Properties

Label 75.8.e
Level $75$
Weight $8$
Character orbit 75.e
Rep. character $\chi_{75}(32,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $80$
Newform subspaces $5$
Sturm bound $80$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(80\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(75, [\chi])\).

Total New Old
Modular forms 152 88 64
Cusp forms 128 80 48
Eisenstein series 24 8 16

Trace form

\( 80 q - 24 q^{3} - 1860 q^{6} - 1344 q^{7} + 2028 q^{12} - 16848 q^{13} - 239120 q^{16} + 106560 q^{18} - 168300 q^{21} - 166020 q^{22} + 264168 q^{27} - 602028 q^{28} + 382700 q^{31} + 877800 q^{33} + 709020 q^{36}+ \cdots + 75148056 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(75, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
75.8.e.a 75.e 15.e $4$ $23.429$ \(\Q(i, \sqrt{6})\) \(\Q(\sqrt{-15}) \) 75.8.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+13\beta _{1}q^{2}+3^{3}\beta _{3}q^{3}+379\beta _{2}q^{4}+\cdots\)
75.8.e.b 75.e 15.e $4$ $23.429$ \(\Q(i, \sqrt{6})\) \(\Q(\sqrt{-3}) \) 75.8.e.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q-3^{3}\beta _{3}q^{3}+2^{7}\beta _{2}q^{4}+757\beta _{1}q^{7}+\cdots\)
75.8.e.c 75.e 15.e $16$ $23.429$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 75.8.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}+(\beta _{5}-\beta _{8})q^{3}+(-2\beta _{6}-\beta _{13}+\cdots)q^{4}+\cdots\)
75.8.e.d 75.e 15.e $24$ $23.429$ None 15.8.e.a \(0\) \(-24\) \(0\) \(-1344\) $\mathrm{SU}(2)[C_{4}]$
75.8.e.e 75.e 15.e $32$ $23.429$ None 75.8.e.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{8}^{\mathrm{old}}(75, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)