Newspace parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.i (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(23.4288769113\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −20.7551 | − | 6.74374i | −15.8702 | + | 21.8435i | 281.742 | + | 204.698i | 264.211 | + | 91.2007i | 476.695 | − | 346.339i | − | 646.924i | −2825.26 | − | 3888.64i | −225.273 | − | 693.320i | −4868.69 | − | 3674.65i | |
4.2 | −20.4935 | − | 6.65874i | 15.8702 | − | 21.8435i | 272.090 | + | 197.685i | 182.194 | − | 211.968i | −470.686 | + | 341.973i | 657.484i | −2638.54 | − | 3631.64i | −225.273 | − | 693.320i | −5145.23 | + | 3130.78i | ||
4.3 | −19.2349 | − | 6.24980i | −15.8702 | + | 21.8435i | 227.367 | + | 165.192i | −267.057 | + | 82.4957i | 441.779 | − | 320.971i | 279.921i | −1819.33 | − | 2504.10i | −225.273 | − | 693.320i | 5652.40 | + | 82.2569i | ||
4.4 | −18.5349 | − | 6.02234i | 15.8702 | − | 21.8435i | 203.719 | + | 148.010i | 10.9269 | + | 279.295i | −425.701 | + | 309.290i | − | 1019.16i | −1418.27 | − | 1952.07i | −225.273 | − | 693.320i | 1479.48 | − | 5242.50i | |
4.5 | −16.4262 | − | 5.33719i | 15.8702 | − | 21.8435i | 137.779 | + | 100.103i | −252.155 | − | 120.593i | −377.269 | + | 274.102i | − | 989.987i | −429.476 | − | 591.123i | −225.273 | − | 693.320i | 3498.32 | + | 3326.68i | |
4.6 | −15.9978 | − | 5.19799i | −15.8702 | + | 21.8435i | 125.355 | + | 91.0761i | −164.963 | − | 225.638i | 367.430 | − | 266.954i | − | 761.019i | −266.438 | − | 366.721i | −225.273 | − | 693.320i | 1466.17 | + | 4467.17i | |
4.7 | −15.1895 | − | 4.93537i | −15.8702 | + | 21.8435i | 102.809 | + | 74.6952i | 137.774 | − | 243.194i | 348.866 | − | 253.466i | 1729.43i | 8.64518 | + | 11.8991i | −225.273 | − | 693.320i | −3292.98 | + | 3014.03i | ||
4.8 | −14.2990 | − | 4.64601i | 15.8702 | − | 21.8435i | 79.3205 | + | 57.6297i | 276.954 | + | 37.7019i | −328.412 | + | 238.605i | 671.369i | 264.715 | + | 364.349i | −225.273 | − | 693.320i | −3784.99 | − | 1825.83i | ||
4.9 | −11.9387 | − | 3.87913i | 15.8702 | − | 21.8435i | 23.9313 | + | 17.3871i | −68.3062 | − | 271.034i | −274.203 | + | 199.220i | 342.329i | 726.190 | + | 999.515i | −225.273 | − | 693.320i | −235.885 | + | 3500.76i | ||
4.10 | −11.8447 | − | 3.84857i | −15.8702 | + | 21.8435i | 21.9310 | + | 15.9338i | −108.372 | + | 257.644i | 272.044 | − | 197.651i | − | 783.153i | 738.570 | + | 1016.55i | −225.273 | − | 693.320i | 2275.20 | − | 2634.63i | |
4.11 | −11.3253 | − | 3.67981i | 15.8702 | − | 21.8435i | 11.1669 | + | 8.11322i | −216.143 | + | 177.221i | −260.114 | + | 188.984i | 1198.17i | 799.311 | + | 1100.16i | −225.273 | − | 693.320i | 3100.02 | − | 1211.71i | ||
4.12 | −9.85069 | − | 3.20068i | −15.8702 | + | 21.8435i | −16.7624 | − | 12.1786i | 279.506 | + | 1.22238i | 226.246 | − | 164.378i | − | 633.339i | 905.414 | + | 1246.19i | −225.273 | − | 693.320i | −2749.41 | − | 906.651i | |
4.13 | −8.41215 | − | 2.73327i | 15.8702 | − | 21.8435i | −40.2607 | − | 29.2511i | 235.359 | − | 150.768i | −193.207 | + | 140.373i | − | 1792.05i | 924.199 | + | 1272.05i | −225.273 | − | 693.320i | −2391.97 | + | 624.985i | |
4.14 | −5.67378 | − | 1.84352i | −15.8702 | + | 21.8435i | −74.7610 | − | 54.3171i | −268.202 | − | 78.6934i | 130.313 | − | 94.6778i | 1072.72i | 772.886 | + | 1063.79i | −225.273 | − | 693.320i | 1376.65 | + | 940.925i | ||
4.15 | −3.41271 | − | 1.10886i | −15.8702 | + | 21.8435i | −93.1372 | − | 67.6681i | 114.335 | + | 255.054i | 78.3816 | − | 56.9475i | 1230.60i | 512.789 | + | 705.794i | −225.273 | − | 693.320i | −107.373 | − | 997.205i | ||
4.16 | −2.76941 | − | 0.899835i | 15.8702 | − | 21.8435i | −96.6943 | − | 70.2525i | 214.025 | + | 179.773i | −63.6066 | + | 46.2129i | 166.889i | 423.654 | + | 583.109i | −225.273 | − | 693.320i | −430.957 | − | 690.452i | ||
4.17 | −2.63463 | − | 0.856043i | −15.8702 | + | 21.8435i | −97.3457 | − | 70.7258i | 2.73943 | − | 279.495i | 60.5111 | − | 43.9639i | − | 280.140i | 404.347 | + | 556.536i | −225.273 | − | 693.320i | −246.477 | + | 734.021i | |
4.18 | −1.85809 | − | 0.603729i | 15.8702 | − | 21.8435i | −100.466 | − | 72.9929i | −39.7417 | + | 276.669i | −42.6758 | + | 31.0058i | − | 16.6474i | 289.597 | + | 398.597i | −225.273 | − | 693.320i | 240.877 | − | 490.082i | |
4.19 | 0.257467 | + | 0.0836561i | 15.8702 | − | 21.8435i | −103.495 | − | 75.1934i | −269.409 | − | 74.4581i | 5.91339 | − | 4.29633i | − | 942.224i | −40.7239 | − | 56.0517i | −225.273 | − | 693.320i | −63.1350 | − | 41.7082i | |
4.20 | 1.88540 | + | 0.612605i | −15.8702 | + | 21.8435i | −100.375 | − | 72.9265i | 14.8566 | − | 279.113i | −43.3032 | + | 31.4616i | − | 1231.97i | −293.723 | − | 404.275i | −225.273 | − | 693.320i | 198.997 | − | 517.140i | |
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 75.8.i.a | ✓ | 144 |
25.e | even | 10 | 1 | inner | 75.8.i.a | ✓ | 144 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.8.i.a | ✓ | 144 | 1.a | even | 1 | 1 | trivial |
75.8.i.a | ✓ | 144 | 25.e | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(75, [\chi])\).