
2.20 | −1.79599 | + | 11.3395i | −28.9982 | − | 36.6893i | −3.62242 | − | 1.17700i | 245.145 | + | 134.273i | 468.117 | − | 262.930i | −1082.77 | − | 1082.77i | −647.306 | + | 1270.41i | −505.206 | + | 2127.85i | −1962.86 | + | 2538.65i |
See next 80 embeddings (of 544 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
25.f | odd | 20 | 1 | inner |
75.l | even | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 75.8.l.a | ✓ | 544 |
3.b | odd | 2 | 1 | inner | 75.8.l.a | ✓ | 544 |
25.f | odd | 20 | 1 | inner | 75.8.l.a | ✓ | 544 |
75.l | even | 20 | 1 | inner | 75.8.l.a | ✓ | 544 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.8.l.a | ✓ | 544 | 1.a | even | 1 | 1 | trivial |
75.8.l.a | ✓ | 544 | 3.b | odd | 2 | 1 | inner |
75.8.l.a | ✓ | 544 | 25.f | odd | 20 | 1 | inner |
75.8.l.a | ✓ | 544 | 75.l | even | 20 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(75, [\chi])\).