Properties

Label 75.8.a.h
Level $75$
Weight $8$
Character orbit 75.a
Self dual yes
Analytic conductor $23.429$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,8,Mod(1,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.4288769113\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.717484.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 244x - 1016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 2) q^{2} + 27 q^{3} + ( - \beta_{2} + 4 \beta_1 + 51) q^{4} + (27 \beta_1 + 54) q^{6} + (8 \beta_{2} + 28 \beta_1 + 25) q^{7} + ( - 6 \beta_{2} + 18 \beta_1 + 630) q^{8} + 729 q^{9} + ( - 48 \beta_{2} + 172 \beta_1 + 506) q^{11}+ \cdots + ( - 34992 \beta_{2} + 125388 \beta_1 + 368874) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} + 81 q^{3} + 152 q^{4} + 162 q^{6} + 83 q^{7} + 1884 q^{8} + 2187 q^{9} + 1470 q^{11} + 4104 q^{12} + 11755 q^{13} + 12822 q^{14} - 4744 q^{16} + 30342 q^{17} + 4374 q^{18} + 32221 q^{19}+ \cdots + 1071630 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 244x - 1016 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} - 9\nu - 160 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 21\nu - 169 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta _1 + 3 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 9\beta_{2} + 42\beta _1 + 1627 ) / 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.67104
17.8539
−12.1828
−14.0237 27.0000 68.6631 0 −378.639 −1077.72 832.121 729.000 0
1.2 1.67926 27.0000 −125.180 0 45.3401 1415.20 −425.156 729.000 0
1.3 18.3444 27.0000 208.517 0 495.299 −254.472 1477.04 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.8.a.h yes 3
3.b odd 2 1 225.8.a.x 3
5.b even 2 1 75.8.a.g 3
5.c odd 4 2 75.8.b.f 6
15.d odd 2 1 225.8.a.y 3
15.e even 4 2 225.8.b.q 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.8.a.g 3 5.b even 2 1
75.8.a.h yes 3 1.a even 1 1 trivial
75.8.b.f 6 5.c odd 4 2
225.8.a.x 3 3.b odd 2 1
225.8.a.y 3 15.d odd 2 1
225.8.b.q 6 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 6T_{2}^{2} - 250T_{2} + 432 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(75))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 6 T^{2} + \cdots + 432 \) Copy content Toggle raw display
$3$ \( (T - 27)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 83 T^{2} + \cdots - 388118385 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 102949073496 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 13216978519 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 22129700848056 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 19077937228225 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 83778646871160 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 853069492719000 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 857899428441975 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 14\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 30\!\cdots\!20 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 16\!\cdots\!33 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 52\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 89\!\cdots\!60 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 14\!\cdots\!87 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 17\!\cdots\!31 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 21\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 87\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 75\!\cdots\!29 \) Copy content Toggle raw display
show more
show less