Properties

Label 75.8.b.e
Level $75$
Weight $8$
Character orbit 75.b
Analytic conductor $23.429$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,8,Mod(49,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4288769113\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{31})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 15x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - 4 \beta_1) q^{2} - 27 \beta_1 q^{3} + ( - 8 \beta_{2} - 12) q^{4} + ( - 27 \beta_{2} - 108) q^{6} + ( - 14 \beta_{3} - 43 \beta_1) q^{7} + ( - 84 \beta_{3} + 528 \beta_1) q^{8} - 729 q^{9}+ \cdots + (193914 \beta_{2} + 1681074) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 48 q^{4} - 432 q^{6} - 2916 q^{9} - 9224 q^{11} - 7632 q^{14} - 39360 q^{16} + 47868 q^{19} - 4644 q^{21} + 57024 q^{24} - 74672 q^{26} + 693016 q^{29} - 258356 q^{31} + 1255744 q^{34} + 34992 q^{36}+ \cdots + 6724296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 15x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 7\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 23\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{2} - 30 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 30 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{2} + 46\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
2.78388 + 0.500000i
−2.78388 0.500000i
−2.78388 + 0.500000i
2.78388 0.500000i
15.1355i 27.0000i −101.084 0 −408.659 198.897i 407.384i −729.000 0
49.2 7.13553i 27.0000i 77.0842 0 192.659 112.897i 1463.38i −729.000 0
49.3 7.13553i 27.0000i 77.0842 0 192.659 112.897i 1463.38i −729.000 0
49.4 15.1355i 27.0000i −101.084 0 −408.659 198.897i 407.384i −729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.8.b.e 4
3.b odd 2 1 225.8.b.o 4
5.b even 2 1 inner 75.8.b.e 4
5.c odd 4 1 75.8.a.d 2
5.c odd 4 1 75.8.a.f yes 2
15.d odd 2 1 225.8.b.o 4
15.e even 4 1 225.8.a.l 2
15.e even 4 1 225.8.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.8.a.d 2 5.c odd 4 1
75.8.a.f yes 2 5.c odd 4 1
75.8.b.e 4 1.a even 1 1 trivial
75.8.b.e 4 5.b even 2 1 inner
225.8.a.l 2 15.e even 4 1
225.8.a.u 2 15.e even 4 1
225.8.b.o 4 3.b odd 2 1
225.8.b.o 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 280T_{2}^{2} + 11664 \) acting on \(S_{8}^{\mathrm{new}}(75, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 280 T^{2} + 11664 \) Copy content Toggle raw display
$3$ \( (T^{2} + 729)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 52306 T^{2} + 504227025 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4612 T - 3456108)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 89618352089809 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 25\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( (T^{2} - 23934 T - 791814895)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{2} - 346508 T + 29988616500)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 129178 T - 25626949575)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{2} + 340928 T - 186336929520)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 81\!\cdots\!41 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 37\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots - 1475873866620)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 8423736487399)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 25\!\cdots\!01 \) Copy content Toggle raw display
$71$ \( (T^{2} + 2607296 T - 284467184496)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 9582807148800)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 16\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots + 45203910693120)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 18\!\cdots\!81 \) Copy content Toggle raw display
show more
show less