Properties

Label 75.8.g
Level $75$
Weight $8$
Character orbit 75.g
Rep. character $\chi_{75}(16,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $136$
Newform subspaces $2$
Sturm bound $80$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(80\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(75, [\chi])\).

Total New Old
Modular forms 288 136 152
Cusp forms 272 136 136
Eisenstein series 16 0 16

Trace form

\( 136 q + 16 q^{2} - 2048 q^{4} - 390 q^{5} + 432 q^{6} - 2136 q^{7} + 66 q^{8} - 24786 q^{9} - 7590 q^{10} - 11586 q^{11} - 15336 q^{12} + 21684 q^{13} + 17628 q^{14} + 3780 q^{15} - 115540 q^{16} - 88570 q^{17}+ \cdots + 5630796 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(75, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
75.8.g.a 75.g 25.d $68$ $23.429$ None 75.8.g.a \(0\) \(459\) \(-900\) \(1676\) $\mathrm{SU}(2)[C_{5}]$
75.8.g.b 75.g 25.d $68$ $23.429$ None 75.8.g.b \(16\) \(-459\) \(510\) \(-3812\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{8}^{\mathrm{old}}(75, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)