Properties

Label 75.8.b.f
Level $75$
Weight $8$
Character orbit 75.b
Analytic conductor $23.429$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,8,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4288769113\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 42x^{3} + 17161x^{2} - 5502x + 882 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \beta_{4} - \beta_{2}) q^{2} - 27 \beta_{4} q^{3} + (4 \beta_{3} - \beta_1 - 51) q^{4} + ( - 27 \beta_{3} + 54) q^{6} + (8 \beta_{5} + 25 \beta_{4} - 28 \beta_{2}) q^{7} + (6 \beta_{5} - 630 \beta_{4} + 18 \beta_{2}) q^{8}+ \cdots + (125388 \beta_{3} - 34992 \beta_1 - 368874) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 304 q^{4} + 324 q^{6} - 4374 q^{9} + 2940 q^{11} - 25644 q^{14} - 9488 q^{16} - 64442 q^{19} + 4482 q^{21} - 101736 q^{24} + 386412 q^{26} - 449244 q^{29} + 603478 q^{31} - 1988728 q^{34} + 221616 q^{36}+ \cdots - 2143260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 42x^{3} + 17161x^{2} - 5502x + 882 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -21\nu^{5} - 17161\nu^{4} - 2751\nu^{3} + 441\nu^{2} - 196553833 ) / 1123825 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -131\nu^{5} - 21\nu^{4} - 17161\nu^{3} + 2751\nu^{2} - 4495300\nu + 720762 ) / 2247650 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -131\nu^{5} - 21\nu^{4} - 17161\nu^{3} + 2751\nu^{2} + 720762 ) / 2247650 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -17161\nu^{5} - 2751\nu^{4} - 441\nu^{3} + 360381\nu^{2} - 294442150\nu + 47219172 ) / 47200650 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -17161\nu^{5} - 2751\nu^{4} - 441\nu^{3} + 899817\nu^{2} - 294442150\nu + 47219172 ) / 269718 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} - 175\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 42\beta_{4} - 131\beta_{3} - 131\beta_{2} + 42 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 42\beta_{3} - 131\beta _1 - 22925 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 21\beta_{5} - 9177\beta_{4} - 17161\beta_{3} + 17161\beta_{2} + 21\beta _1 + 9177 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−8.17220 8.17220i
8.01183 8.01183i
0.160368 + 0.160368i
0.160368 0.160368i
8.01183 + 8.01183i
−8.17220 + 8.17220i
18.3444i 27.0000i −208.517 0 495.299 254.472i 1477.04i −729.000 0
49.2 14.0237i 27.0000i −68.6631 0 −378.639 1077.72i 832.121i −729.000 0
49.3 1.67926i 27.0000i 125.180 0 45.3401 1415.20i 425.156i −729.000 0
49.4 1.67926i 27.0000i 125.180 0 45.3401 1415.20i 425.156i −729.000 0
49.5 14.0237i 27.0000i −68.6631 0 −378.639 1077.72i 832.121i −729.000 0
49.6 18.3444i 27.0000i −208.517 0 495.299 254.472i 1477.04i −729.000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.8.b.f 6
3.b odd 2 1 225.8.b.q 6
5.b even 2 1 inner 75.8.b.f 6
5.c odd 4 1 75.8.a.g 3
5.c odd 4 1 75.8.a.h yes 3
15.d odd 2 1 225.8.b.q 6
15.e even 4 1 225.8.a.x 3
15.e even 4 1 225.8.a.y 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.8.a.g 3 5.c odd 4 1
75.8.a.h yes 3 5.c odd 4 1
75.8.b.f 6 1.a even 1 1 trivial
75.8.b.f 6 5.b even 2 1 inner
225.8.a.x 3 15.e even 4 1
225.8.a.y 3 15.e even 4 1
225.8.b.q 6 3.b odd 2 1
225.8.b.q 6 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 536T_{2}^{4} + 67684T_{2}^{2} + 186624 \) acting on \(S_{8}^{\mathrm{new}}(75, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 536 T^{4} + \cdots + 186624 \) Copy content Toggle raw display
$3$ \( (T^{2} + 729)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 15\!\cdots\!25 \) Copy content Toggle raw display
$11$ \( (T^{3} - 1470 T^{2} + \cdots + 102949073496)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 17\!\cdots\!61 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 48\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( (T^{3} + \cdots - 19077937228225)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots - 853069492719000)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + \cdots + 857899428441975)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots + 30\!\cdots\!20)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 27\!\cdots\!89 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 27\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 79\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots - 15\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 14\!\cdots\!87)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 30\!\cdots\!61 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 21\!\cdots\!08)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 18\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 77\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots - 19\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 57\!\cdots\!41 \) Copy content Toggle raw display
show more
show less