Properties

Label 75.8.b
Level $75$
Weight $8$
Character orbit 75.b
Rep. character $\chi_{75}(49,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $6$
Sturm bound $80$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(80\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(75, [\chi])\).

Total New Old
Modular forms 76 20 56
Cusp forms 64 20 44
Eisenstein series 12 0 12

Trace form

\( 20 q - 1100 q^{4} - 540 q^{6} - 14580 q^{9} - 13780 q^{11} + 9420 q^{14} - 460 q^{16} + 68090 q^{19} - 23490 q^{21} + 137700 q^{24} + 945980 q^{26} - 784480 q^{29} - 114830 q^{31} - 1181640 q^{34} + 801900 q^{36}+ \cdots + 10045620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(75, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
75.8.b.a 75.b 5.b $2$ $23.429$ \(\Q(\sqrt{-1}) \) None 15.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+22 i q^{2}+27 i q^{3}-356 q^{4}-594 q^{6}+\cdots\)
75.8.b.b 75.b 5.b $2$ $23.429$ \(\Q(\sqrt{-1}) \) None 15.8.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+13 i q^{2}-27 i q^{3}-41 q^{4}+351 q^{6}+\cdots\)
75.8.b.c 75.b 5.b $2$ $23.429$ \(\Q(\sqrt{-1}) \) None 3.8.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+6 i q^{2}+27 i q^{3}+92 q^{4}-162 q^{6}+\cdots\)
75.8.b.d 75.b 5.b $4$ $23.429$ \(\Q(i, \sqrt{601})\) None 15.8.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-3\beta _{2})q^{2}+3^{3}\beta _{2}q^{3}+(-38+\cdots)q^{4}+\cdots\)
75.8.b.e 75.b 5.b $4$ $23.429$ \(\Q(i, \sqrt{31})\) None 75.8.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-4\beta _{1}-\beta _{3})q^{2}-3^{3}\beta _{1}q^{3}+(-12+\cdots)q^{4}+\cdots\)
75.8.b.f 75.b 5.b $6$ $23.429$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 75.8.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{2}+2\beta _{4})q^{2}-3^{3}\beta _{4}q^{3}+(-51+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(75, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)