Defining parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(75, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 88 | 64 |
Cusp forms | 128 | 80 | 48 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(75, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
75.8.e.a | $4$ | $23.429$ | \(\Q(i, \sqrt{6})\) | \(\Q(\sqrt{-15}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+13\beta _{1}q^{2}+3^{3}\beta _{3}q^{3}+379\beta _{2}q^{4}+\cdots\) |
75.8.e.b | $4$ | $23.429$ | \(\Q(i, \sqrt{6})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3^{3}\beta _{3}q^{3}+2^{7}\beta _{2}q^{4}+757\beta _{1}q^{7}+\cdots\) |
75.8.e.c | $16$ | $23.429$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{4}q^{2}+(\beta _{5}-\beta _{8})q^{3}+(-2\beta _{6}-\beta _{13}+\cdots)q^{4}+\cdots\) |
75.8.e.d | $24$ | $23.429$ | None | \(0\) | \(-24\) | \(0\) | \(-1344\) | ||
75.8.e.e | $32$ | $23.429$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{8}^{\mathrm{old}}(75, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)