Properties

Label 75.8.b.d
Level $75$
Weight $8$
Character orbit 75.b
Analytic conductor $23.429$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,8,Mod(49,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-138] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4288769113\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{601})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 301x^{2} + 22500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta_{2} + \beta_1) q^{2} + 27 \beta_{2} q^{3} + (7 \beta_{3} - 38) q^{4} + ( - 27 \beta_{3} + 108) q^{6} + ( - 680 \beta_{2} - 56 \beta_1) q^{7} + (759 \beta_{2} + 69 \beta_1) q^{8} - 729 q^{9}+ \cdots + ( - 338256 \beta_{3} - 1087668) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 138 q^{4} + 378 q^{6} - 2916 q^{9} + 6896 q^{11} + 24528 q^{14} - 48990 q^{16} + 99168 q^{19} + 70416 q^{21} - 78246 q^{24} + 432308 q^{26} - 363544 q^{29} + 608464 q^{31} + 879844 q^{34} + 100602 q^{36}+ \cdots - 5027184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 301x^{2} + 22500 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 151\nu ) / 150 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 151 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 151 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 150\beta_{2} - 151\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
12.7577i
11.7577i
11.7577i
12.7577i
15.7577i 27.0000i −120.304 0 425.457 34.4284i 121.278i −729.000 0
49.2 8.75765i 27.0000i 51.3036 0 −236.457 1338.43i 1570.28i −729.000 0
49.3 8.75765i 27.0000i 51.3036 0 −236.457 1338.43i 1570.28i −729.000 0
49.4 15.7577i 27.0000i −120.304 0 425.457 34.4284i 121.278i −729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.8.b.d 4
3.b odd 2 1 225.8.b.n 4
5.b even 2 1 inner 75.8.b.d 4
5.c odd 4 1 15.8.a.c 2
5.c odd 4 1 75.8.a.e 2
15.d odd 2 1 225.8.b.n 4
15.e even 4 1 45.8.a.i 2
15.e even 4 1 225.8.a.t 2
20.e even 4 1 240.8.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.8.a.c 2 5.c odd 4 1
45.8.a.i 2 15.e even 4 1
75.8.a.e 2 5.c odd 4 1
75.8.b.d 4 1.a even 1 1 trivial
75.8.b.d 4 5.b even 2 1 inner
225.8.a.t 2 15.e even 4 1
225.8.b.n 4 3.b odd 2 1
225.8.b.n 4 15.d odd 2 1
240.8.a.p 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 325T_{2}^{2} + 19044 \) acting on \(S_{8}^{\mathrm{new}}(75, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 325 T^{2} + 19044 \) Copy content Toggle raw display
$3$ \( (T^{2} + 729)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 2123366400 \) Copy content Toggle raw display
$11$ \( (T^{2} - 3448 T - 29376048)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 66\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 82\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( (T^{2} - 49584 T - 20483920)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{2} + 181772 T - 2060549340)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 304232 T + 22433068800)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{2} - 631172 T + 30837469380)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 55\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 24\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots - 3349911332400)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 1579956747716)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 15\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots + 2634564492864)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 48\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 4381741411200)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 63\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots + 68134385955780)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 66\!\cdots\!16 \) Copy content Toggle raw display
show more
show less