Properties

Label 75.8.b.c
Level $75$
Weight $8$
Character orbit 75.b
Analytic conductor $23.429$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [75,8,Mod(49,75)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(75, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("75.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4288769113\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 6 i q^{2} + 27 i q^{3} + 92 q^{4} - 162 q^{6} - 64 i q^{7} + 1320 i q^{8} - 729 q^{9} - 948 q^{11} + 2484 i q^{12} + 5098 i q^{13} + 384 q^{14} + 3856 q^{16} + 28386 i q^{17} - 4374 i q^{18} + 8620 q^{19} + \cdots + 691092 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 184 q^{4} - 324 q^{6} - 1458 q^{9} - 1896 q^{11} + 768 q^{14} + 7712 q^{16} + 17240 q^{19} + 3456 q^{21} - 71280 q^{24} - 61176 q^{26} - 73020 q^{29} - 553616 q^{31} - 340632 q^{34} - 134136 q^{36}+ \cdots + 1382184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
6.00000i 27.0000i 92.0000 0 −162.000 64.0000i 1320.00i −729.000 0
49.2 6.00000i 27.0000i 92.0000 0 −162.000 64.0000i 1320.00i −729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.8.b.c 2
3.b odd 2 1 225.8.b.f 2
5.b even 2 1 inner 75.8.b.c 2
5.c odd 4 1 3.8.a.a 1
5.c odd 4 1 75.8.a.a 1
15.d odd 2 1 225.8.b.f 2
15.e even 4 1 9.8.a.a 1
15.e even 4 1 225.8.a.i 1
20.e even 4 1 48.8.a.g 1
35.f even 4 1 147.8.a.b 1
35.k even 12 2 147.8.e.a 2
35.l odd 12 2 147.8.e.b 2
40.i odd 4 1 192.8.a.i 1
40.k even 4 1 192.8.a.a 1
45.k odd 12 2 81.8.c.a 2
45.l even 12 2 81.8.c.c 2
55.e even 4 1 363.8.a.b 1
60.l odd 4 1 144.8.a.b 1
65.h odd 4 1 507.8.a.a 1
105.k odd 4 1 441.8.a.a 1
120.q odd 4 1 576.8.a.x 1
120.w even 4 1 576.8.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.8.a.a 1 5.c odd 4 1
9.8.a.a 1 15.e even 4 1
48.8.a.g 1 20.e even 4 1
75.8.a.a 1 5.c odd 4 1
75.8.b.c 2 1.a even 1 1 trivial
75.8.b.c 2 5.b even 2 1 inner
81.8.c.a 2 45.k odd 12 2
81.8.c.c 2 45.l even 12 2
144.8.a.b 1 60.l odd 4 1
147.8.a.b 1 35.f even 4 1
147.8.e.a 2 35.k even 12 2
147.8.e.b 2 35.l odd 12 2
192.8.a.a 1 40.k even 4 1
192.8.a.i 1 40.i odd 4 1
225.8.a.i 1 15.e even 4 1
225.8.b.f 2 3.b odd 2 1
225.8.b.f 2 15.d odd 2 1
363.8.a.b 1 55.e even 4 1
441.8.a.a 1 105.k odd 4 1
507.8.a.a 1 65.h odd 4 1
576.8.a.w 1 120.w even 4 1
576.8.a.x 1 120.q odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 36 \) acting on \(S_{8}^{\mathrm{new}}(75, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 36 \) Copy content Toggle raw display
$3$ \( T^{2} + 729 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4096 \) Copy content Toggle raw display
$11$ \( (T + 948)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 25989604 \) Copy content Toggle raw display
$17$ \( T^{2} + 805764996 \) Copy content Toggle raw display
$19$ \( (T - 8620)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 233722944 \) Copy content Toggle raw display
$29$ \( (T + 36510)^{2} \) Copy content Toggle raw display
$31$ \( (T + 276808)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 72106212676 \) Copy content Toggle raw display
$41$ \( (T + 629718)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 470283235984 \) Copy content Toggle raw display
$47$ \( T^{2} + 340234223616 \) Copy content Toggle raw display
$53$ \( T^{2} + 183233651364 \) Copy content Toggle raw display
$59$ \( (T + 1306380)^{2} \) Copy content Toggle raw display
$61$ \( (T - 300662)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 257296475536 \) Copy content Toggle raw display
$71$ \( (T - 5560632)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1874385522724 \) Copy content Toggle raw display
$79$ \( (T - 6913720)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 19155923055504 \) Copy content Toggle raw display
$89$ \( (T - 8528310)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 77912645390596 \) Copy content Toggle raw display
show more
show less