Newspace parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.e (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(23.4288769113\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 | −13.6541 | + | 13.6541i | −34.8320 | + | 31.2047i | − | 244.867i | 0 | 49.5271 | − | 901.669i | 896.113 | + | 896.113i | 1595.70 | + | 1595.70i | 239.534 | − | 2173.84i | 0 | |||||
32.2 | −13.6541 | + | 13.6541i | 31.2047 | − | 34.8320i | − | 244.867i | 0 | 49.5271 | + | 901.669i | −896.113 | − | 896.113i | 1595.70 | + | 1595.70i | −239.534 | − | 2173.84i | 0 | |||||
32.3 | −11.5625 | + | 11.5625i | 4.54415 | + | 46.5441i | − | 139.384i | 0 | −590.709 | − | 485.625i | 632.779 | + | 632.779i | 131.626 | + | 131.626i | −2145.70 | + | 423.006i | 0 | |||||
32.4 | −11.5625 | + | 11.5625i | 46.5441 | + | 4.54415i | − | 139.384i | 0 | −590.709 | + | 485.625i | −632.779 | − | 632.779i | 131.626 | + | 131.626i | 2145.70 | + | 423.006i | 0 | |||||
32.5 | −9.04944 | + | 9.04944i | −41.6173 | − | 21.3308i | − | 35.7849i | 0 | 569.645 | − | 183.582i | 248.346 | + | 248.346i | −834.495 | − | 834.495i | 1277.00 | + | 1775.46i | 0 | |||||
32.6 | −9.04944 | + | 9.04944i | −21.3308 | − | 41.6173i | − | 35.7849i | 0 | 569.645 | + | 183.582i | −248.346 | − | 248.346i | −834.495 | − | 834.495i | −1277.00 | + | 1775.46i | 0 | |||||
32.7 | −2.73539 | + | 2.73539i | 1.50167 | + | 46.7413i | 113.035i | 0 | −131.963 | − | 123.748i | −186.453 | − | 186.453i | −659.326 | − | 659.326i | −2182.49 | + | 140.380i | 0 | ||||||
32.8 | −2.73539 | + | 2.73539i | 46.7413 | + | 1.50167i | 113.035i | 0 | −131.963 | + | 123.748i | 186.453 | + | 186.453i | −659.326 | − | 659.326i | 2182.49 | + | 140.380i | 0 | ||||||
32.9 | 2.73539 | − | 2.73539i | −46.7413 | − | 1.50167i | 113.035i | 0 | −131.963 | + | 123.748i | −186.453 | − | 186.453i | 659.326 | + | 659.326i | 2182.49 | + | 140.380i | 0 | ||||||
32.10 | 2.73539 | − | 2.73539i | −1.50167 | − | 46.7413i | 113.035i | 0 | −131.963 | − | 123.748i | 186.453 | + | 186.453i | 659.326 | + | 659.326i | −2182.49 | + | 140.380i | 0 | ||||||
32.11 | 9.04944 | − | 9.04944i | 21.3308 | + | 41.6173i | − | 35.7849i | 0 | 569.645 | + | 183.582i | 248.346 | + | 248.346i | 834.495 | + | 834.495i | −1277.00 | + | 1775.46i | 0 | |||||
32.12 | 9.04944 | − | 9.04944i | 41.6173 | + | 21.3308i | − | 35.7849i | 0 | 569.645 | − | 183.582i | −248.346 | − | 248.346i | 834.495 | + | 834.495i | 1277.00 | + | 1775.46i | 0 | |||||
32.13 | 11.5625 | − | 11.5625i | −46.5441 | − | 4.54415i | − | 139.384i | 0 | −590.709 | + | 485.625i | 632.779 | + | 632.779i | −131.626 | − | 131.626i | 2145.70 | + | 423.006i | 0 | |||||
32.14 | 11.5625 | − | 11.5625i | −4.54415 | − | 46.5441i | − | 139.384i | 0 | −590.709 | − | 485.625i | −632.779 | − | 632.779i | −131.626 | − | 131.626i | −2145.70 | + | 423.006i | 0 | |||||
32.15 | 13.6541 | − | 13.6541i | −31.2047 | + | 34.8320i | − | 244.867i | 0 | 49.5271 | + | 901.669i | 896.113 | + | 896.113i | −1595.70 | − | 1595.70i | −239.534 | − | 2173.84i | 0 | |||||
32.16 | 13.6541 | − | 13.6541i | 34.8320 | − | 31.2047i | − | 244.867i | 0 | 49.5271 | − | 901.669i | −896.113 | − | 896.113i | −1595.70 | − | 1595.70i | 239.534 | − | 2173.84i | 0 | |||||
68.1 | −13.6541 | − | 13.6541i | −34.8320 | − | 31.2047i | 244.867i | 0 | 49.5271 | + | 901.669i | 896.113 | − | 896.113i | 1595.70 | − | 1595.70i | 239.534 | + | 2173.84i | 0 | ||||||
68.2 | −13.6541 | − | 13.6541i | 31.2047 | + | 34.8320i | 244.867i | 0 | 49.5271 | − | 901.669i | −896.113 | + | 896.113i | 1595.70 | − | 1595.70i | −239.534 | + | 2173.84i | 0 | ||||||
68.3 | −11.5625 | − | 11.5625i | 4.54415 | − | 46.5441i | 139.384i | 0 | −590.709 | + | 485.625i | 632.779 | − | 632.779i | 131.626 | − | 131.626i | −2145.70 | − | 423.006i | 0 | ||||||
68.4 | −11.5625 | − | 11.5625i | 46.5441 | − | 4.54415i | 139.384i | 0 | −590.709 | − | 485.625i | −632.779 | + | 632.779i | 131.626 | − | 131.626i | 2145.70 | − | 423.006i | 0 | ||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
5.c | odd | 4 | 2 | inner |
15.d | odd | 2 | 1 | inner |
15.e | even | 4 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 75.8.e.e | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 75.8.e.e | ✓ | 32 |
5.b | even | 2 | 1 | inner | 75.8.e.e | ✓ | 32 |
5.c | odd | 4 | 2 | inner | 75.8.e.e | ✓ | 32 |
15.d | odd | 2 | 1 | inner | 75.8.e.e | ✓ | 32 |
15.e | even | 4 | 2 | inner | 75.8.e.e | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.8.e.e | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
75.8.e.e | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
75.8.e.e | ✓ | 32 | 5.b | even | 2 | 1 | inner |
75.8.e.e | ✓ | 32 | 5.c | odd | 4 | 2 | inner |
75.8.e.e | ✓ | 32 | 15.d | odd | 2 | 1 | inner |
75.8.e.e | ✓ | 32 | 15.e | even | 4 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} + 237573T_{2}^{12} + 15640338276T_{2}^{8} + 270130343472000T_{2}^{4} + 59712200576640000 \)
acting on \(S_{8}^{\mathrm{new}}(75, [\chi])\).