Properties

Label 75.8.b.c.49.1
Level $75$
Weight $8$
Character 75.49
Analytic conductor $23.429$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,8,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4288769113\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 75.49
Dual form 75.8.b.c.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.00000i q^{2} -27.0000i q^{3} +92.0000 q^{4} -162.000 q^{6} +64.0000i q^{7} -1320.00i q^{8} -729.000 q^{9} -948.000 q^{11} -2484.00i q^{12} -5098.00i q^{13} +384.000 q^{14} +3856.00 q^{16} -28386.0i q^{17} +4374.00i q^{18} +8620.00 q^{19} +1728.00 q^{21} +5688.00i q^{22} -15288.0i q^{23} -35640.0 q^{24} -30588.0 q^{26} +19683.0i q^{27} +5888.00i q^{28} -36510.0 q^{29} -276808. q^{31} -192096. i q^{32} +25596.0i q^{33} -170316. q^{34} -67068.0 q^{36} -268526. i q^{37} -51720.0i q^{38} -137646. q^{39} -629718. q^{41} -10368.0i q^{42} +685772. i q^{43} -87216.0 q^{44} -91728.0 q^{46} -583296. i q^{47} -104112. i q^{48} +819447. q^{49} -766422. q^{51} -469016. i q^{52} -428058. i q^{53} +118098. q^{54} +84480.0 q^{56} -232740. i q^{57} +219060. i q^{58} -1.30638e6 q^{59} +300662. q^{61} +1.66085e6i q^{62} -46656.0i q^{63} -659008. q^{64} +153576. q^{66} +507244. i q^{67} -2.61151e6i q^{68} -412776. q^{69} +5.56063e6 q^{71} +962280. i q^{72} +1.36908e6i q^{73} -1.61116e6 q^{74} +793040. q^{76} -60672.0i q^{77} +825876. i q^{78} +6.91372e6 q^{79} +531441. q^{81} +3.77831e6i q^{82} -4.37675e6i q^{83} +158976. q^{84} +4.11463e6 q^{86} +985770. i q^{87} +1.25136e6i q^{88} +8.52831e6 q^{89} +326272. q^{91} -1.40650e6i q^{92} +7.47382e6i q^{93} -3.49978e6 q^{94} -5.18659e6 q^{96} +8.82681e6i q^{97} -4.91668e6i q^{98} +691092. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 184 q^{4} - 324 q^{6} - 1458 q^{9} - 1896 q^{11} + 768 q^{14} + 7712 q^{16} + 17240 q^{19} + 3456 q^{21} - 71280 q^{24} - 61176 q^{26} - 73020 q^{29} - 553616 q^{31} - 340632 q^{34} - 134136 q^{36}+ \cdots + 1382184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 6.00000i − 0.530330i −0.964203 0.265165i \(-0.914574\pi\)
0.964203 0.265165i \(-0.0854264\pi\)
\(3\) − 27.0000i − 0.577350i
\(4\) 92.0000 0.718750
\(5\) 0 0
\(6\) −162.000 −0.306186
\(7\) 64.0000i 0.0705240i 0.999378 + 0.0352620i \(0.0112266\pi\)
−0.999378 + 0.0352620i \(0.988773\pi\)
\(8\) − 1320.00i − 0.911505i
\(9\) −729.000 −0.333333
\(10\) 0 0
\(11\) −948.000 −0.214750 −0.107375 0.994219i \(-0.534245\pi\)
−0.107375 + 0.994219i \(0.534245\pi\)
\(12\) − 2484.00i − 0.414971i
\(13\) − 5098.00i − 0.643573i −0.946812 0.321787i \(-0.895717\pi\)
0.946812 0.321787i \(-0.104283\pi\)
\(14\) 384.000 0.0374010
\(15\) 0 0
\(16\) 3856.00 0.235352
\(17\) − 28386.0i − 1.40131i −0.713502 0.700653i \(-0.752892\pi\)
0.713502 0.700653i \(-0.247108\pi\)
\(18\) 4374.00i 0.176777i
\(19\) 8620.00 0.288317 0.144158 0.989555i \(-0.453953\pi\)
0.144158 + 0.989555i \(0.453953\pi\)
\(20\) 0 0
\(21\) 1728.00 0.0407170
\(22\) 5688.00i 0.113889i
\(23\) − 15288.0i − 0.262001i −0.991382 0.131001i \(-0.958181\pi\)
0.991382 0.131001i \(-0.0418190\pi\)
\(24\) −35640.0 −0.526258
\(25\) 0 0
\(26\) −30588.0 −0.341306
\(27\) 19683.0i 0.192450i
\(28\) 5888.00i 0.0506891i
\(29\) −36510.0 −0.277983 −0.138992 0.990294i \(-0.544386\pi\)
−0.138992 + 0.990294i \(0.544386\pi\)
\(30\) 0 0
\(31\) −276808. −1.66883 −0.834416 0.551135i \(-0.814195\pi\)
−0.834416 + 0.551135i \(0.814195\pi\)
\(32\) − 192096.i − 1.03632i
\(33\) 25596.0i 0.123986i
\(34\) −170316. −0.743155
\(35\) 0 0
\(36\) −67068.0 −0.239583
\(37\) − 268526.i − 0.871526i −0.900061 0.435763i \(-0.856479\pi\)
0.900061 0.435763i \(-0.143521\pi\)
\(38\) − 51720.0i − 0.152903i
\(39\) −137646. −0.371567
\(40\) 0 0
\(41\) −629718. −1.42693 −0.713465 0.700691i \(-0.752875\pi\)
−0.713465 + 0.700691i \(0.752875\pi\)
\(42\) − 10368.0i − 0.0215935i
\(43\) 685772.i 1.31535i 0.753303 + 0.657673i \(0.228459\pi\)
−0.753303 + 0.657673i \(0.771541\pi\)
\(44\) −87216.0 −0.154352
\(45\) 0 0
\(46\) −91728.0 −0.138947
\(47\) − 583296.i − 0.819495i −0.912199 0.409748i \(-0.865617\pi\)
0.912199 0.409748i \(-0.134383\pi\)
\(48\) − 104112.i − 0.135880i
\(49\) 819447. 0.995026
\(50\) 0 0
\(51\) −766422. −0.809044
\(52\) − 469016.i − 0.462568i
\(53\) − 428058.i − 0.394945i −0.980308 0.197473i \(-0.936727\pi\)
0.980308 0.197473i \(-0.0632734\pi\)
\(54\) 118098. 0.102062
\(55\) 0 0
\(56\) 84480.0 0.0642830
\(57\) − 232740.i − 0.166460i
\(58\) 219060.i 0.147423i
\(59\) −1.30638e6 −0.828109 −0.414054 0.910252i \(-0.635888\pi\)
−0.414054 + 0.910252i \(0.635888\pi\)
\(60\) 0 0
\(61\) 300662. 0.169599 0.0847997 0.996398i \(-0.472975\pi\)
0.0847997 + 0.996398i \(0.472975\pi\)
\(62\) 1.66085e6i 0.885032i
\(63\) − 46656.0i − 0.0235080i
\(64\) −659008. −0.314240
\(65\) 0 0
\(66\) 153576. 0.0657536
\(67\) 507244.i 0.206042i 0.994679 + 0.103021i \(0.0328508\pi\)
−0.994679 + 0.103021i \(0.967149\pi\)
\(68\) − 2.61151e6i − 1.00719i
\(69\) −412776. −0.151266
\(70\) 0 0
\(71\) 5.56063e6 1.84383 0.921913 0.387397i \(-0.126626\pi\)
0.921913 + 0.387397i \(0.126626\pi\)
\(72\) 962280.i 0.303835i
\(73\) 1.36908e6i 0.411907i 0.978562 + 0.205954i \(0.0660296\pi\)
−0.978562 + 0.205954i \(0.933970\pi\)
\(74\) −1.61116e6 −0.462196
\(75\) 0 0
\(76\) 793040. 0.207228
\(77\) − 60672.0i − 0.0151451i
\(78\) 825876.i 0.197053i
\(79\) 6.91372e6 1.57767 0.788836 0.614603i \(-0.210684\pi\)
0.788836 + 0.614603i \(0.210684\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 3.77831e6i 0.756744i
\(83\) − 4.37675e6i − 0.840191i −0.907480 0.420096i \(-0.861997\pi\)
0.907480 0.420096i \(-0.138003\pi\)
\(84\) 158976. 0.0292654
\(85\) 0 0
\(86\) 4.11463e6 0.697568
\(87\) 985770.i 0.160494i
\(88\) 1.25136e6i 0.195746i
\(89\) 8.52831e6 1.28232 0.641162 0.767405i \(-0.278453\pi\)
0.641162 + 0.767405i \(0.278453\pi\)
\(90\) 0 0
\(91\) 326272. 0.0453874
\(92\) − 1.40650e6i − 0.188313i
\(93\) 7.47382e6i 0.963501i
\(94\) −3.49978e6 −0.434603
\(95\) 0 0
\(96\) −5.18659e6 −0.598319
\(97\) 8.82681e6i 0.981981i 0.871165 + 0.490990i \(0.163365\pi\)
−0.871165 + 0.490990i \(0.836635\pi\)
\(98\) − 4.91668e6i − 0.527692i
\(99\) 691092. 0.0715835
\(100\) 0 0
\(101\) 1.19864e7 1.15762 0.578808 0.815464i \(-0.303518\pi\)
0.578808 + 0.815464i \(0.303518\pi\)
\(102\) 4.59853e6i 0.429061i
\(103\) 7.20939e6i 0.650082i 0.945700 + 0.325041i \(0.105378\pi\)
−0.945700 + 0.325041i \(0.894622\pi\)
\(104\) −6.72936e6 −0.586620
\(105\) 0 0
\(106\) −2.56835e6 −0.209451
\(107\) − 1.14261e7i − 0.901683i −0.892604 0.450842i \(-0.851124\pi\)
0.892604 0.450842i \(-0.148876\pi\)
\(108\) 1.81084e6i 0.138324i
\(109\) −4.02095e6 −0.297397 −0.148698 0.988883i \(-0.547508\pi\)
−0.148698 + 0.988883i \(0.547508\pi\)
\(110\) 0 0
\(111\) −7.25020e6 −0.503176
\(112\) 246784.i 0.0165979i
\(113\) − 1.77063e7i − 1.15439i −0.816605 0.577197i \(-0.804147\pi\)
0.816605 0.577197i \(-0.195853\pi\)
\(114\) −1.39644e6 −0.0882786
\(115\) 0 0
\(116\) −3.35892e6 −0.199801
\(117\) 3.71644e6i 0.214524i
\(118\) 7.83828e6i 0.439171i
\(119\) 1.81670e6 0.0988257
\(120\) 0 0
\(121\) −1.85885e7 −0.953882
\(122\) − 1.80397e6i − 0.0899436i
\(123\) 1.70024e7i 0.823838i
\(124\) −2.54663e7 −1.19947
\(125\) 0 0
\(126\) −279936. −0.0124670
\(127\) − 1.67883e7i − 0.727267i −0.931542 0.363633i \(-0.881536\pi\)
0.931542 0.363633i \(-0.118464\pi\)
\(128\) − 2.06342e7i − 0.869668i
\(129\) 1.85158e7 0.759416
\(130\) 0 0
\(131\) 1.68268e7 0.653960 0.326980 0.945031i \(-0.393969\pi\)
0.326980 + 0.945031i \(0.393969\pi\)
\(132\) 2.35483e6i 0.0891151i
\(133\) 551680.i 0.0203332i
\(134\) 3.04346e6 0.109270
\(135\) 0 0
\(136\) −3.74695e7 −1.27730
\(137\) − 2.80449e7i − 0.931820i −0.884832 0.465910i \(-0.845727\pi\)
0.884832 0.465910i \(-0.154273\pi\)
\(138\) 2.47666e6i 0.0802212i
\(139\) 1.18273e7 0.373537 0.186769 0.982404i \(-0.440199\pi\)
0.186769 + 0.982404i \(0.440199\pi\)
\(140\) 0 0
\(141\) −1.57490e7 −0.473136
\(142\) − 3.33638e7i − 0.977836i
\(143\) 4.83290e6i 0.138208i
\(144\) −2.81102e6 −0.0784505
\(145\) 0 0
\(146\) 8.21449e6 0.218447
\(147\) − 2.21251e7i − 0.574479i
\(148\) − 2.47044e7i − 0.626409i
\(149\) −2.07846e7 −0.514743 −0.257371 0.966313i \(-0.582856\pi\)
−0.257371 + 0.966313i \(0.582856\pi\)
\(150\) 0 0
\(151\) 76112.0 0.00179901 0.000899505 1.00000i \(-0.499714\pi\)
0.000899505 1.00000i \(0.499714\pi\)
\(152\) − 1.13784e7i − 0.262802i
\(153\) 2.06934e7i 0.467102i
\(154\) −364032. −0.00803188
\(155\) 0 0
\(156\) −1.26634e7 −0.267064
\(157\) 3.21825e7i 0.663698i 0.943332 + 0.331849i \(0.107672\pi\)
−0.943332 + 0.331849i \(0.892328\pi\)
\(158\) − 4.14823e7i − 0.836687i
\(159\) −1.15576e7 −0.228022
\(160\) 0 0
\(161\) 978432. 0.0184774
\(162\) − 3.18865e6i − 0.0589256i
\(163\) 5.83435e7i 1.05520i 0.849492 + 0.527601i \(0.176908\pi\)
−0.849492 + 0.527601i \(0.823092\pi\)
\(164\) −5.79341e7 −1.02561
\(165\) 0 0
\(166\) −2.62605e7 −0.445579
\(167\) 2.58365e7i 0.429266i 0.976695 + 0.214633i \(0.0688555\pi\)
−0.976695 + 0.214633i \(0.931145\pi\)
\(168\) − 2.28096e6i − 0.0371138i
\(169\) 3.67589e7 0.585813
\(170\) 0 0
\(171\) −6.28398e6 −0.0961055
\(172\) 6.30910e7i 0.945405i
\(173\) 6.35201e7i 0.932716i 0.884596 + 0.466358i \(0.154434\pi\)
−0.884596 + 0.466358i \(0.845566\pi\)
\(174\) 5.91462e6 0.0851147
\(175\) 0 0
\(176\) −3.65549e6 −0.0505418
\(177\) 3.52723e7i 0.478109i
\(178\) − 5.11699e7i − 0.680055i
\(179\) 8.09559e7 1.05503 0.527513 0.849547i \(-0.323125\pi\)
0.527513 + 0.849547i \(0.323125\pi\)
\(180\) 0 0
\(181\) 6.45032e7 0.808549 0.404274 0.914638i \(-0.367524\pi\)
0.404274 + 0.914638i \(0.367524\pi\)
\(182\) − 1.95763e6i − 0.0240703i
\(183\) − 8.11787e6i − 0.0979182i
\(184\) −2.01802e7 −0.238815
\(185\) 0 0
\(186\) 4.48429e7 0.510973
\(187\) 2.69099e7i 0.300931i
\(188\) − 5.36632e7i − 0.589012i
\(189\) −1.25971e6 −0.0135723
\(190\) 0 0
\(191\) 5.68274e7 0.590121 0.295060 0.955479i \(-0.404660\pi\)
0.295060 + 0.955479i \(0.404660\pi\)
\(192\) 1.77932e7i 0.181426i
\(193\) 1.16377e8i 1.16524i 0.812744 + 0.582621i \(0.197973\pi\)
−0.812744 + 0.582621i \(0.802027\pi\)
\(194\) 5.29609e7 0.520774
\(195\) 0 0
\(196\) 7.53891e7 0.715175
\(197\) 1.18816e8i 1.10724i 0.832768 + 0.553622i \(0.186755\pi\)
−0.832768 + 0.553622i \(0.813245\pi\)
\(198\) − 4.14655e6i − 0.0379629i
\(199\) 9.50106e7 0.854646 0.427323 0.904099i \(-0.359457\pi\)
0.427323 + 0.904099i \(0.359457\pi\)
\(200\) 0 0
\(201\) 1.36956e7 0.118958
\(202\) − 7.19185e7i − 0.613919i
\(203\) − 2.33664e6i − 0.0196045i
\(204\) −7.05108e7 −0.581501
\(205\) 0 0
\(206\) 4.32564e7 0.344758
\(207\) 1.11450e7i 0.0873337i
\(208\) − 1.96579e7i − 0.151466i
\(209\) −8.17176e6 −0.0619161
\(210\) 0 0
\(211\) 1.79246e8 1.31360 0.656798 0.754067i \(-0.271910\pi\)
0.656798 + 0.754067i \(0.271910\pi\)
\(212\) − 3.93813e7i − 0.283867i
\(213\) − 1.50137e8i − 1.06453i
\(214\) −6.85565e7 −0.478190
\(215\) 0 0
\(216\) 2.59816e7 0.175419
\(217\) − 1.77157e7i − 0.117693i
\(218\) 2.41257e7i 0.157718i
\(219\) 3.69652e7 0.237815
\(220\) 0 0
\(221\) −1.44712e8 −0.901843
\(222\) 4.35012e7i 0.266849i
\(223\) − 2.06537e8i − 1.24718i −0.781750 0.623592i \(-0.785673\pi\)
0.781750 0.623592i \(-0.214327\pi\)
\(224\) 1.22941e7 0.0730853
\(225\) 0 0
\(226\) −1.06238e8 −0.612209
\(227\) − 4.33954e7i − 0.246237i −0.992392 0.123118i \(-0.960710\pi\)
0.992392 0.123118i \(-0.0392895\pi\)
\(228\) − 2.14121e7i − 0.119643i
\(229\) 3.61931e7 0.199160 0.0995799 0.995030i \(-0.468250\pi\)
0.0995799 + 0.995030i \(0.468250\pi\)
\(230\) 0 0
\(231\) −1.63814e6 −0.00874400
\(232\) 4.81932e7i 0.253383i
\(233\) 9.22347e7i 0.477693i 0.971057 + 0.238846i \(0.0767692\pi\)
−0.971057 + 0.238846i \(0.923231\pi\)
\(234\) 2.22987e7 0.113769
\(235\) 0 0
\(236\) −1.20187e8 −0.595203
\(237\) − 1.86670e8i − 0.910870i
\(238\) − 1.09002e7i − 0.0524102i
\(239\) −4.98468e7 −0.236181 −0.118090 0.993003i \(-0.537677\pi\)
−0.118090 + 0.993003i \(0.537677\pi\)
\(240\) 0 0
\(241\) 1.99374e8 0.917506 0.458753 0.888564i \(-0.348296\pi\)
0.458753 + 0.888564i \(0.348296\pi\)
\(242\) 1.11531e8i 0.505872i
\(243\) − 1.43489e7i − 0.0641500i
\(244\) 2.76609e7 0.121900
\(245\) 0 0
\(246\) 1.02014e8 0.436906
\(247\) − 4.39448e7i − 0.185553i
\(248\) 3.65387e8i 1.52115i
\(249\) −1.18172e8 −0.485085
\(250\) 0 0
\(251\) −3.94678e8 −1.57538 −0.787689 0.616073i \(-0.788723\pi\)
−0.787689 + 0.616073i \(0.788723\pi\)
\(252\) − 4.29235e6i − 0.0168964i
\(253\) 1.44930e7i 0.0562649i
\(254\) −1.00730e8 −0.385691
\(255\) 0 0
\(256\) −2.08158e8 −0.775451
\(257\) 1.42885e8i 0.525076i 0.964922 + 0.262538i \(0.0845594\pi\)
−0.964922 + 0.262538i \(0.915441\pi\)
\(258\) − 1.11095e8i − 0.402741i
\(259\) 1.71857e7 0.0614635
\(260\) 0 0
\(261\) 2.66158e7 0.0926611
\(262\) − 1.00961e8i − 0.346815i
\(263\) 4.40241e8i 1.49226i 0.665799 + 0.746131i \(0.268091\pi\)
−0.665799 + 0.746131i \(0.731909\pi\)
\(264\) 3.37867e7 0.113014
\(265\) 0 0
\(266\) 3.31008e6 0.0107833
\(267\) − 2.30264e8i − 0.740350i
\(268\) 4.66664e7i 0.148092i
\(269\) −2.75405e8 −0.862657 −0.431329 0.902195i \(-0.641955\pi\)
−0.431329 + 0.902195i \(0.641955\pi\)
\(270\) 0 0
\(271\) −4.24670e8 −1.29616 −0.648080 0.761572i \(-0.724428\pi\)
−0.648080 + 0.761572i \(0.724428\pi\)
\(272\) − 1.09456e8i − 0.329800i
\(273\) − 8.80934e6i − 0.0262044i
\(274\) −1.68269e8 −0.494172
\(275\) 0 0
\(276\) −3.79754e7 −0.108723
\(277\) − 5.16158e8i − 1.45916i −0.683894 0.729581i \(-0.739715\pi\)
0.683894 0.729581i \(-0.260285\pi\)
\(278\) − 7.09638e7i − 0.198098i
\(279\) 2.01793e8 0.556277
\(280\) 0 0
\(281\) −3.11043e8 −0.836273 −0.418137 0.908384i \(-0.637317\pi\)
−0.418137 + 0.908384i \(0.637317\pi\)
\(282\) 9.44940e7i 0.250918i
\(283\) − 5.94308e8i − 1.55869i −0.626596 0.779344i \(-0.715552\pi\)
0.626596 0.779344i \(-0.284448\pi\)
\(284\) 5.11578e8 1.32525
\(285\) 0 0
\(286\) 2.89974e7 0.0732957
\(287\) − 4.03020e7i − 0.100633i
\(288\) 1.40038e8i 0.345440i
\(289\) −3.95426e8 −0.963658
\(290\) 0 0
\(291\) 2.38324e8 0.566947
\(292\) 1.25956e8i 0.296058i
\(293\) 1.15515e8i 0.268288i 0.990962 + 0.134144i \(0.0428284\pi\)
−0.990962 + 0.134144i \(0.957172\pi\)
\(294\) −1.32750e8 −0.304663
\(295\) 0 0
\(296\) −3.54454e8 −0.794400
\(297\) − 1.86595e7i − 0.0413287i
\(298\) 1.24708e8i 0.272984i
\(299\) −7.79382e7 −0.168617
\(300\) 0 0
\(301\) −4.38894e7 −0.0927635
\(302\) − 456672.i 0 0.000954070i
\(303\) − 3.23633e8i − 0.668350i
\(304\) 3.32387e7 0.0678558
\(305\) 0 0
\(306\) 1.24160e8 0.247718
\(307\) 2.60600e8i 0.514032i 0.966407 + 0.257016i \(0.0827392\pi\)
−0.966407 + 0.257016i \(0.917261\pi\)
\(308\) − 5.58182e6i − 0.0108855i
\(309\) 1.94654e8 0.375325
\(310\) 0 0
\(311\) 5.76795e8 1.08733 0.543663 0.839303i \(-0.317037\pi\)
0.543663 + 0.839303i \(0.317037\pi\)
\(312\) 1.81693e8i 0.338685i
\(313\) − 4.60074e8i − 0.848053i −0.905650 0.424026i \(-0.860616\pi\)
0.905650 0.424026i \(-0.139384\pi\)
\(314\) 1.93095e8 0.351979
\(315\) 0 0
\(316\) 6.36062e8 1.13395
\(317\) − 6.25561e7i − 0.110297i −0.998478 0.0551483i \(-0.982437\pi\)
0.998478 0.0551483i \(-0.0175632\pi\)
\(318\) 6.93454e7i 0.120927i
\(319\) 3.46115e7 0.0596970
\(320\) 0 0
\(321\) −3.08504e8 −0.520587
\(322\) − 5.87059e6i − 0.00979910i
\(323\) − 2.44687e8i − 0.404020i
\(324\) 4.88926e7 0.0798611
\(325\) 0 0
\(326\) 3.50061e8 0.559606
\(327\) 1.08566e8i 0.171702i
\(328\) 8.31228e8i 1.30065i
\(329\) 3.73309e7 0.0577941
\(330\) 0 0
\(331\) 6.84236e8 1.03707 0.518535 0.855057i \(-0.326478\pi\)
0.518535 + 0.855057i \(0.326478\pi\)
\(332\) − 4.02661e8i − 0.603888i
\(333\) 1.95755e8i 0.290509i
\(334\) 1.55019e8 0.227652
\(335\) 0 0
\(336\) 6.66317e6 0.00958282
\(337\) 6.26313e8i 0.891429i 0.895175 + 0.445714i \(0.147050\pi\)
−0.895175 + 0.445714i \(0.852950\pi\)
\(338\) − 2.20553e8i − 0.310674i
\(339\) −4.78071e8 −0.666489
\(340\) 0 0
\(341\) 2.62414e8 0.358382
\(342\) 3.77039e7i 0.0509677i
\(343\) 1.05151e8i 0.140697i
\(344\) 9.05219e8 1.19894
\(345\) 0 0
\(346\) 3.81120e8 0.494647
\(347\) 1.25340e9i 1.61041i 0.593000 + 0.805203i \(0.297943\pi\)
−0.593000 + 0.805203i \(0.702057\pi\)
\(348\) 9.06908e7i 0.115355i
\(349\) −2.65350e8 −0.334142 −0.167071 0.985945i \(-0.553431\pi\)
−0.167071 + 0.985945i \(0.553431\pi\)
\(350\) 0 0
\(351\) 1.00344e8 0.123856
\(352\) 1.82107e8i 0.222550i
\(353\) − 5.69636e8i − 0.689264i −0.938738 0.344632i \(-0.888004\pi\)
0.938738 0.344632i \(-0.111996\pi\)
\(354\) 2.11634e8 0.253556
\(355\) 0 0
\(356\) 7.84605e8 0.921671
\(357\) − 4.90510e7i − 0.0570570i
\(358\) − 4.85735e8i − 0.559512i
\(359\) −9.32541e8 −1.06374 −0.531872 0.846825i \(-0.678511\pi\)
−0.531872 + 0.846825i \(0.678511\pi\)
\(360\) 0 0
\(361\) −8.19567e8 −0.916874
\(362\) − 3.87019e8i − 0.428798i
\(363\) 5.01889e8i 0.550724i
\(364\) 3.00170e7 0.0326222
\(365\) 0 0
\(366\) −4.87072e7 −0.0519290
\(367\) 8.52565e8i 0.900318i 0.892948 + 0.450159i \(0.148633\pi\)
−0.892948 + 0.450159i \(0.851367\pi\)
\(368\) − 5.89505e7i − 0.0616624i
\(369\) 4.59064e8 0.475643
\(370\) 0 0
\(371\) 2.73957e7 0.0278531
\(372\) 6.87591e8i 0.692516i
\(373\) 3.81183e8i 0.380323i 0.981753 + 0.190162i \(0.0609012\pi\)
−0.981753 + 0.190162i \(0.939099\pi\)
\(374\) 1.61460e8 0.159593
\(375\) 0 0
\(376\) −7.69951e8 −0.746974
\(377\) 1.86128e8i 0.178903i
\(378\) 7.55827e6i 0.00719782i
\(379\) 1.48353e9 1.39978 0.699889 0.714251i \(-0.253233\pi\)
0.699889 + 0.714251i \(0.253233\pi\)
\(380\) 0 0
\(381\) −4.53284e8 −0.419888
\(382\) − 3.40964e8i − 0.312959i
\(383\) − 7.61930e8i − 0.692978i −0.938054 0.346489i \(-0.887374\pi\)
0.938054 0.346489i \(-0.112626\pi\)
\(384\) −5.57124e8 −0.502103
\(385\) 0 0
\(386\) 6.98262e8 0.617963
\(387\) − 4.99928e8i − 0.438449i
\(388\) 8.12067e8i 0.705799i
\(389\) −1.60902e9 −1.38592 −0.692959 0.720977i \(-0.743693\pi\)
−0.692959 + 0.720977i \(0.743693\pi\)
\(390\) 0 0
\(391\) −4.33965e8 −0.367144
\(392\) − 1.08167e9i − 0.906971i
\(393\) − 4.54323e8i − 0.377564i
\(394\) 7.12896e8 0.587205
\(395\) 0 0
\(396\) 6.35805e7 0.0514506
\(397\) − 1.88016e9i − 1.50809i −0.656822 0.754046i \(-0.728100\pi\)
0.656822 0.754046i \(-0.271900\pi\)
\(398\) − 5.70064e8i − 0.453245i
\(399\) 1.48954e7 0.0117394
\(400\) 0 0
\(401\) 2.68592e8 0.208012 0.104006 0.994577i \(-0.466834\pi\)
0.104006 + 0.994577i \(0.466834\pi\)
\(402\) − 8.21735e7i − 0.0630871i
\(403\) 1.41117e9i 1.07402i
\(404\) 1.10275e9 0.832037
\(405\) 0 0
\(406\) −1.40198e7 −0.0103969
\(407\) 2.54563e8i 0.187161i
\(408\) 1.01168e9i 0.737448i
\(409\) −8.99478e7 −0.0650069 −0.0325034 0.999472i \(-0.510348\pi\)
−0.0325034 + 0.999472i \(0.510348\pi\)
\(410\) 0 0
\(411\) −7.57212e8 −0.537986
\(412\) 6.63264e8i 0.467247i
\(413\) − 8.36083e7i − 0.0584015i
\(414\) 6.68697e7 0.0463157
\(415\) 0 0
\(416\) −9.79305e8 −0.666947
\(417\) − 3.19337e8i − 0.215662i
\(418\) 4.90306e7i 0.0328360i
\(419\) −1.69054e9 −1.12273 −0.561367 0.827567i \(-0.689724\pi\)
−0.561367 + 0.827567i \(0.689724\pi\)
\(420\) 0 0
\(421\) −1.13333e9 −0.740232 −0.370116 0.928985i \(-0.620682\pi\)
−0.370116 + 0.928985i \(0.620682\pi\)
\(422\) − 1.07548e9i − 0.696639i
\(423\) 4.25223e8i 0.273165i
\(424\) −5.65037e8 −0.359995
\(425\) 0 0
\(426\) −9.00822e8 −0.564554
\(427\) 1.92424e7i 0.0119608i
\(428\) − 1.05120e9i − 0.648085i
\(429\) 1.30488e8 0.0797942
\(430\) 0 0
\(431\) 2.19943e9 1.32324 0.661621 0.749839i \(-0.269869\pi\)
0.661621 + 0.749839i \(0.269869\pi\)
\(432\) 7.58976e7i 0.0452934i
\(433\) − 1.51738e8i − 0.0898227i −0.998991 0.0449114i \(-0.985699\pi\)
0.998991 0.0449114i \(-0.0143005\pi\)
\(434\) −1.06294e8 −0.0624160
\(435\) 0 0
\(436\) −3.69927e8 −0.213754
\(437\) − 1.31783e8i − 0.0755393i
\(438\) − 2.21791e8i − 0.126120i
\(439\) −9.90763e8 −0.558912 −0.279456 0.960158i \(-0.590154\pi\)
−0.279456 + 0.960158i \(0.590154\pi\)
\(440\) 0 0
\(441\) −5.97377e8 −0.331675
\(442\) 8.68271e8i 0.478275i
\(443\) − 1.77376e9i − 0.969351i −0.874694 0.484675i \(-0.838938\pi\)
0.874694 0.484675i \(-0.161062\pi\)
\(444\) −6.67019e8 −0.361658
\(445\) 0 0
\(446\) −1.23922e9 −0.661419
\(447\) 5.61185e8i 0.297187i
\(448\) − 4.21765e7i − 0.0221614i
\(449\) 2.77010e8 0.144422 0.0722110 0.997389i \(-0.476994\pi\)
0.0722110 + 0.997389i \(0.476994\pi\)
\(450\) 0 0
\(451\) 5.96973e8 0.306434
\(452\) − 1.62898e9i − 0.829720i
\(453\) − 2.05502e6i − 0.00103866i
\(454\) −2.60372e8 −0.130587
\(455\) 0 0
\(456\) −3.07217e8 −0.151729
\(457\) − 2.94758e9i − 1.44464i −0.691559 0.722320i \(-0.743076\pi\)
0.691559 0.722320i \(-0.256924\pi\)
\(458\) − 2.17159e8i − 0.105620i
\(459\) 5.58722e8 0.269681
\(460\) 0 0
\(461\) −2.76687e9 −1.31533 −0.657667 0.753309i \(-0.728457\pi\)
−0.657667 + 0.753309i \(0.728457\pi\)
\(462\) 9.82886e6i 0.00463721i
\(463\) 4.63553e8i 0.217053i 0.994094 + 0.108527i \(0.0346132\pi\)
−0.994094 + 0.108527i \(0.965387\pi\)
\(464\) −1.40783e8 −0.0654238
\(465\) 0 0
\(466\) 5.53408e8 0.253335
\(467\) 4.17922e8i 0.189883i 0.995483 + 0.0949415i \(0.0302664\pi\)
−0.995483 + 0.0949415i \(0.969734\pi\)
\(468\) 3.41913e8i 0.154189i
\(469\) −3.24636e7 −0.0145309
\(470\) 0 0
\(471\) 8.68927e8 0.383186
\(472\) 1.72442e9i 0.754825i
\(473\) − 6.50112e8i − 0.282471i
\(474\) −1.12002e9 −0.483062
\(475\) 0 0
\(476\) 1.67137e8 0.0710310
\(477\) 3.12054e8i 0.131648i
\(478\) 2.99081e8i 0.125254i
\(479\) 1.50973e9 0.627660 0.313830 0.949479i \(-0.398388\pi\)
0.313830 + 0.949479i \(0.398388\pi\)
\(480\) 0 0
\(481\) −1.36895e9 −0.560891
\(482\) − 1.19624e9i − 0.486581i
\(483\) − 2.64177e7i − 0.0106679i
\(484\) −1.71014e9 −0.685603
\(485\) 0 0
\(486\) −8.60934e7 −0.0340207
\(487\) − 9.29460e8i − 0.364653i −0.983238 0.182326i \(-0.941637\pi\)
0.983238 0.182326i \(-0.0583627\pi\)
\(488\) − 3.96874e8i − 0.154591i
\(489\) 1.57527e9 0.609221
\(490\) 0 0
\(491\) 5.12803e9 1.95508 0.977541 0.210743i \(-0.0675885\pi\)
0.977541 + 0.210743i \(0.0675885\pi\)
\(492\) 1.56422e9i 0.592134i
\(493\) 1.03637e9i 0.389540i
\(494\) −2.63669e8 −0.0984043
\(495\) 0 0
\(496\) −1.06737e9 −0.392762
\(497\) 3.55880e8i 0.130034i
\(498\) 7.09033e8i 0.257255i
\(499\) 4.10649e8 0.147951 0.0739757 0.997260i \(-0.476431\pi\)
0.0739757 + 0.997260i \(0.476431\pi\)
\(500\) 0 0
\(501\) 6.97586e8 0.247837
\(502\) 2.36807e9i 0.835470i
\(503\) 5.02041e9i 1.75894i 0.475954 + 0.879470i \(0.342103\pi\)
−0.475954 + 0.879470i \(0.657897\pi\)
\(504\) −6.15859e7 −0.0214277
\(505\) 0 0
\(506\) 8.69581e7 0.0298389
\(507\) − 9.92491e8i − 0.338219i
\(508\) − 1.54452e9i − 0.522723i
\(509\) 3.24926e9 1.09212 0.546062 0.837745i \(-0.316126\pi\)
0.546062 + 0.837745i \(0.316126\pi\)
\(510\) 0 0
\(511\) −8.76212e7 −0.0290493
\(512\) − 1.39223e9i − 0.458423i
\(513\) 1.69667e8i 0.0554866i
\(514\) 8.57312e8 0.278463
\(515\) 0 0
\(516\) 1.70346e9 0.545830
\(517\) 5.52965e8i 0.175987i
\(518\) − 1.03114e8i − 0.0325959i
\(519\) 1.71504e9 0.538504
\(520\) 0 0
\(521\) −2.10950e9 −0.653503 −0.326752 0.945110i \(-0.605954\pi\)
−0.326752 + 0.945110i \(0.605954\pi\)
\(522\) − 1.59695e8i − 0.0491410i
\(523\) − 5.28911e9i − 1.61669i −0.588709 0.808345i \(-0.700364\pi\)
0.588709 0.808345i \(-0.299636\pi\)
\(524\) 1.54806e9 0.470034
\(525\) 0 0
\(526\) 2.64144e9 0.791391
\(527\) 7.85747e9i 2.33854i
\(528\) 9.86982e7i 0.0291803i
\(529\) 3.17110e9 0.931355
\(530\) 0 0
\(531\) 9.52351e8 0.276036
\(532\) 5.07546e7i 0.0146145i
\(533\) 3.21030e9i 0.918334i
\(534\) −1.38159e9 −0.392630
\(535\) 0 0
\(536\) 6.69562e8 0.187808
\(537\) − 2.18581e9i − 0.609119i
\(538\) 1.65243e9i 0.457493i
\(539\) −7.76836e8 −0.213682
\(540\) 0 0
\(541\) 3.04614e9 0.827101 0.413551 0.910481i \(-0.364288\pi\)
0.413551 + 0.910481i \(0.364288\pi\)
\(542\) 2.54802e9i 0.687393i
\(543\) − 1.74159e9i − 0.466816i
\(544\) −5.45284e9 −1.45220
\(545\) 0 0
\(546\) −5.28561e7 −0.0138970
\(547\) 4.85537e9i 1.26843i 0.773157 + 0.634215i \(0.218677\pi\)
−0.773157 + 0.634215i \(0.781323\pi\)
\(548\) − 2.58013e9i − 0.669746i
\(549\) −2.19183e8 −0.0565331
\(550\) 0 0
\(551\) −3.14716e8 −0.0801472
\(552\) 5.44864e8i 0.137880i
\(553\) 4.42478e8i 0.111264i
\(554\) −3.09695e9 −0.773838
\(555\) 0 0
\(556\) 1.08811e9 0.268480
\(557\) − 1.27762e9i − 0.313263i −0.987657 0.156631i \(-0.949937\pi\)
0.987657 0.156631i \(-0.0500635\pi\)
\(558\) − 1.21076e9i − 0.295011i
\(559\) 3.49607e9 0.846522
\(560\) 0 0
\(561\) 7.26568e8 0.173743
\(562\) 1.86626e9i 0.443501i
\(563\) 4.71265e9i 1.11297i 0.830856 + 0.556487i \(0.187851\pi\)
−0.830856 + 0.556487i \(0.812149\pi\)
\(564\) −1.44891e9 −0.340066
\(565\) 0 0
\(566\) −3.56585e9 −0.826619
\(567\) 3.40122e7i 0.00783600i
\(568\) − 7.34003e9i − 1.68066i
\(569\) −4.57800e9 −1.04180 −0.520898 0.853619i \(-0.674403\pi\)
−0.520898 + 0.853619i \(0.674403\pi\)
\(570\) 0 0
\(571\) 4.95119e9 1.11297 0.556485 0.830858i \(-0.312150\pi\)
0.556485 + 0.830858i \(0.312150\pi\)
\(572\) 4.44627e8i 0.0993367i
\(573\) − 1.53434e9i − 0.340706i
\(574\) −2.41812e8 −0.0533686
\(575\) 0 0
\(576\) 4.80417e8 0.104747
\(577\) − 8.51847e9i − 1.84606i −0.384725 0.923031i \(-0.625704\pi\)
0.384725 0.923031i \(-0.374296\pi\)
\(578\) 2.37256e9i 0.511057i
\(579\) 3.14218e9 0.672753
\(580\) 0 0
\(581\) 2.80112e8 0.0592536
\(582\) − 1.42994e9i − 0.300669i
\(583\) 4.05799e8i 0.0848147i
\(584\) 1.80719e9 0.375455
\(585\) 0 0
\(586\) 6.93088e8 0.142281
\(587\) 5.62247e8i 0.114735i 0.998353 + 0.0573673i \(0.0182706\pi\)
−0.998353 + 0.0573673i \(0.981729\pi\)
\(588\) − 2.03551e9i − 0.412907i
\(589\) −2.38608e9 −0.481152
\(590\) 0 0
\(591\) 3.20803e9 0.639268
\(592\) − 1.03544e9i − 0.205115i
\(593\) 3.62110e9i 0.713099i 0.934277 + 0.356549i \(0.116047\pi\)
−0.934277 + 0.356549i \(0.883953\pi\)
\(594\) −1.11957e8 −0.0219179
\(595\) 0 0
\(596\) −1.91219e9 −0.369971
\(597\) − 2.56529e9i − 0.493430i
\(598\) 4.67629e8i 0.0894227i
\(599\) 7.48104e9 1.42222 0.711112 0.703079i \(-0.248192\pi\)
0.711112 + 0.703079i \(0.248192\pi\)
\(600\) 0 0
\(601\) −5.81270e9 −1.09224 −0.546119 0.837707i \(-0.683895\pi\)
−0.546119 + 0.837707i \(0.683895\pi\)
\(602\) 2.63336e8i 0.0491953i
\(603\) − 3.69781e8i − 0.0686806i
\(604\) 7.00230e6 0.00129304
\(605\) 0 0
\(606\) −1.94180e9 −0.354446
\(607\) − 3.84051e9i − 0.696993i −0.937310 0.348497i \(-0.886692\pi\)
0.937310 0.348497i \(-0.113308\pi\)
\(608\) − 1.65587e9i − 0.298788i
\(609\) −6.30893e7 −0.0113187
\(610\) 0 0
\(611\) −2.97364e9 −0.527405
\(612\) 1.90379e9i 0.335730i
\(613\) 1.70484e9i 0.298932i 0.988767 + 0.149466i \(0.0477555\pi\)
−0.988767 + 0.149466i \(0.952245\pi\)
\(614\) 1.56360e9 0.272606
\(615\) 0 0
\(616\) −8.00870e7 −0.0138048
\(617\) 2.80809e9i 0.481297i 0.970612 + 0.240649i \(0.0773601\pi\)
−0.970612 + 0.240649i \(0.922640\pi\)
\(618\) − 1.16792e9i − 0.199046i
\(619\) 2.54365e9 0.431063 0.215532 0.976497i \(-0.430852\pi\)
0.215532 + 0.976497i \(0.430852\pi\)
\(620\) 0 0
\(621\) 3.00914e8 0.0504222
\(622\) − 3.46077e9i − 0.576642i
\(623\) 5.45812e8i 0.0904346i
\(624\) −5.30763e8 −0.0874489
\(625\) 0 0
\(626\) −2.76045e9 −0.449748
\(627\) 2.20638e8i 0.0357473i
\(628\) 2.96079e9i 0.477033i
\(629\) −7.62238e9 −1.22127
\(630\) 0 0
\(631\) −1.51146e8 −0.0239494 −0.0119747 0.999928i \(-0.503812\pi\)
−0.0119747 + 0.999928i \(0.503812\pi\)
\(632\) − 9.12611e9i − 1.43806i
\(633\) − 4.83965e9i − 0.758405i
\(634\) −3.75337e8 −0.0584936
\(635\) 0 0
\(636\) −1.06330e9 −0.163891
\(637\) − 4.17754e9i − 0.640373i
\(638\) − 2.07669e8i − 0.0316591i
\(639\) −4.05370e9 −0.614609
\(640\) 0 0
\(641\) −1.23625e10 −1.85397 −0.926987 0.375094i \(-0.877610\pi\)
−0.926987 + 0.375094i \(0.877610\pi\)
\(642\) 1.85102e9i 0.276083i
\(643\) 2.86744e9i 0.425359i 0.977122 + 0.212680i \(0.0682191\pi\)
−0.977122 + 0.212680i \(0.931781\pi\)
\(644\) 9.00157e7 0.0132806
\(645\) 0 0
\(646\) −1.46812e9 −0.214264
\(647\) 4.10640e9i 0.596068i 0.954555 + 0.298034i \(0.0963309\pi\)
−0.954555 + 0.298034i \(0.903669\pi\)
\(648\) − 7.01502e8i − 0.101278i
\(649\) 1.23845e9 0.177837
\(650\) 0 0
\(651\) −4.78324e8 −0.0679499
\(652\) 5.36760e9i 0.758427i
\(653\) 6.91100e9i 0.971280i 0.874159 + 0.485640i \(0.161413\pi\)
−0.874159 + 0.485640i \(0.838587\pi\)
\(654\) 6.51394e8 0.0910587
\(655\) 0 0
\(656\) −2.42819e9 −0.335830
\(657\) − 9.98061e8i − 0.137302i
\(658\) − 2.23986e8i − 0.0306499i
\(659\) −3.42444e9 −0.466112 −0.233056 0.972463i \(-0.574873\pi\)
−0.233056 + 0.972463i \(0.574873\pi\)
\(660\) 0 0
\(661\) −6.76437e9 −0.911008 −0.455504 0.890234i \(-0.650541\pi\)
−0.455504 + 0.890234i \(0.650541\pi\)
\(662\) − 4.10541e9i − 0.549989i
\(663\) 3.90722e9i 0.520679i
\(664\) −5.77731e9 −0.765839
\(665\) 0 0
\(666\) 1.17453e9 0.154065
\(667\) 5.58165e8i 0.0728320i
\(668\) 2.37696e9i 0.308535i
\(669\) −5.57650e9 −0.720062
\(670\) 0 0
\(671\) −2.85028e8 −0.0364215
\(672\) − 3.31942e8i − 0.0421958i
\(673\) − 1.74959e9i − 0.221250i −0.993862 0.110625i \(-0.964715\pi\)
0.993862 0.110625i \(-0.0352853\pi\)
\(674\) 3.75788e9 0.472752
\(675\) 0 0
\(676\) 3.38182e9 0.421053
\(677\) − 8.30011e9i − 1.02807i −0.857769 0.514036i \(-0.828150\pi\)
0.857769 0.514036i \(-0.171850\pi\)
\(678\) 2.86842e9i 0.353459i
\(679\) −5.64916e8 −0.0692532
\(680\) 0 0
\(681\) −1.17168e9 −0.142165
\(682\) − 1.57448e9i − 0.190061i
\(683\) − 1.21232e10i − 1.45594i −0.685610 0.727969i \(-0.740464\pi\)
0.685610 0.727969i \(-0.259536\pi\)
\(684\) −5.78126e8 −0.0690759
\(685\) 0 0
\(686\) 6.30908e8 0.0746160
\(687\) − 9.77213e8i − 0.114985i
\(688\) 2.64434e9i 0.309569i
\(689\) −2.18224e9 −0.254176
\(690\) 0 0
\(691\) 8.21846e9 0.947583 0.473791 0.880637i \(-0.342885\pi\)
0.473791 + 0.880637i \(0.342885\pi\)
\(692\) 5.84385e9i 0.670390i
\(693\) 4.42299e7i 0.00504835i
\(694\) 7.52038e9 0.854046
\(695\) 0 0
\(696\) 1.30122e9 0.146291
\(697\) 1.78752e10i 1.99957i
\(698\) 1.59210e9i 0.177205i
\(699\) 2.49034e9 0.275796
\(700\) 0 0
\(701\) 4.72231e9 0.517775 0.258888 0.965907i \(-0.416644\pi\)
0.258888 + 0.965907i \(0.416644\pi\)
\(702\) − 6.02064e8i − 0.0656844i
\(703\) − 2.31469e9i − 0.251275i
\(704\) 6.24740e8 0.0674831
\(705\) 0 0
\(706\) −3.41781e9 −0.365537
\(707\) 7.67131e8i 0.0816397i
\(708\) 3.24505e9i 0.343641i
\(709\) −2.78975e9 −0.293970 −0.146985 0.989139i \(-0.546957\pi\)
−0.146985 + 0.989139i \(0.546957\pi\)
\(710\) 0 0
\(711\) −5.04010e9 −0.525891
\(712\) − 1.12574e10i − 1.16885i
\(713\) 4.23184e9i 0.437236i
\(714\) −2.94306e8 −0.0302591
\(715\) 0 0
\(716\) 7.44794e9 0.758299
\(717\) 1.34586e9i 0.136359i
\(718\) 5.59524e9i 0.564136i
\(719\) −1.51985e9 −0.152493 −0.0762463 0.997089i \(-0.524294\pi\)
−0.0762463 + 0.997089i \(0.524294\pi\)
\(720\) 0 0
\(721\) −4.61401e8 −0.0458464
\(722\) 4.91740e9i 0.486246i
\(723\) − 5.38310e9i − 0.529722i
\(724\) 5.93429e9 0.581144
\(725\) 0 0
\(726\) 3.01133e9 0.292066
\(727\) 8.11761e9i 0.783534i 0.920065 + 0.391767i \(0.128136\pi\)
−0.920065 + 0.391767i \(0.871864\pi\)
\(728\) − 4.30679e8i − 0.0413708i
\(729\) −3.87420e8 −0.0370370
\(730\) 0 0
\(731\) 1.94663e10 1.84320
\(732\) − 7.46844e8i − 0.0703787i
\(733\) − 1.03241e10i − 0.968249i −0.874999 0.484124i \(-0.839138\pi\)
0.874999 0.484124i \(-0.160862\pi\)
\(734\) 5.11539e9 0.477466
\(735\) 0 0
\(736\) −2.93676e9 −0.271517
\(737\) − 4.80867e8i − 0.0442475i
\(738\) − 2.75439e9i − 0.252248i
\(739\) 1.35365e10 1.23382 0.616908 0.787035i \(-0.288385\pi\)
0.616908 + 0.787035i \(0.288385\pi\)
\(740\) 0 0
\(741\) −1.18651e9 −0.107129
\(742\) − 1.64374e8i − 0.0147713i
\(743\) − 1.71936e10i − 1.53782i −0.639356 0.768910i \(-0.720799\pi\)
0.639356 0.768910i \(-0.279201\pi\)
\(744\) 9.86544e9 0.878236
\(745\) 0 0
\(746\) 2.28710e9 0.201697
\(747\) 3.19065e9i 0.280064i
\(748\) 2.47571e9i 0.216294i
\(749\) 7.31269e8 0.0635903
\(750\) 0 0
\(751\) 1.12478e10 0.969013 0.484506 0.874788i \(-0.338999\pi\)
0.484506 + 0.874788i \(0.338999\pi\)
\(752\) − 2.24919e9i − 0.192870i
\(753\) 1.06563e10i 0.909545i
\(754\) 1.11677e9 0.0948775
\(755\) 0 0
\(756\) −1.15894e8 −0.00975512
\(757\) − 1.63068e10i − 1.36626i −0.730296 0.683131i \(-0.760618\pi\)
0.730296 0.683131i \(-0.239382\pi\)
\(758\) − 8.90118e9i − 0.742345i
\(759\) 3.91312e8 0.0324845
\(760\) 0 0
\(761\) 6.14069e9 0.505093 0.252546 0.967585i \(-0.418732\pi\)
0.252546 + 0.967585i \(0.418732\pi\)
\(762\) 2.71970e9i 0.222679i
\(763\) − 2.57341e8i − 0.0209736i
\(764\) 5.22812e9 0.424149
\(765\) 0 0
\(766\) −4.57158e9 −0.367507
\(767\) 6.65993e9i 0.532949i
\(768\) 5.62028e9i 0.447707i
\(769\) −2.45069e10 −1.94333 −0.971664 0.236368i \(-0.924043\pi\)
−0.971664 + 0.236368i \(0.924043\pi\)
\(770\) 0 0
\(771\) 3.85791e9 0.303153
\(772\) 1.07067e10i 0.837518i
\(773\) − 1.01722e10i − 0.792110i −0.918227 0.396055i \(-0.870379\pi\)
0.918227 0.396055i \(-0.129621\pi\)
\(774\) −2.99957e9 −0.232523
\(775\) 0 0
\(776\) 1.16514e10 0.895080
\(777\) − 4.64013e8i − 0.0354860i
\(778\) 9.65411e9i 0.734994i
\(779\) −5.42817e9 −0.411408
\(780\) 0 0
\(781\) −5.27148e9 −0.395962
\(782\) 2.60379e9i 0.194707i
\(783\) − 7.18626e8i − 0.0534979i
\(784\) 3.15979e9 0.234181
\(785\) 0 0
\(786\) −2.72594e9 −0.200234
\(787\) 9.79135e9i 0.716030i 0.933716 + 0.358015i \(0.116546\pi\)
−0.933716 + 0.358015i \(0.883454\pi\)
\(788\) 1.09311e10i 0.795832i
\(789\) 1.18865e10 0.861558
\(790\) 0 0
\(791\) 1.13320e9 0.0814124
\(792\) − 9.12241e8i − 0.0652487i
\(793\) − 1.53277e9i − 0.109150i
\(794\) −1.12809e10 −0.799786
\(795\) 0 0
\(796\) 8.74098e9 0.614277
\(797\) 9.75782e9i 0.682729i 0.939931 + 0.341365i \(0.110889\pi\)
−0.939931 + 0.341365i \(0.889111\pi\)
\(798\) − 8.93722e7i − 0.00622576i
\(799\) −1.65574e10 −1.14836
\(800\) 0 0
\(801\) −6.21714e9 −0.427442
\(802\) − 1.61155e9i − 0.110315i
\(803\) − 1.29789e9i − 0.0884572i
\(804\) 1.25999e9 0.0855012
\(805\) 0 0
\(806\) 8.46700e9 0.569583
\(807\) 7.43592e9i 0.498055i
\(808\) − 1.58221e10i − 1.05517i
\(809\) 2.78706e9 0.185066 0.0925330 0.995710i \(-0.470504\pi\)
0.0925330 + 0.995710i \(0.470504\pi\)
\(810\) 0 0
\(811\) −7.99983e9 −0.526633 −0.263316 0.964710i \(-0.584816\pi\)
−0.263316 + 0.964710i \(0.584816\pi\)
\(812\) − 2.14971e8i − 0.0140907i
\(813\) 1.14661e10i 0.748339i
\(814\) 1.52738e9 0.0992569
\(815\) 0 0
\(816\) −2.95532e9 −0.190410
\(817\) 5.91135e9i 0.379236i
\(818\) 5.39687e8i 0.0344751i
\(819\) −2.37852e8 −0.0151291
\(820\) 0 0
\(821\) −1.02402e10 −0.645813 −0.322906 0.946431i \(-0.604660\pi\)
−0.322906 + 0.946431i \(0.604660\pi\)
\(822\) 4.54327e9i 0.285310i
\(823\) 2.78682e10i 1.74265i 0.490707 + 0.871324i \(0.336738\pi\)
−0.490707 + 0.871324i \(0.663262\pi\)
\(824\) 9.51640e9 0.592553
\(825\) 0 0
\(826\) −5.01650e8 −0.0309721
\(827\) − 2.35125e10i − 1.44554i −0.691090 0.722769i \(-0.742869\pi\)
0.691090 0.722769i \(-0.257131\pi\)
\(828\) 1.02534e9i 0.0627711i
\(829\) 1.28598e10 0.783960 0.391980 0.919974i \(-0.371790\pi\)
0.391980 + 0.919974i \(0.371790\pi\)
\(830\) 0 0
\(831\) −1.39363e10 −0.842448
\(832\) 3.35962e9i 0.202236i
\(833\) − 2.32608e10i − 1.39434i
\(834\) −1.91602e9 −0.114372
\(835\) 0 0
\(836\) −7.51802e8 −0.0445022
\(837\) − 5.44841e9i − 0.321167i
\(838\) 1.01433e10i 0.595420i
\(839\) 7.99832e9 0.467554 0.233777 0.972290i \(-0.424891\pi\)
0.233777 + 0.972290i \(0.424891\pi\)
\(840\) 0 0
\(841\) −1.59169e10 −0.922725
\(842\) 6.79996e9i 0.392567i
\(843\) 8.39816e9i 0.482822i
\(844\) 1.64907e10 0.944147
\(845\) 0 0
\(846\) 2.55134e9 0.144868
\(847\) − 1.18966e9i − 0.0672716i
\(848\) − 1.65059e9i − 0.0929510i
\(849\) −1.60463e10 −0.899909
\(850\) 0 0
\(851\) −4.10523e9 −0.228341
\(852\) − 1.38126e10i − 0.765133i
\(853\) 4.20827e9i 0.232157i 0.993240 + 0.116079i \(0.0370324\pi\)
−0.993240 + 0.116079i \(0.962968\pi\)
\(854\) 1.15454e8 0.00634318
\(855\) 0 0
\(856\) −1.50824e10 −0.821888
\(857\) − 3.19307e10i − 1.73291i −0.499259 0.866453i \(-0.666394\pi\)
0.499259 0.866453i \(-0.333606\pi\)
\(858\) − 7.82930e8i − 0.0423173i
\(859\) −2.18002e10 −1.17350 −0.586752 0.809767i \(-0.699594\pi\)
−0.586752 + 0.809767i \(0.699594\pi\)
\(860\) 0 0
\(861\) −1.08815e9 −0.0581004
\(862\) − 1.31966e10i − 0.701755i
\(863\) 1.04728e10i 0.554657i 0.960775 + 0.277329i \(0.0894490\pi\)
−0.960775 + 0.277329i \(0.910551\pi\)
\(864\) 3.78103e9 0.199440
\(865\) 0 0
\(866\) −9.10427e8 −0.0476357
\(867\) 1.06765e10i 0.556368i
\(868\) − 1.62985e9i − 0.0845916i
\(869\) −6.55421e9 −0.338806
\(870\) 0 0
\(871\) 2.58593e9 0.132603
\(872\) 5.30765e9i 0.271078i
\(873\) − 6.43475e9i − 0.327327i
\(874\) −7.90695e8 −0.0400608
\(875\) 0 0
\(876\) 3.40080e9 0.170929
\(877\) 1.77787e10i 0.890024i 0.895525 + 0.445012i \(0.146801\pi\)
−0.895525 + 0.445012i \(0.853199\pi\)
\(878\) 5.94458e9i 0.296408i
\(879\) 3.11890e9 0.154896
\(880\) 0 0
\(881\) −7.64253e9 −0.376549 −0.188274 0.982116i \(-0.560289\pi\)
−0.188274 + 0.982116i \(0.560289\pi\)
\(882\) 3.58426e9i 0.175897i
\(883\) − 2.76375e10i − 1.35094i −0.737386 0.675472i \(-0.763940\pi\)
0.737386 0.675472i \(-0.236060\pi\)
\(884\) −1.33135e10 −0.648200
\(885\) 0 0
\(886\) −1.06425e10 −0.514076
\(887\) − 3.23087e10i − 1.55449i −0.629200 0.777243i \(-0.716617\pi\)
0.629200 0.777243i \(-0.283383\pi\)
\(888\) 9.57027e9i 0.458647i
\(889\) 1.07445e9 0.0512897
\(890\) 0 0
\(891\) −5.03806e8 −0.0238612
\(892\) − 1.90014e10i − 0.896414i
\(893\) − 5.02801e9i − 0.236274i
\(894\) 3.36711e9 0.157607
\(895\) 0 0
\(896\) 1.32059e9 0.0613325
\(897\) 2.10433e9i 0.0973511i
\(898\) − 1.66206e9i − 0.0765914i
\(899\) 1.01063e10 0.463908
\(900\) 0 0
\(901\) −1.21509e10 −0.553439
\(902\) − 3.58184e9i − 0.162511i
\(903\) 1.18501e9i 0.0535570i
\(904\) −2.33723e10 −1.05223
\(905\) 0 0
\(906\) −1.23301e7 −0.000550832 0
\(907\) − 2.27142e10i − 1.01082i −0.862880 0.505409i \(-0.831342\pi\)
0.862880 0.505409i \(-0.168658\pi\)
\(908\) − 3.99238e9i − 0.176983i
\(909\) −8.73810e9 −0.385872
\(910\) 0 0
\(911\) 7.50925e9 0.329065 0.164533 0.986372i \(-0.447388\pi\)
0.164533 + 0.986372i \(0.447388\pi\)
\(912\) − 8.97445e8i − 0.0391765i
\(913\) 4.14916e9i 0.180431i
\(914\) −1.76855e10 −0.766136
\(915\) 0 0
\(916\) 3.32976e9 0.143146
\(917\) 1.07691e9i 0.0461199i
\(918\) − 3.35233e9i − 0.143020i
\(919\) 2.49374e10 1.05986 0.529928 0.848043i \(-0.322219\pi\)
0.529928 + 0.848043i \(0.322219\pi\)
\(920\) 0 0
\(921\) 7.03619e9 0.296776
\(922\) 1.66012e10i 0.697561i
\(923\) − 2.83481e10i − 1.18664i
\(924\) −1.50709e8 −0.00628475
\(925\) 0 0
\(926\) 2.78132e9 0.115110
\(927\) − 5.25565e9i − 0.216694i
\(928\) 7.01342e9i 0.288079i
\(929\) 8.66205e9 0.354459 0.177229 0.984170i \(-0.443287\pi\)
0.177229 + 0.984170i \(0.443287\pi\)
\(930\) 0 0
\(931\) 7.06363e9 0.286883
\(932\) 8.48559e9i 0.343342i
\(933\) − 1.55735e10i − 0.627768i
\(934\) 2.50753e9 0.100701
\(935\) 0 0
\(936\) 4.90570e9 0.195540
\(937\) − 2.82655e10i − 1.12245i −0.827663 0.561226i \(-0.810330\pi\)
0.827663 0.561226i \(-0.189670\pi\)
\(938\) 1.94782e8i 0.00770616i
\(939\) −1.24220e10 −0.489623
\(940\) 0 0
\(941\) −4.67082e10 −1.82738 −0.913691 0.406410i \(-0.866780\pi\)
−0.913691 + 0.406410i \(0.866780\pi\)
\(942\) − 5.21356e9i − 0.203215i
\(943\) 9.62713e9i 0.373857i
\(944\) −5.03740e9 −0.194897
\(945\) 0 0
\(946\) −3.90067e9 −0.149803
\(947\) 4.67392e10i 1.78837i 0.447701 + 0.894184i \(0.352243\pi\)
−0.447701 + 0.894184i \(0.647757\pi\)
\(948\) − 1.71737e10i − 0.654688i
\(949\) 6.97958e9 0.265093
\(950\) 0 0
\(951\) −1.68902e9 −0.0636798
\(952\) − 2.39805e9i − 0.0900801i
\(953\) 3.82420e10i 1.43125i 0.698484 + 0.715625i \(0.253858\pi\)
−0.698484 + 0.715625i \(0.746142\pi\)
\(954\) 1.87233e9 0.0698171
\(955\) 0 0
\(956\) −4.58591e9 −0.169755
\(957\) − 9.34510e8i − 0.0344661i
\(958\) − 9.05837e9i − 0.332867i
\(959\) 1.79487e9 0.0657157
\(960\) 0 0
\(961\) 4.91101e10 1.78500
\(962\) 8.21367e9i 0.297457i
\(963\) 8.32961e9i 0.300561i
\(964\) 1.83424e10 0.659457
\(965\) 0 0
\(966\) −1.58506e8 −0.00565752
\(967\) 4.90012e10i 1.74267i 0.490692 + 0.871333i \(0.336744\pi\)
−0.490692 + 0.871333i \(0.663256\pi\)
\(968\) 2.45368e10i 0.869468i
\(969\) −6.60656e9 −0.233261
\(970\) 0 0
\(971\) 2.72929e10 0.956713 0.478357 0.878166i \(-0.341233\pi\)
0.478357 + 0.878166i \(0.341233\pi\)
\(972\) − 1.32010e9i − 0.0461078i
\(973\) 7.56947e8i 0.0263433i
\(974\) −5.57676e9 −0.193386
\(975\) 0 0
\(976\) 1.15935e9 0.0399155
\(977\) − 3.94482e9i − 0.135331i −0.997708 0.0676653i \(-0.978445\pi\)
0.997708 0.0676653i \(-0.0215550\pi\)
\(978\) − 9.45165e9i − 0.323088i
\(979\) −8.08484e9 −0.275380
\(980\) 0 0
\(981\) 2.93127e9 0.0991322
\(982\) − 3.07682e10i − 1.03684i
\(983\) 4.74320e8i 0.0159270i 0.999968 + 0.00796351i \(0.00253489\pi\)
−0.999968 + 0.00796351i \(0.997465\pi\)
\(984\) 2.24431e10 0.750933
\(985\) 0 0
\(986\) 6.21824e9 0.206585
\(987\) − 1.00794e9i − 0.0333674i
\(988\) − 4.04292e9i − 0.133366i
\(989\) 1.04841e10 0.344622
\(990\) 0 0
\(991\) 1.22197e10 0.398843 0.199421 0.979914i \(-0.436094\pi\)
0.199421 + 0.979914i \(0.436094\pi\)
\(992\) 5.31737e10i 1.72944i
\(993\) − 1.84744e10i − 0.598752i
\(994\) 2.13528e9 0.0689609
\(995\) 0 0
\(996\) −1.08718e10 −0.348655
\(997\) 3.60690e10i 1.15266i 0.817217 + 0.576330i \(0.195516\pi\)
−0.817217 + 0.576330i \(0.804484\pi\)
\(998\) − 2.46390e9i − 0.0784631i
\(999\) 5.28540e9 0.167725
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.8.b.c.49.1 2
3.2 odd 2 225.8.b.f.199.2 2
5.2 odd 4 3.8.a.a.1.1 1
5.3 odd 4 75.8.a.a.1.1 1
5.4 even 2 inner 75.8.b.c.49.2 2
15.2 even 4 9.8.a.a.1.1 1
15.8 even 4 225.8.a.i.1.1 1
15.14 odd 2 225.8.b.f.199.1 2
20.7 even 4 48.8.a.g.1.1 1
35.2 odd 12 147.8.e.b.67.1 2
35.12 even 12 147.8.e.a.67.1 2
35.17 even 12 147.8.e.a.79.1 2
35.27 even 4 147.8.a.b.1.1 1
35.32 odd 12 147.8.e.b.79.1 2
40.27 even 4 192.8.a.a.1.1 1
40.37 odd 4 192.8.a.i.1.1 1
45.2 even 12 81.8.c.c.28.1 2
45.7 odd 12 81.8.c.a.28.1 2
45.22 odd 12 81.8.c.a.55.1 2
45.32 even 12 81.8.c.c.55.1 2
55.32 even 4 363.8.a.b.1.1 1
60.47 odd 4 144.8.a.b.1.1 1
65.12 odd 4 507.8.a.a.1.1 1
105.62 odd 4 441.8.a.a.1.1 1
120.77 even 4 576.8.a.w.1.1 1
120.107 odd 4 576.8.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3.8.a.a.1.1 1 5.2 odd 4
9.8.a.a.1.1 1 15.2 even 4
48.8.a.g.1.1 1 20.7 even 4
75.8.a.a.1.1 1 5.3 odd 4
75.8.b.c.49.1 2 1.1 even 1 trivial
75.8.b.c.49.2 2 5.4 even 2 inner
81.8.c.a.28.1 2 45.7 odd 12
81.8.c.a.55.1 2 45.22 odd 12
81.8.c.c.28.1 2 45.2 even 12
81.8.c.c.55.1 2 45.32 even 12
144.8.a.b.1.1 1 60.47 odd 4
147.8.a.b.1.1 1 35.27 even 4
147.8.e.a.67.1 2 35.12 even 12
147.8.e.a.79.1 2 35.17 even 12
147.8.e.b.67.1 2 35.2 odd 12
147.8.e.b.79.1 2 35.32 odd 12
192.8.a.a.1.1 1 40.27 even 4
192.8.a.i.1.1 1 40.37 odd 4
225.8.a.i.1.1 1 15.8 even 4
225.8.b.f.199.1 2 15.14 odd 2
225.8.b.f.199.2 2 3.2 odd 2
363.8.a.b.1.1 1 55.32 even 4
441.8.a.a.1.1 1 105.62 odd 4
507.8.a.a.1.1 1 65.12 odd 4
576.8.a.w.1.1 1 120.77 even 4
576.8.a.x.1.1 1 120.107 odd 4