# Properties

 Label 75.4.g.b.61.2 Level $75$ Weight $4$ Character 75.61 Analytic conductor $4.425$ Analytic rank $0$ Dimension $28$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$75 = 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 75.g (of order $$5$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.42514325043$$ Analytic rank: $$0$$ Dimension: $$28$$ Relative dimension: $$7$$ over $$\Q(\zeta_{5})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

## Embedding invariants

 Embedding label 61.2 Character $$\chi$$ $$=$$ 75.61 Dual form 75.4.g.b.16.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-3.16070 + 2.29638i) q^{2} +(0.927051 - 2.85317i) q^{3} +(2.24451 - 6.90789i) q^{4} +(-11.0852 + 1.45535i) q^{5} +(3.62184 + 11.1469i) q^{6} +22.0918 q^{7} +(-0.889297 - 2.73697i) q^{8} +(-7.28115 - 5.29007i) q^{9} +O(q^{10})$$ $$q+(-3.16070 + 2.29638i) q^{2} +(0.927051 - 2.85317i) q^{3} +(2.24451 - 6.90789i) q^{4} +(-11.0852 + 1.45535i) q^{5} +(3.62184 + 11.1469i) q^{6} +22.0918 q^{7} +(-0.889297 - 2.73697i) q^{8} +(-7.28115 - 5.29007i) q^{9} +(31.6950 - 30.0558i) q^{10} +(31.5999 - 22.9587i) q^{11} +(-17.6286 - 12.8079i) q^{12} +(55.3321 + 40.2012i) q^{13} +(-69.8255 + 50.7312i) q^{14} +(-6.12419 + 32.9772i) q^{15} +(56.1056 + 40.7631i) q^{16} +(31.1744 + 95.9450i) q^{17} +35.1615 q^{18} +(-29.0621 - 89.4438i) q^{19} +(-14.8275 + 79.8420i) q^{20} +(20.4802 - 63.0316i) q^{21} +(-47.1559 + 145.131i) q^{22} +(130.565 - 94.8612i) q^{23} -8.63347 q^{24} +(120.764 - 32.2658i) q^{25} -267.205 q^{26} +(-21.8435 + 15.8702i) q^{27} +(49.5852 - 152.608i) q^{28} +(-15.8462 + 48.7695i) q^{29} +(-56.3715 - 118.294i) q^{30} +(-80.4233 - 247.517i) q^{31} -247.918 q^{32} +(-36.2103 - 111.444i) q^{33} +(-318.859 - 231.665i) q^{34} +(-244.892 + 32.1513i) q^{35} +(-52.8858 + 38.4238i) q^{36} +(70.1129 + 50.9400i) q^{37} +(297.254 + 215.967i) q^{38} +(165.996 - 120.603i) q^{39} +(13.8413 + 29.0457i) q^{40} +(42.4765 + 30.8610i) q^{41} +(80.0128 + 246.254i) q^{42} -53.3748 q^{43} +(-87.6698 - 269.820i) q^{44} +(88.4120 + 48.0449i) q^{45} +(-194.840 + 599.656i) q^{46} +(74.7809 - 230.152i) q^{47} +(168.317 - 122.289i) q^{48} +145.047 q^{49} +(-307.604 + 379.302i) q^{50} +302.648 q^{51} +(401.899 - 291.997i) q^{52} +(18.2798 - 56.2594i) q^{53} +(32.5965 - 100.322i) q^{54} +(-316.879 + 300.491i) q^{55} +(-19.6461 - 60.4646i) q^{56} -282.140 q^{57} +(-61.9084 - 190.534i) q^{58} +(524.396 + 380.996i) q^{59} +(214.057 + 116.323i) q^{60} +(-530.204 + 385.216i) q^{61} +(822.588 + 597.645i) q^{62} +(-160.854 - 116.867i) q^{63} +(334.749 - 243.209i) q^{64} +(-671.875 - 365.111i) q^{65} +(370.367 + 269.088i) q^{66} +(240.635 + 740.598i) q^{67} +732.749 q^{68} +(-149.614 - 460.466i) q^{69} +(700.198 - 663.986i) q^{70} +(69.2398 - 213.098i) q^{71} +(-8.00367 + 24.6328i) q^{72} +(-281.749 + 204.703i) q^{73} -338.583 q^{74} +(19.8946 - 374.472i) q^{75} -683.098 q^{76} +(698.099 - 507.198i) q^{77} +(-247.713 + 762.382i) q^{78} +(49.9257 - 153.655i) q^{79} +(-681.267 - 370.214i) q^{80} +(25.0304 + 77.0356i) q^{81} -205.124 q^{82} +(-12.3245 - 37.9308i) q^{83} +(-389.447 - 282.950i) q^{84} +(-485.209 - 1018.20i) q^{85} +(168.702 - 122.569i) q^{86} +(124.457 + 90.4236i) q^{87} +(-90.9391 - 66.0711i) q^{88} +(375.213 - 272.608i) q^{89} +(-389.773 + 51.1724i) q^{90} +(1222.39 + 888.115i) q^{91} +(-362.236 - 1114.85i) q^{92} -780.766 q^{93} +(292.157 + 899.167i) q^{94} +(452.331 + 949.208i) q^{95} +(-229.832 + 707.352i) q^{96} +(177.512 - 546.326i) q^{97} +(-458.449 + 333.082i) q^{98} -351.537 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$28 q - 21 q^{3} - 30 q^{4} - 15 q^{5} - 54 q^{7} - 63 q^{8} - 63 q^{9}+O(q^{10})$$ 28 * q - 21 * q^3 - 30 * q^4 - 15 * q^5 - 54 * q^7 - 63 * q^8 - 63 * q^9 $$28 q - 21 q^{3} - 30 q^{4} - 15 q^{5} - 54 q^{7} - 63 q^{8} - 63 q^{9} + 165 q^{10} + 19 q^{11} - 60 q^{12} + 4 q^{13} - 24 q^{14} + 45 q^{15} - 66 q^{16} + 208 q^{17} + 42 q^{19} + 295 q^{20} + 3 q^{21} - 89 q^{22} + 32 q^{23} + 126 q^{24} + 95 q^{25} + 206 q^{26} - 189 q^{27} - 482 q^{28} - 716 q^{29} - 645 q^{30} + 637 q^{31} - 844 q^{32} + 42 q^{33} - 90 q^{34} + 430 q^{35} - 180 q^{36} + 216 q^{37} + 2314 q^{38} + 12 q^{39} - 500 q^{40} - 38 q^{41} + 933 q^{42} - 1392 q^{43} + 603 q^{44} + 270 q^{45} + 1622 q^{46} - 536 q^{47} - 198 q^{48} + 162 q^{49} - 2265 q^{50} - 876 q^{51} - 1922 q^{52} + 1672 q^{53} - 1000 q^{55} + 3000 q^{56} - 1104 q^{57} - 827 q^{58} + 973 q^{59} + 1365 q^{60} - 2712 q^{61} + 1057 q^{62} + 234 q^{63} + 4439 q^{64} - 4360 q^{65} + 1098 q^{66} + 2768 q^{67} - 1370 q^{68} + 396 q^{69} + 3230 q^{70} - 1074 q^{71} - 567 q^{72} - 1018 q^{73} - 1414 q^{74} + 765 q^{75} - 11408 q^{76} + 1607 q^{77} + 168 q^{78} - 1820 q^{79} - 1290 q^{80} - 567 q^{81} + 1772 q^{82} + 4045 q^{83} + 774 q^{84} + 1850 q^{85} - 3986 q^{86} + 1392 q^{87} + 2407 q^{88} + 4542 q^{89} - 180 q^{90} + 4412 q^{91} - 1089 q^{92} - 5334 q^{93} + 5137 q^{94} - 720 q^{95} + 1623 q^{96} - 5977 q^{97} - 10689 q^{98} - 594 q^{99}+O(q^{100})$$ 28 * q - 21 * q^3 - 30 * q^4 - 15 * q^5 - 54 * q^7 - 63 * q^8 - 63 * q^9 + 165 * q^10 + 19 * q^11 - 60 * q^12 + 4 * q^13 - 24 * q^14 + 45 * q^15 - 66 * q^16 + 208 * q^17 + 42 * q^19 + 295 * q^20 + 3 * q^21 - 89 * q^22 + 32 * q^23 + 126 * q^24 + 95 * q^25 + 206 * q^26 - 189 * q^27 - 482 * q^28 - 716 * q^29 - 645 * q^30 + 637 * q^31 - 844 * q^32 + 42 * q^33 - 90 * q^34 + 430 * q^35 - 180 * q^36 + 216 * q^37 + 2314 * q^38 + 12 * q^39 - 500 * q^40 - 38 * q^41 + 933 * q^42 - 1392 * q^43 + 603 * q^44 + 270 * q^45 + 1622 * q^46 - 536 * q^47 - 198 * q^48 + 162 * q^49 - 2265 * q^50 - 876 * q^51 - 1922 * q^52 + 1672 * q^53 - 1000 * q^55 + 3000 * q^56 - 1104 * q^57 - 827 * q^58 + 973 * q^59 + 1365 * q^60 - 2712 * q^61 + 1057 * q^62 + 234 * q^63 + 4439 * q^64 - 4360 * q^65 + 1098 * q^66 + 2768 * q^67 - 1370 * q^68 + 396 * q^69 + 3230 * q^70 - 1074 * q^71 - 567 * q^72 - 1018 * q^73 - 1414 * q^74 + 765 * q^75 - 11408 * q^76 + 1607 * q^77 + 168 * q^78 - 1820 * q^79 - 1290 * q^80 - 567 * q^81 + 1772 * q^82 + 4045 * q^83 + 774 * q^84 + 1850 * q^85 - 3986 * q^86 + 1392 * q^87 + 2407 * q^88 + 4542 * q^89 - 180 * q^90 + 4412 * q^91 - 1089 * q^92 - 5334 * q^93 + 5137 * q^94 - 720 * q^95 + 1623 * q^96 - 5977 * q^97 - 10689 * q^98 - 594 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/75\mathbb{Z}\right)^\times$$.

 $$n$$ $$26$$ $$52$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{4}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −3.16070 + 2.29638i −1.11748 + 0.811894i −0.983825 0.179135i $$-0.942670\pi$$
−0.133651 + 0.991028i $$0.542670\pi$$
$$3$$ 0.927051 2.85317i 0.178411 0.549093i
$$4$$ 2.24451 6.90789i 0.280564 0.863487i
$$5$$ −11.0852 + 1.45535i −0.991492 + 0.130171i
$$6$$ 3.62184 + 11.1469i 0.246435 + 0.758449i
$$7$$ 22.0918 1.19284 0.596422 0.802671i $$-0.296589\pi$$
0.596422 + 0.802671i $$0.296589\pi$$
$$8$$ −0.889297 2.73697i −0.0393017 0.120958i
$$9$$ −7.28115 5.29007i −0.269672 0.195928i
$$10$$ 31.6950 30.0558i 1.00228 0.950448i
$$11$$ 31.5999 22.9587i 0.866158 0.629301i −0.0633953 0.997988i $$-0.520193\pi$$
0.929553 + 0.368688i $$0.120193\pi$$
$$12$$ −17.6286 12.8079i −0.424079 0.308111i
$$13$$ 55.3321 + 40.2012i 1.18049 + 0.857676i 0.992227 0.124442i $$-0.0397141\pi$$
0.188264 + 0.982119i $$0.439714\pi$$
$$14$$ −69.8255 + 50.7312i −1.33297 + 0.968462i
$$15$$ −6.12419 + 32.9772i −0.105417 + 0.567645i
$$16$$ 56.1056 + 40.7631i 0.876650 + 0.636923i
$$17$$ 31.1744 + 95.9450i 0.444759 + 1.36883i 0.882747 + 0.469848i $$0.155691\pi$$
−0.437988 + 0.898981i $$0.644309\pi$$
$$18$$ 35.1615 0.460425
$$19$$ −29.0621 89.4438i −0.350910 1.07999i −0.958343 0.285619i $$-0.907801\pi$$
0.607433 0.794371i $$-0.292199\pi$$
$$20$$ −14.8275 + 79.8420i −0.165776 + 0.892661i
$$21$$ 20.4802 63.0316i 0.212817 0.654982i
$$22$$ −47.1559 + 145.131i −0.456985 + 1.40646i
$$23$$ 130.565 94.8612i 1.18368 0.859997i 0.191102 0.981570i $$-0.438794\pi$$
0.992582 + 0.121573i $$0.0387939\pi$$
$$24$$ −8.63347 −0.0734292
$$25$$ 120.764 32.2658i 0.966111 0.258126i
$$26$$ −267.205 −2.01551
$$27$$ −21.8435 + 15.8702i −0.155695 + 0.113119i
$$28$$ 49.5852 152.608i 0.334669 1.03000i
$$29$$ −15.8462 + 48.7695i −0.101468 + 0.312285i −0.988885 0.148681i $$-0.952497\pi$$
0.887418 + 0.460966i $$0.152497\pi$$
$$30$$ −56.3715 118.294i −0.343066 0.719917i
$$31$$ −80.4233 247.517i −0.465950 1.43405i −0.857784 0.514011i $$-0.828159\pi$$
0.391834 0.920036i $$-0.371841\pi$$
$$32$$ −247.918 −1.36957
$$33$$ −36.2103 111.444i −0.191012 0.587875i
$$34$$ −318.859 231.665i −1.60835 1.16854i
$$35$$ −244.892 + 32.1513i −1.18269 + 0.155273i
$$36$$ −52.8858 + 38.4238i −0.244842 + 0.177888i
$$37$$ 70.1129 + 50.9400i 0.311527 + 0.226337i 0.732551 0.680712i $$-0.238329\pi$$
−0.421025 + 0.907049i $$0.638329\pi$$
$$38$$ 297.254 + 215.967i 1.26897 + 0.921961i
$$39$$ 165.996 120.603i 0.681556 0.495180i
$$40$$ 13.8413 + 29.0457i 0.0547126 + 0.114813i
$$41$$ 42.4765 + 30.8610i 0.161798 + 0.117553i 0.665738 0.746185i $$-0.268117\pi$$
−0.503940 + 0.863739i $$0.668117\pi$$
$$42$$ 80.0128 + 246.254i 0.293958 + 0.904711i
$$43$$ −53.3748 −0.189293 −0.0946463 0.995511i $$-0.530172\pi$$
−0.0946463 + 0.995511i $$0.530172\pi$$
$$44$$ −87.6698 269.820i −0.300380 0.924475i
$$45$$ 88.4120 + 48.0449i 0.292882 + 0.159158i
$$46$$ −194.840 + 599.656i −0.624512 + 1.92205i
$$47$$ 74.7809 230.152i 0.232083 0.714279i −0.765412 0.643541i $$-0.777465\pi$$
0.997495 0.0707380i $$-0.0225354\pi$$
$$48$$ 168.317 122.289i 0.506134 0.367728i
$$49$$ 145.047 0.422876
$$50$$ −307.604 + 379.302i −0.870035 + 1.07283i
$$51$$ 302.648 0.830964
$$52$$ 401.899 291.997i 1.07179 0.778705i
$$53$$ 18.2798 56.2594i 0.0473759 0.145808i −0.924570 0.381012i $$-0.875576\pi$$
0.971946 + 0.235204i $$0.0755757\pi$$
$$54$$ 32.5965 100.322i 0.0821450 0.252816i
$$55$$ −316.879 + 300.491i −0.776872 + 0.736695i
$$56$$ −19.6461 60.4646i −0.0468808 0.144284i
$$57$$ −282.140 −0.655621
$$58$$ −61.9084 190.534i −0.140155 0.431352i
$$59$$ 524.396 + 380.996i 1.15713 + 0.840703i 0.989412 0.145132i $$-0.0463607\pi$$
0.167716 + 0.985835i $$0.446361\pi$$
$$60$$ 214.057 + 116.323i 0.460577 + 0.250287i
$$61$$ −530.204 + 385.216i −1.11288 + 0.808555i −0.983115 0.182990i $$-0.941422\pi$$
−0.129765 + 0.991545i $$0.541422\pi$$
$$62$$ 822.588 + 597.645i 1.68498 + 1.22421i
$$63$$ −160.854 116.867i −0.321677 0.233712i
$$64$$ 334.749 243.209i 0.653807 0.475018i
$$65$$ −671.875 365.111i −1.28209 0.696714i
$$66$$ 370.367 + 269.088i 0.690744 + 0.501855i
$$67$$ 240.635 + 740.598i 0.438779 + 1.35042i 0.889164 + 0.457589i $$0.151287\pi$$
−0.450384 + 0.892835i $$0.648713\pi$$
$$68$$ 732.749 1.30675
$$69$$ −149.614 460.466i −0.261036 0.803385i
$$70$$ 700.198 663.986i 1.19557 1.13374i
$$71$$ 69.2398 213.098i 0.115736 0.356199i −0.876364 0.481650i $$-0.840038\pi$$
0.992100 + 0.125451i $$0.0400378\pi$$
$$72$$ −8.00367 + 24.6328i −0.0131006 + 0.0403194i
$$73$$ −281.749 + 204.703i −0.451729 + 0.328200i −0.790278 0.612748i $$-0.790064\pi$$
0.338549 + 0.940949i $$0.390064\pi$$
$$74$$ −338.583 −0.531886
$$75$$ 19.8946 374.472i 0.0306297 0.576537i
$$76$$ −683.098 −1.03101
$$77$$ 698.099 507.198i 1.03319 0.750657i
$$78$$ −247.713 + 762.382i −0.359590 + 1.10670i
$$79$$ 49.9257 153.655i 0.0711022 0.218830i −0.909191 0.416380i $$-0.863299\pi$$
0.980293 + 0.197550i $$0.0632985\pi$$
$$80$$ −681.267 370.214i −0.952099 0.517390i
$$81$$ 25.0304 + 77.0356i 0.0343352 + 0.105673i
$$82$$ −205.124 −0.276246
$$83$$ −12.3245 37.9308i −0.0162986 0.0501620i 0.942576 0.333991i $$-0.108395\pi$$
−0.958875 + 0.283829i $$0.908395\pi$$
$$84$$ −389.447 282.950i −0.505859 0.367528i
$$85$$ −485.209 1018.20i −0.619156 1.29929i
$$86$$ 168.702 122.569i 0.211530 0.153685i
$$87$$ 124.457 + 90.4236i 0.153370 + 0.111430i
$$88$$ −90.9391 66.0711i −0.110161 0.0800364i
$$89$$ 375.213 272.608i 0.446882 0.324679i −0.341481 0.939889i $$-0.610929\pi$$
0.788364 + 0.615210i $$0.210929\pi$$
$$90$$ −389.773 + 51.1724i −0.456508 + 0.0599339i
$$91$$ 1222.39 + 888.115i 1.40814 + 1.02307i
$$92$$ −362.236 1114.85i −0.410497 1.26338i
$$93$$ −780.766 −0.870555
$$94$$ 292.157 + 899.167i 0.320571 + 0.986617i
$$95$$ 452.331 + 949.208i 0.488508 + 1.02512i
$$96$$ −229.832 + 707.352i −0.244346 + 0.752018i
$$97$$ 177.512 546.326i 0.185810 0.571866i −0.814151 0.580653i $$-0.802797\pi$$
0.999961 + 0.00878766i $$0.00279724\pi$$
$$98$$ −458.449 + 333.082i −0.472554 + 0.343331i
$$99$$ −351.537 −0.356877
$$100$$ 48.1674 906.645i 0.0481674 0.906645i
$$101$$ −1074.69 −1.05877 −0.529383 0.848383i $$-0.677577\pi$$
−0.529383 + 0.848383i $$0.677577\pi$$
$$102$$ −956.578 + 694.995i −0.928582 + 0.674654i
$$103$$ 288.232 887.086i 0.275731 0.848613i −0.713294 0.700865i $$-0.752797\pi$$
0.989025 0.147748i $$-0.0472025\pi$$
$$104$$ 60.8228 187.193i 0.0573478 0.176498i
$$105$$ −135.294 + 728.524i −0.125746 + 0.677111i
$$106$$ 71.4162 + 219.797i 0.0654392 + 0.201401i
$$107$$ −1102.95 −0.996511 −0.498255 0.867030i $$-0.666026\pi$$
−0.498255 + 0.867030i $$0.666026\pi$$
$$108$$ 60.6018 + 186.513i 0.0539945 + 0.166178i
$$109$$ 1186.41 + 861.976i 1.04254 + 0.757453i 0.970781 0.239969i $$-0.0771373\pi$$
0.0717636 + 0.997422i $$0.477137\pi$$
$$110$$ 311.517 1677.44i 0.270018 1.45398i
$$111$$ 210.339 152.820i 0.179860 0.130676i
$$112$$ 1239.47 + 900.529i 1.04571 + 0.759750i
$$113$$ 1253.89 + 911.005i 1.04386 + 0.758408i 0.971035 0.238936i $$-0.0767988\pi$$
0.0728243 + 0.997345i $$0.476799\pi$$
$$114$$ 891.761 647.902i 0.732641 0.532295i
$$115$$ −1309.29 + 1241.58i −1.06167 + 1.00676i
$$116$$ 301.327 + 218.927i 0.241186 + 0.175232i
$$117$$ −190.215 585.422i −0.150302 0.462583i
$$118$$ −2532.37 −1.97563
$$119$$ 688.699 + 2119.60i 0.530528 + 1.63280i
$$120$$ 95.7039 12.5647i 0.0728044 0.00955832i
$$121$$ 60.1524 185.130i 0.0451934 0.139091i
$$122$$ 791.213 2435.10i 0.587156 1.80708i
$$123$$ 127.430 92.5830i 0.0934142 0.0678694i
$$124$$ −1890.33 −1.36901
$$125$$ −1291.74 + 533.427i −0.924291 + 0.381689i
$$126$$ 776.781 0.549216
$$127$$ −786.360 + 571.324i −0.549434 + 0.399187i −0.827577 0.561352i $$-0.810281\pi$$
0.278143 + 0.960540i $$0.410281\pi$$
$$128$$ 113.347 348.848i 0.0782703 0.240891i
$$129$$ −49.4811 + 152.287i −0.0337719 + 0.103939i
$$130$$ 2962.03 388.878i 1.99836 0.262360i
$$131$$ −360.986 1111.00i −0.240760 0.740982i −0.996305 0.0858855i $$-0.972628\pi$$
0.755545 0.655096i $$-0.227372\pi$$
$$132$$ −851.116 −0.561213
$$133$$ −642.032 1975.97i −0.418581 1.28826i
$$134$$ −2461.27 1788.22i −1.58673 1.15282i
$$135$$ 219.043 207.714i 0.139646 0.132424i
$$136$$ 234.876 170.647i 0.148091 0.107595i
$$137$$ −867.865 630.541i −0.541217 0.393217i 0.283320 0.959025i $$-0.408564\pi$$
−0.824537 + 0.565808i $$0.808564\pi$$
$$138$$ 1530.29 + 1111.82i 0.943965 + 0.685831i
$$139$$ 276.953 201.218i 0.168999 0.122785i −0.500071 0.865984i $$-0.666693\pi$$
0.669070 + 0.743200i $$0.266693\pi$$
$$140$$ −327.565 + 1763.85i −0.197745 + 1.06480i
$$141$$ −587.337 426.725i −0.350799 0.254871i
$$142$$ 270.509 + 832.540i 0.159863 + 0.492009i
$$143$$ 2671.46 1.56223
$$144$$ −192.874 593.604i −0.111617 0.343521i
$$145$$ 104.681 563.682i 0.0599539 0.322836i
$$146$$ 420.448 1294.01i 0.238333 0.733512i
$$147$$ 134.466 413.843i 0.0754458 0.232198i
$$148$$ 509.257 369.997i 0.282842 0.205497i
$$149$$ 1268.97 0.697704 0.348852 0.937178i $$-0.386572\pi$$
0.348852 + 0.937178i $$0.386572\pi$$
$$150$$ 797.050 + 1229.28i 0.433859 + 0.669134i
$$151$$ −1863.93 −1.00453 −0.502266 0.864713i $$-0.667500\pi$$
−0.502266 + 0.864713i $$0.667500\pi$$
$$152$$ −218.961 + 159.084i −0.116842 + 0.0848910i
$$153$$ 280.570 863.505i 0.148253 0.456276i
$$154$$ −1041.76 + 3206.20i −0.545112 + 1.67768i
$$155$$ 1251.73 + 2626.74i 0.648656 + 1.36119i
$$156$$ −460.535 1417.38i −0.236361 0.727444i
$$157$$ −1891.87 −0.961705 −0.480852 0.876802i $$-0.659673\pi$$
−0.480852 + 0.876802i $$0.659673\pi$$
$$158$$ 195.051 + 600.307i 0.0982118 + 0.302265i
$$159$$ −143.571 104.311i −0.0716098 0.0520275i
$$160$$ 2748.22 360.808i 1.35791 0.178277i
$$161$$ 2884.42 2095.65i 1.41195 1.02584i
$$162$$ −256.017 186.007i −0.124164 0.0902104i
$$163$$ −2559.85 1859.84i −1.23008 0.893705i −0.233183 0.972433i $$-0.574914\pi$$
−0.996896 + 0.0787280i $$0.974914\pi$$
$$164$$ 308.524 224.155i 0.146900 0.106729i
$$165$$ 563.589 + 1182.68i 0.265911 + 0.558009i
$$166$$ 126.057 + 91.5861i 0.0589395 + 0.0428220i
$$167$$ 1089.41 + 3352.87i 0.504798 + 1.55361i 0.801110 + 0.598517i $$0.204243\pi$$
−0.296312 + 0.955091i $$0.595757\pi$$
$$168$$ −190.729 −0.0875896
$$169$$ 766.603 + 2359.36i 0.348932 + 1.07390i
$$170$$ 3871.78 + 2104.00i 1.74678 + 0.949233i
$$171$$ −261.559 + 804.994i −0.116970 + 0.359997i
$$172$$ −119.800 + 368.707i −0.0531086 + 0.163452i
$$173$$ −3140.81 + 2281.93i −1.38030 + 1.00285i −0.383446 + 0.923563i $$0.625263\pi$$
−0.996852 + 0.0792825i $$0.974737\pi$$
$$174$$ −601.019 −0.261857
$$175$$ 2667.89 712.808i 1.15242 0.307904i
$$176$$ 2708.80 1.16013
$$177$$ 1573.19 1142.99i 0.668069 0.485380i
$$178$$ −559.923 + 1723.27i −0.235775 + 0.725641i
$$179$$ 154.209 474.606i 0.0643917 0.198177i −0.913685 0.406424i $$-0.866776\pi$$
0.978076 + 0.208247i $$0.0667756\pi$$
$$180$$ 530.331 502.904i 0.219603 0.208246i
$$181$$ −1375.55 4233.49i −0.564881 1.73853i −0.668304 0.743888i $$-0.732979\pi$$
0.103422 0.994638i $$-0.467021\pi$$
$$182$$ −5903.04 −2.40419
$$183$$ 607.560 + 1869.88i 0.245421 + 0.755330i
$$184$$ −375.744 272.994i −0.150545 0.109377i
$$185$$ −851.352 462.642i −0.338339 0.183860i
$$186$$ 2467.77 1792.94i 0.972824 0.706798i
$$187$$ 3187.88 + 2316.13i 1.24664 + 0.905734i
$$188$$ −1422.02 1033.16i −0.551656 0.400802i
$$189$$ −482.561 + 350.601i −0.185720 + 0.134934i
$$190$$ −3609.43 1961.44i −1.37819 0.748934i
$$191$$ −3212.06 2333.70i −1.21684 0.884088i −0.221008 0.975272i $$-0.570935\pi$$
−0.995834 + 0.0911844i $$0.970935\pi$$
$$192$$ −383.588 1180.56i −0.144183 0.443749i
$$193$$ 3115.35 1.16190 0.580952 0.813938i $$-0.302680\pi$$
0.580952 + 0.813938i $$0.302680\pi$$
$$194$$ 693.510 + 2134.41i 0.256655 + 0.789904i
$$195$$ −1664.59 + 1578.50i −0.611300 + 0.579685i
$$196$$ 325.559 1001.97i 0.118644 0.365148i
$$197$$ −445.849 + 1372.18i −0.161246 + 0.496263i −0.998740 0.0501827i $$-0.984020\pi$$
0.837494 + 0.546446i $$0.184020\pi$$
$$198$$ 1111.10 807.263i 0.398801 0.289746i
$$199$$ −2015.36 −0.717916 −0.358958 0.933354i $$-0.616868\pi$$
−0.358958 + 0.933354i $$0.616868\pi$$
$$200$$ −195.706 301.834i −0.0691924 0.106714i
$$201$$ 2336.13 0.819791
$$202$$ 3396.76 2467.89i 1.18315 0.859606i
$$203$$ −350.070 + 1077.40i −0.121035 + 0.372507i
$$204$$ 679.296 2090.66i 0.233138 0.717526i
$$205$$ −515.775 280.283i −0.175723 0.0954916i
$$206$$ 1126.07 + 3465.70i 0.380861 + 1.17217i
$$207$$ −1452.49 −0.487705
$$208$$ 1465.72 + 4511.02i 0.488602 + 1.50376i
$$209$$ −2971.87 2159.19i −0.983582 0.714614i
$$210$$ −1245.35 2613.33i −0.409224 0.858748i
$$211$$ 192.025 139.514i 0.0626517 0.0455192i −0.556019 0.831170i $$-0.687672\pi$$
0.618670 + 0.785651i $$0.287672\pi$$
$$212$$ −347.605 252.550i −0.112611 0.0818169i
$$213$$ −543.816 395.106i −0.174937 0.127100i
$$214$$ 3486.11 2532.80i 1.11358 0.809061i
$$215$$ 591.671 77.6791i 0.187682 0.0246403i
$$216$$ 62.8616 + 45.6717i 0.0198018 + 0.0143869i
$$217$$ −1776.69 5468.10i −0.555806 1.71059i
$$218$$ −5729.31 −1.77999
$$219$$ 322.856 + 993.647i 0.0996190 + 0.306596i
$$220$$ 1364.52 + 2863.42i 0.418164 + 0.877508i
$$221$$ −2132.15 + 6562.09i −0.648978 + 1.99735i
$$222$$ −313.884 + 966.036i −0.0948943 + 0.292054i
$$223$$ 236.890 172.111i 0.0711361 0.0516834i −0.551649 0.834076i $$-0.686001\pi$$
0.622785 + 0.782393i $$0.286001\pi$$
$$224$$ −5476.95 −1.63368
$$225$$ −1049.99 403.917i −0.311108 0.119679i
$$226$$ −6055.19 −1.78223
$$227$$ −172.374 + 125.237i −0.0504003 + 0.0366180i −0.612700 0.790315i $$-0.709917\pi$$
0.562300 + 0.826933i $$0.309917\pi$$
$$228$$ −633.267 + 1949.00i −0.183944 + 0.566120i
$$229$$ −1001.94 + 3083.67i −0.289128 + 0.889845i 0.696003 + 0.718039i $$0.254960\pi$$
−0.985131 + 0.171806i $$0.945040\pi$$
$$230$$ 1287.13 6930.87i 0.369004 1.98699i
$$231$$ −799.950 2461.99i −0.227848 0.701243i
$$232$$ 147.573 0.0417613
$$233$$ −1229.34 3783.53i −0.345652 1.06381i −0.961234 0.275735i $$-0.911079\pi$$
0.615582 0.788073i $$-0.288921\pi$$
$$234$$ 1945.56 + 1413.53i 0.543528 + 0.394896i
$$235$$ −494.010 + 2660.12i −0.137131 + 0.738412i
$$236$$ 3808.89 2767.32i 1.05058 0.763294i
$$237$$ −392.121 284.893i −0.107473 0.0780834i
$$238$$ −7044.17 5117.89i −1.91851 1.39388i
$$239$$ 3905.56 2837.55i 1.05703 0.767975i 0.0834914 0.996508i $$-0.473393\pi$$
0.973536 + 0.228533i $$0.0733929\pi$$
$$240$$ −1687.85 + 1600.56i −0.453960 + 0.430483i
$$241$$ 1630.46 + 1184.60i 0.435798 + 0.316625i 0.783963 0.620808i $$-0.213195\pi$$
−0.348165 + 0.937433i $$0.613195\pi$$
$$242$$ 235.006 + 723.273i 0.0624245 + 0.192123i
$$243$$ 243.000 0.0641500
$$244$$ 1470.98 + 4527.21i 0.385942 + 1.18781i
$$245$$ −1607.87 + 211.094i −0.419278 + 0.0550461i
$$246$$ −190.161 + 585.254i −0.0492854 + 0.151685i
$$247$$ 1987.68 6117.45i 0.512036 1.57589i
$$248$$ −605.929 + 440.233i −0.155147 + 0.112721i
$$249$$ −119.648 −0.0304514
$$250$$ 2857.84 4652.32i 0.722981 1.17695i
$$251$$ −278.293 −0.0699830 −0.0349915 0.999388i $$-0.511140\pi$$
−0.0349915 + 0.999388i $$0.511140\pi$$
$$252$$ −1168.34 + 848.850i −0.292058 + 0.212193i
$$253$$ 1947.96 5995.22i 0.484061 1.48979i
$$254$$ 1173.47 3611.57i 0.289882 0.892165i
$$255$$ −3354.91 + 440.459i −0.823894 + 0.108167i
$$256$$ 1465.73 + 4511.06i 0.357845 + 1.10133i
$$257$$ −2149.20 −0.521647 −0.260823 0.965387i $$-0.583994\pi$$
−0.260823 + 0.965387i $$0.583994\pi$$
$$258$$ −193.315 594.962i −0.0466483 0.143569i
$$259$$ 1548.92 + 1125.36i 0.371603 + 0.269985i
$$260$$ −4030.18 + 3821.75i −0.961311 + 0.911595i
$$261$$ 373.372 271.271i 0.0885485 0.0643342i
$$262$$ 3692.25 + 2682.58i 0.870641 + 0.632558i
$$263$$ 5778.91 + 4198.62i 1.35492 + 0.984404i 0.998750 + 0.0499805i $$0.0159159\pi$$
0.356165 + 0.934423i $$0.384084\pi$$
$$264$$ −272.817 + 198.213i −0.0636013 + 0.0462090i
$$265$$ −120.758 + 650.251i −0.0279929 + 0.150734i
$$266$$ 6566.86 + 4771.10i 1.51368 + 1.09976i
$$267$$ −429.956 1323.27i −0.0985501 0.303306i
$$268$$ 5656.08 1.28918
$$269$$ 273.812 + 842.706i 0.0620617 + 0.191006i 0.977280 0.211952i $$-0.0679820\pi$$
−0.915218 + 0.402958i $$0.867982\pi$$
$$270$$ −215.336 + 1159.53i −0.0485368 + 0.261358i
$$271$$ −238.067 + 732.696i −0.0533637 + 0.164237i −0.974187 0.225745i $$-0.927519\pi$$
0.920823 + 0.389981i $$0.127519\pi$$
$$272$$ −2161.96 + 6653.82i −0.481941 + 1.48326i
$$273$$ 3667.16 2664.34i 0.812990 0.590672i
$$274$$ 4191.02 0.924047
$$275$$ 3075.35 3792.18i 0.674366 0.831552i
$$276$$ −3516.66 −0.766950
$$277$$ 6061.62 4404.02i 1.31483 0.955278i 0.314847 0.949142i $$-0.398047\pi$$
0.999981 0.00613595i $$-0.00195315\pi$$
$$278$$ −413.291 + 1271.98i −0.0891639 + 0.274418i
$$279$$ −723.810 + 2227.66i −0.155317 + 0.478016i
$$280$$ 305.779 + 641.671i 0.0652635 + 0.136954i
$$281$$ 678.424 + 2087.98i 0.144026 + 0.443267i 0.996884 0.0788752i $$-0.0251329\pi$$
−0.852858 + 0.522143i $$0.825133\pi$$
$$282$$ 2836.32 0.598937
$$283$$ 1728.33 + 5319.25i 0.363033 + 1.11730i 0.951203 + 0.308564i $$0.0998485\pi$$
−0.588170 + 0.808737i $$0.700151\pi$$
$$284$$ −1316.65 956.602i −0.275101 0.199873i
$$285$$ 3127.59 410.614i 0.650043 0.0853426i
$$286$$ −8443.67 + 6134.69i −1.74575 + 1.26836i
$$287$$ 938.382 + 681.775i 0.193000 + 0.140223i
$$288$$ 1805.13 + 1311.50i 0.369334 + 0.268337i
$$289$$ −4258.90 + 3094.27i −0.866864 + 0.629814i
$$290$$ 963.562 + 2022.02i 0.195111 + 0.409437i
$$291$$ −1394.20 1012.94i −0.280857 0.204054i
$$292$$ 781.675 + 2405.75i 0.156658 + 0.482143i
$$293$$ −2905.73 −0.579367 −0.289684 0.957122i $$-0.593550\pi$$
−0.289684 + 0.957122i $$0.593550\pi$$
$$294$$ 525.335 + 1616.82i 0.104211 + 0.320730i
$$295$$ −6367.53 3460.24i −1.25672 0.682926i
$$296$$ 77.0703 237.198i 0.0151339 0.0465772i
$$297$$ −325.893 + 1002.99i −0.0636707 + 0.195958i
$$298$$ −4010.83 + 2914.04i −0.779667 + 0.566461i
$$299$$ 11038.0 2.13493
$$300$$ −2542.16 977.936i −0.489239 0.188204i
$$301$$ −1179.14 −0.225796
$$302$$ 5891.32 4280.29i 1.12254 0.815573i
$$303$$ −996.290 + 3066.27i −0.188896 + 0.581361i
$$304$$ 2015.46 6202.96i 0.380246 1.17028i
$$305$$ 5316.80 5041.83i 0.998161 0.946540i
$$306$$ 1096.14 + 3373.58i 0.204778 + 0.630243i
$$307$$ −1896.85 −0.352635 −0.176317 0.984333i $$-0.556419\pi$$
−0.176317 + 0.984333i $$0.556419\pi$$
$$308$$ −1936.78 5960.80i −0.358306 1.10275i
$$309$$ −2263.80 1644.75i −0.416774 0.302804i
$$310$$ −9988.35 5427.87i −1.83000 0.994459i
$$311$$ −7137.00 + 5185.33i −1.30129 + 0.945444i −0.999967 0.00807744i $$-0.997429\pi$$
−0.301325 + 0.953522i $$0.597429\pi$$
$$312$$ −477.709 347.076i −0.0866825 0.0629785i
$$313$$ 6034.71 + 4384.47i 1.08978 + 0.791774i 0.979363 0.202111i $$-0.0647803\pi$$
0.110420 + 0.993885i $$0.464780\pi$$
$$314$$ 5979.63 4344.46i 1.07468 0.780802i
$$315$$ 1953.18 + 1061.40i 0.349362 + 0.189851i
$$316$$ −949.376 689.762i −0.169008 0.122792i
$$317$$ −1742.87 5364.01i −0.308799 0.950387i −0.978232 0.207514i $$-0.933463\pi$$
0.669433 0.742873i $$-0.266537\pi$$
$$318$$ 693.323 0.122263
$$319$$ 618.946 + 1904.92i 0.108634 + 0.334342i
$$320$$ −3356.81 + 3183.21i −0.586410 + 0.556083i
$$321$$ −1022.50 + 3146.92i −0.177788 + 0.547177i
$$322$$ −4304.36 + 13247.5i −0.744946 + 2.29271i
$$323$$ 7675.70 5576.72i 1.32225 0.960672i
$$324$$ 588.334 0.100880
$$325$$ 7979.25 + 3069.51i 1.36187 + 0.523895i
$$326$$ 12361.8 2.10018
$$327$$ 3559.23 2585.93i 0.601913 0.437316i
$$328$$ 46.6915 143.702i 0.00786009 0.0241909i
$$329$$ 1652.04 5084.47i 0.276839 0.852023i
$$330$$ −4497.22 2443.88i −0.750193 0.407670i
$$331$$ 1361.95 + 4191.66i 0.226162 + 0.696055i 0.998172 + 0.0604442i $$0.0192517\pi$$
−0.772010 + 0.635611i $$0.780748\pi$$
$$332$$ −289.684 −0.0478870
$$333$$ −241.027 741.804i −0.0396642 0.122074i
$$334$$ −11142.8 8095.69i −1.82546 1.32628i
$$335$$ −3745.32 7859.48i −0.610832 1.28182i
$$336$$ 3718.42 2701.59i 0.603739 0.438642i
$$337$$ −3620.77 2630.64i −0.585269 0.425223i 0.255351 0.966848i $$-0.417809\pi$$
−0.840620 + 0.541626i $$0.817809\pi$$
$$338$$ −7841.00 5696.82i −1.26182 0.916763i
$$339$$ 3761.67 2733.02i 0.602673 0.437867i
$$340$$ −8122.68 + 1066.41i −1.29563 + 0.170100i
$$341$$ −8224.05 5975.12i −1.30603 0.948888i
$$342$$ −1021.87 3144.98i −0.161568 0.497255i
$$343$$ −4373.14 −0.688418
$$344$$ 47.4660 + 146.085i 0.00743952 + 0.0228965i
$$345$$ 2328.65 + 4886.62i 0.363392 + 0.762571i
$$346$$ 4686.97 14425.0i 0.728246 2.24131i
$$347$$ −216.151 + 665.244i −0.0334397 + 0.102917i −0.966383 0.257106i $$-0.917231\pi$$
0.932944 + 0.360023i $$0.117231\pi$$
$$348$$ 903.982 656.781i 0.139249 0.101170i
$$349$$ −7119.97 −1.09204 −0.546022 0.837771i $$-0.683858\pi$$
−0.546022 + 0.837771i $$0.683858\pi$$
$$350$$ −6795.51 + 8379.46i −1.03782 + 1.27972i
$$351$$ −1846.65 −0.280817
$$352$$ −7834.19 + 5691.87i −1.18626 + 0.861868i
$$353$$ −1094.30 + 3367.90i −0.164996 + 0.507806i −0.999036 0.0438984i $$-0.986022\pi$$
0.834040 + 0.551704i $$0.186022\pi$$
$$354$$ −2347.64 + 7225.29i −0.352473 + 1.08480i
$$355$$ −457.405 + 2463.01i −0.0683846 + 0.368233i
$$356$$ −1040.98 3203.80i −0.154977 0.476970i
$$357$$ 6686.03 0.991210
$$358$$ 602.470 + 1854.21i 0.0889428 + 0.273738i
$$359$$ −9430.47 6851.64i −1.38641 1.00729i −0.996248 0.0865388i $$-0.972419\pi$$
−0.390161 0.920747i $$-0.627581\pi$$
$$360$$ 52.8731 284.708i 0.00774071 0.0416817i
$$361$$ −1606.55 + 1167.22i −0.234224 + 0.170174i
$$362$$ 14069.4 + 10222.0i 2.04274 + 1.48414i
$$363$$ −472.443 343.250i −0.0683108 0.0496307i
$$364$$ 8878.66 6450.72i 1.27848 0.928873i
$$365$$ 2825.33 2679.22i 0.405164 0.384210i
$$366$$ −6214.27 4514.93i −0.887500 0.644806i
$$367$$ 22.7126 + 69.9022i 0.00323048 + 0.00994241i 0.952659 0.304042i $$-0.0983362\pi$$
−0.949428 + 0.313984i $$0.898336\pi$$
$$368$$ 11192.3 1.58543
$$369$$ −146.021 449.407i −0.0206005 0.0634017i
$$370$$ 3753.27 492.758i 0.527360 0.0692359i
$$371$$ 403.833 1242.87i 0.0565121 0.173926i
$$372$$ −1752.44 + 5393.45i −0.244246 + 0.751713i
$$373$$ −2082.90 + 1513.32i −0.289139 + 0.210071i −0.722894 0.690959i $$-0.757188\pi$$
0.433755 + 0.901031i $$0.357188\pi$$
$$374$$ −15394.7 −2.12845
$$375$$ 324.453 + 4180.05i 0.0446791 + 0.575619i
$$376$$ −696.422 −0.0955193
$$377$$ −2837.39 + 2061.48i −0.387621 + 0.281623i
$$378$$ 720.116 2216.29i 0.0979861 0.301570i
$$379$$ 18.7531 57.7162i 0.00254164 0.00782238i −0.949778 0.312926i $$-0.898691\pi$$
0.952319 + 0.305103i $$0.0986910\pi$$
$$380$$ 7572.29 994.148i 1.02224 0.134207i
$$381$$ 901.088 + 2773.26i 0.121166 + 0.372910i
$$382$$ 15511.4 2.07758
$$383$$ 1174.60 + 3615.05i 0.156708 + 0.482299i 0.998330 0.0577690i $$-0.0183987\pi$$
−0.841622 + 0.540068i $$0.818399\pi$$
$$384$$ −890.242 646.799i −0.118307 0.0859553i
$$385$$ −7000.42 + 6638.38i −0.926687 + 0.878762i
$$386$$ −9846.67 + 7154.02i −1.29840 + 0.943343i
$$387$$ 388.630 + 282.356i 0.0510470 + 0.0370878i
$$388$$ −3375.53 2452.47i −0.441667 0.320890i
$$389$$ −7911.32 + 5747.91i −1.03116 + 0.749179i −0.968540 0.248858i $$-0.919945\pi$$
−0.0626169 + 0.998038i $$0.519945\pi$$
$$390$$ 1636.42 8811.68i 0.212470 1.14409i
$$391$$ 13171.8 + 9569.84i 1.70364 + 1.23777i
$$392$$ −128.989 396.989i −0.0166198 0.0511504i
$$393$$ −3504.53 −0.449822
$$394$$ −1741.86 5360.89i −0.222725 0.685477i
$$395$$ −329.814 + 1775.96i −0.0420120 + 0.226224i
$$396$$ −789.028 + 2428.38i −0.100127 + 0.308158i
$$397$$ −4430.53 + 13635.8i −0.560106 + 1.72383i 0.121957 + 0.992535i $$0.461083\pi$$
−0.682063 + 0.731294i $$0.738917\pi$$
$$398$$ 6369.95 4628.04i 0.802253 0.582871i
$$399$$ −6232.98 −0.782054
$$400$$ 8090.78 + 3112.42i 1.01135 + 0.389052i
$$401$$ 2086.59 0.259849 0.129924 0.991524i $$-0.458527\pi$$
0.129924 + 0.991524i $$0.458527\pi$$
$$402$$ −7383.81 + 5364.65i −0.916097 + 0.665583i
$$403$$ 5500.49 16928.8i 0.679899 2.09251i
$$404$$ −2412.15 + 7423.83i −0.297052 + 0.914231i
$$405$$ −389.581 817.528i −0.0477986 0.100304i
$$406$$ −1367.67 4209.24i −0.167183 0.514535i
$$407$$ 3385.08 0.412266
$$408$$ −269.144 828.339i −0.0326583 0.100512i
$$409$$ 338.014 + 245.582i 0.0408649 + 0.0296901i 0.608030 0.793914i $$-0.291960\pi$$
−0.567165 + 0.823604i $$0.691960\pi$$
$$410$$ 2273.85 298.528i 0.273896 0.0359591i
$$411$$ −2603.59 + 1891.62i −0.312472 + 0.227024i
$$412$$ −5480.95 3982.15i −0.655406 0.476180i
$$413$$ 11584.8 + 8416.88i 1.38027 + 1.00283i
$$414$$ 4590.88 3335.47i 0.544998 0.395964i
$$415$$ 191.822 + 402.534i 0.0226896 + 0.0476136i
$$416$$ −13717.8 9966.58i −1.61676 1.17464i
$$417$$ −317.360 976.733i −0.0372690 0.114702i
$$418$$ 14351.5 1.67932
$$419$$ −385.525 1186.52i −0.0449502 0.138342i 0.926063 0.377370i $$-0.123171\pi$$
−0.971013 + 0.239027i $$0.923171\pi$$
$$420$$ 4728.90 + 2569.78i 0.549397 + 0.298553i
$$421$$ 3257.63 10026.0i 0.377119 1.16065i −0.564919 0.825147i $$-0.691092\pi$$
0.942038 0.335507i $$-0.108908\pi$$
$$422$$ −286.554 + 881.924i −0.0330551 + 0.101733i
$$423$$ −1762.01 + 1280.18i −0.202534 + 0.147150i
$$424$$ −170.237 −0.0194987
$$425$$ 6860.49 + 10580.8i 0.783018 + 1.20764i
$$426$$ 2626.15 0.298680
$$427$$ −11713.2 + 8510.10i −1.32749 + 0.964480i
$$428$$ −2475.59 + 7619.09i −0.279585 + 0.860473i
$$429$$ 2476.58 7622.12i 0.278719 0.857808i
$$430$$ −1691.71 + 1604.22i −0.189725 + 0.179913i
$$431$$ −2759.44 8492.68i −0.308393 0.949137i −0.978389 0.206772i $$-0.933704\pi$$
0.669996 0.742365i $$-0.266296\pi$$
$$432$$ −1872.46 −0.208539
$$433$$ 750.382 + 2309.44i 0.0832819 + 0.256315i 0.984023 0.178041i $$-0.0569759\pi$$
−0.900741 + 0.434356i $$0.856976\pi$$
$$434$$ 18172.4 + 13203.1i 2.00992 + 1.46029i
$$435$$ −1511.23 821.235i −0.166570 0.0905177i
$$436$$ 8617.34 6260.87i 0.946550 0.687709i
$$437$$ −12279.2 8921.39i −1.34416 0.976586i
$$438$$ −3302.24 2399.22i −0.360245 0.261733i
$$439$$ 7139.64 5187.25i 0.776211 0.563950i −0.127629 0.991822i $$-0.540737\pi$$
0.903839 + 0.427872i $$0.140737\pi$$
$$440$$ 1104.24 + 600.064i 0.119642 + 0.0650157i
$$441$$ −1056.11 767.306i −0.114038 0.0828535i
$$442$$ −8329.98 25637.0i −0.896418 2.75889i
$$443$$ −11494.3 −1.23275 −0.616377 0.787451i $$-0.711400\pi$$
−0.616377 + 0.787451i $$0.711400\pi$$
$$444$$ −583.557 1796.00i −0.0623747 0.191970i
$$445$$ −3762.58 + 3567.99i −0.400816 + 0.380087i
$$446$$ −353.506 + 1087.98i −0.0375314 + 0.115510i
$$447$$ 1176.40 3620.58i 0.124478 0.383104i
$$448$$ 7395.20 5372.93i 0.779889 0.566623i
$$449$$ 1582.63 0.166345 0.0831727 0.996535i $$-0.473495\pi$$
0.0831727 + 0.996535i $$0.473495\pi$$
$$450$$ 4246.25 1134.51i 0.444822 0.118848i
$$451$$ 2050.78 0.214119
$$452$$ 9107.50 6616.98i 0.947745 0.688577i
$$453$$ −1727.96 + 5318.10i −0.179220 + 0.551581i
$$454$$ 257.230 791.673i 0.0265912 0.0818394i
$$455$$ −14842.9 8065.94i −1.52933 0.831071i
$$456$$ 250.907 + 772.211i 0.0257671 + 0.0793028i
$$457$$ 6765.77 0.692537 0.346269 0.938135i $$-0.387449\pi$$
0.346269 + 0.938135i $$0.387449\pi$$
$$458$$ −3914.43 12047.4i −0.399366 1.22912i
$$459$$ −2203.62 1601.03i −0.224088 0.162809i
$$460$$ 5637.96 + 11831.1i 0.571459 + 1.19920i
$$461$$ −9394.53 + 6825.53i −0.949126 + 0.689580i −0.950600 0.310419i $$-0.899531\pi$$
0.00147406 + 0.999999i $$0.499531\pi$$
$$462$$ 8182.08 + 5944.63i 0.823949 + 0.598634i
$$463$$ 3221.48 + 2340.54i 0.323358 + 0.234934i 0.737607 0.675230i $$-0.235956\pi$$
−0.414249 + 0.910164i $$0.635956\pi$$
$$464$$ −2877.05 + 2090.30i −0.287853 + 0.209137i
$$465$$ 8654.95 1136.29i 0.863148 0.113321i
$$466$$ 12574.0 + 9135.55i 1.24996 + 0.908147i
$$467$$ 3420.76 + 10528.0i 0.338959 + 1.04321i 0.964739 + 0.263208i $$0.0847806\pi$$
−0.625780 + 0.779999i $$0.715219\pi$$
$$468$$ −4470.97 −0.441604
$$469$$ 5316.05 + 16361.1i 0.523395 + 1.61085i
$$470$$ −4547.23 9542.26i −0.446272 0.936493i
$$471$$ −1753.86 + 5397.83i −0.171579 + 0.528065i
$$472$$ 576.433 1774.08i 0.0562129 0.173005i
$$473$$ −1686.64 + 1225.42i −0.163957 + 0.119122i
$$474$$ 1893.60 0.183493
$$475$$ −6395.62 9863.87i −0.617792 0.952812i
$$476$$ 16187.7 1.55875
$$477$$ −430.714 + 312.932i −0.0413439 + 0.0300381i
$$478$$ −5828.19 + 17937.3i −0.557688 + 1.71639i
$$479$$ −305.633 + 940.643i −0.0291540 + 0.0897267i −0.964575 0.263810i $$-0.915021\pi$$
0.935421 + 0.353536i $$0.115021\pi$$
$$480$$ 1518.30 8175.63i 0.144376 0.777427i
$$481$$ 1831.65 + 5637.24i 0.173630 + 0.534378i
$$482$$ −7873.69 −0.744059
$$483$$ −3305.25 10172.5i −0.311375 0.958313i
$$484$$ −1143.85 831.052i −0.107424 0.0780477i
$$485$$ −1172.66 + 6314.48i −0.109789 + 0.591187i
$$486$$ −768.050 + 558.021i −0.0716861 + 0.0520830i
$$487$$ −9577.72 6958.62i −0.891187 0.647485i 0.0450004 0.998987i $$-0.485671\pi$$
−0.936187 + 0.351502i $$0.885671\pi$$
$$488$$ 1525.83 + 1108.58i 0.141540 + 0.102835i
$$489$$ −7679.55 + 5579.52i −0.710187 + 0.515981i
$$490$$ 4597.25 4359.49i 0.423842 0.401922i
$$491$$ −10575.2 7683.33i −0.971999 0.706199i −0.0160929 0.999871i $$-0.505123\pi$$
−0.955906 + 0.293672i $$0.905123\pi$$
$$492$$ −353.537 1088.07i −0.0323956 0.0997035i
$$493$$ −5173.18 −0.472593
$$494$$ 7765.54 + 23899.9i 0.707264 + 2.17673i
$$495$$ 3896.86 511.610i 0.353840 0.0464549i
$$496$$ 5577.38 17165.4i 0.504903 1.55393i
$$497$$ 1529.63 4707.72i 0.138055 0.424889i
$$498$$ 378.172 274.758i 0.0340287 0.0247233i
$$499$$ 107.268 0.00962323 0.00481162 0.999988i $$-0.498468\pi$$
0.00481162 + 0.999988i $$0.498468\pi$$
$$500$$ 785.542 + 10120.5i 0.0702610 + 0.905201i
$$501$$ 10576.2 0.943137
$$502$$ 879.602 639.068i 0.0782043 0.0568187i
$$503$$ −1599.76 + 4923.56i −0.141809 + 0.436443i −0.996587 0.0825511i $$-0.973693\pi$$
0.854778 + 0.518994i $$0.173693\pi$$
$$504$$ −176.815 + 544.182i −0.0156269 + 0.0480948i
$$505$$ 11913.1 1564.05i 1.04976 0.137820i
$$506$$ 7610.38 + 23422.3i 0.668622 + 2.05781i
$$507$$ 7442.34 0.651925
$$508$$ 2181.65 + 6714.43i 0.190542 + 0.586427i
$$509$$ 4039.84 + 2935.11i 0.351793 + 0.255593i 0.749621 0.661868i $$-0.230236\pi$$
−0.397828 + 0.917460i $$0.630236\pi$$
$$510$$ 9592.41 9096.32i 0.832861 0.789788i
$$511$$ −6224.34 + 4522.24i −0.538842 + 0.391492i
$$512$$ −12617.9 9167.42i −1.08913 0.791302i
$$513$$ 2054.31 + 1492.54i 0.176803 + 0.128455i
$$514$$ 6792.96 4935.38i 0.582928 0.423522i
$$515$$ −1904.09 + 10253.0i −0.162921 + 0.877285i
$$516$$ 940.923 + 683.621i 0.0802749 + 0.0583231i
$$517$$ −2920.92 8989.66i −0.248475 0.764729i
$$518$$ −7479.91 −0.634456
$$519$$ 3599.05 + 11076.7i 0.304395 + 0.936831i
$$520$$ −401.802 + 2163.60i −0.0338849 + 0.182462i
$$521$$ 4258.29 13105.7i 0.358079 1.10205i −0.596124 0.802893i $$-0.703293\pi$$
0.954203 0.299161i $$-0.0967068\pi$$
$$522$$ −557.175 + 1714.81i −0.0467182 + 0.143784i
$$523$$ −17345.4 + 12602.2i −1.45021 + 1.05364i −0.464433 + 0.885608i $$0.653742\pi$$
−0.985781 + 0.168034i $$0.946258\pi$$
$$524$$ −8484.91 −0.707376
$$525$$ 439.507 8272.75i 0.0365365 0.687719i
$$526$$ −27907.0 −2.31332
$$527$$ 21240.9 15432.4i 1.75573 1.27561i
$$528$$ 2511.20 7728.66i 0.206981 0.637021i
$$529$$ 4288.83 13199.7i 0.352497 1.08487i
$$530$$ −1111.55 2332.56i −0.0910990 0.191169i
$$531$$ −1802.71 5548.18i −0.147328 0.453429i
$$532$$ −15090.9 −1.22983
$$533$$ 1109.67 + 3415.21i 0.0901785 + 0.277541i
$$534$$ 4397.69 + 3195.11i 0.356380 + 0.258925i
$$535$$ 12226.5 1605.19i 0.988032 0.129716i
$$536$$ 1813.00 1317.22i 0.146100 0.106148i
$$537$$ −1211.17 879.969i −0.0973296 0.0707141i
$$538$$ −2800.61 2034.76i −0.224429 0.163057i
$$539$$ 4583.46 3330.08i 0.366278 0.266116i
$$540$$ −943.226 1979.34i −0.0751666 0.157736i
$$541$$ 19412.5 + 14104.0i 1.54272 + 1.12085i 0.948603 + 0.316467i $$0.102497\pi$$
0.594113 + 0.804382i $$0.297503\pi$$
$$542$$ −930.091 2862.53i −0.0737100 0.226856i
$$543$$ −13354.1 −1.05539
$$544$$ −7728.70 23786.5i −0.609127 1.87470i
$$545$$ −14406.1 7828.55i −1.13227 0.615299i
$$546$$ −5472.42 + 16842.4i −0.428934 + 1.32012i
$$547$$ −6911.76 + 21272.2i −0.540266 + 1.66277i 0.191721 + 0.981450i $$0.438593\pi$$
−0.731987 + 0.681319i $$0.761407\pi$$
$$548$$ −6303.64 + 4579.86i −0.491383 + 0.357011i
$$549$$ 5898.32 0.458532
$$550$$ −1011.97 + 19048.1i −0.0784555 + 1.47675i
$$551$$ 4822.65 0.372871
$$552$$ −1127.23 + 818.982i −0.0869170 + 0.0631489i
$$553$$ 1102.95 3394.52i 0.0848138 0.261030i
$$554$$ −9045.63 + 27839.6i −0.693704 + 2.13500i
$$555$$ −2109.24 + 2000.16i −0.161320 + 0.152977i
$$556$$ −768.369 2364.80i −0.0586081 0.180377i
$$557$$ 5920.24 0.450357 0.225178 0.974318i $$-0.427703\pi$$
0.225178 + 0.974318i $$0.427703\pi$$
$$558$$ −2827.81 8703.10i −0.214535 0.660271i
$$559$$ −2953.34 2145.73i −0.223458 0.162352i
$$560$$ −15050.4 8178.69i −1.13571 0.617165i
$$561$$ 9563.65 6948.40i 0.719746 0.522926i
$$562$$ −6939.08 5041.54i −0.520832 0.378407i
$$563$$ 2602.59 + 1890.89i 0.194824 + 0.141548i 0.680921 0.732357i $$-0.261580\pi$$
−0.486097 + 0.873905i $$0.661580\pi$$
$$564$$ −4266.06 + 3099.47i −0.318499 + 0.231403i
$$565$$ −15225.5 8273.83i −1.13370 0.616076i
$$566$$ −17677.7 12843.6i −1.31281 0.953813i
$$567$$ 552.965 + 1701.85i 0.0409566 + 0.126051i
$$568$$ −644.819 −0.0476338
$$569$$ 1869.17 + 5752.70i 0.137714 + 0.423841i 0.996002 0.0893271i $$-0.0284716\pi$$
−0.858288 + 0.513168i $$0.828472\pi$$
$$570$$ −8942.43 + 8479.96i −0.657118 + 0.623134i
$$571$$ 1450.75 4464.95i 0.106326 0.327237i −0.883714 0.468028i $$-0.844965\pi$$
0.990039 + 0.140791i $$0.0449646\pi$$
$$572$$ 5996.11 18454.1i 0.438304 1.34896i
$$573$$ −9636.19 + 7001.10i −0.702544 + 0.510428i
$$574$$ −4531.56 −0.329518
$$575$$ 12706.8 15668.6i 0.921583 1.13639i
$$576$$ −3723.95 −0.269383
$$577$$ 15913.7 11562.0i 1.14817 0.834197i 0.159937 0.987127i $$-0.448871\pi$$
0.988237 + 0.152930i $$0.0488709\pi$$
$$578$$ 6355.47 19560.1i 0.457358 1.40760i
$$579$$ 2888.08 8888.61i 0.207297 0.637993i
$$580$$ −3658.89 1988.32i −0.261944 0.142345i
$$581$$ −272.269 837.958i −0.0194417 0.0598354i
$$582$$ 6732.74 0.479521
$$583$$ −714.003 2197.47i −0.0507221 0.156107i
$$584$$ 810.824 + 589.098i 0.0574523 + 0.0417415i
$$585$$ 2960.57 + 6212.69i 0.209238 + 0.439082i
$$586$$ 9184.14 6672.67i 0.647429 0.470384i
$$587$$ 8058.17 + 5854.60i 0.566603 + 0.411661i 0.833870 0.551961i $$-0.186120\pi$$
−0.267266 + 0.963623i $$0.586120\pi$$
$$588$$ −2556.97 1857.75i −0.179333 0.130293i
$$589$$ −19801.6 + 14386.7i −1.38525 + 1.00644i
$$590$$ 28071.9 3685.49i 1.95882 0.257168i
$$591$$ 3501.74 + 2544.16i 0.243727 + 0.177078i
$$592$$ 1857.25 + 5716.04i 0.128940 + 0.396837i
$$593$$ −24115.5 −1.66999 −0.834995 0.550257i $$-0.814530\pi$$
−0.834995 + 0.550257i $$0.814530\pi$$
$$594$$ −1273.21 3918.54i −0.0879469 0.270673i
$$595$$ −10719.1 22493.9i −0.738557 1.54985i
$$596$$ 2848.21 8765.89i 0.195750 0.602458i
$$597$$ −1868.34 + 5750.17i −0.128084 + 0.394202i
$$598$$ −34887.8 + 25347.4i −2.38573 + 1.73333i
$$599$$ 13381.7 0.912790 0.456395 0.889777i $$-0.349140\pi$$
0.456395 + 0.889777i $$0.349140\pi$$
$$600$$ −1042.61 + 278.566i −0.0709408 + 0.0189540i
$$601$$ 23840.2 1.61807 0.809037 0.587758i $$-0.199989\pi$$
0.809037 + 0.587758i $$0.199989\pi$$
$$602$$ 3726.92 2707.76i 0.252322 0.183323i
$$603$$ 2165.71 6665.38i 0.146260 0.450141i
$$604$$ −4183.61 + 12875.8i −0.281835 + 0.867400i
$$605$$ −397.373 + 2139.75i −0.0267033 + 0.143790i
$$606$$ −3892.35 11979.4i −0.260917 0.803020i
$$607$$ −17213.0 −1.15100 −0.575499 0.817803i $$-0.695192\pi$$
−0.575499 + 0.817803i $$0.695192\pi$$
$$608$$ 7205.00 + 22174.7i 0.480594 + 1.47912i
$$609$$ 2749.48 + 1997.62i 0.182947 + 0.132919i
$$610$$ −5226.83 + 28145.1i −0.346932 + 1.86814i
$$611$$ 13390.2 9728.52i 0.886593 0.644147i
$$612$$ −5335.26 3876.29i −0.352394 0.256029i
$$613$$ −6213.79 4514.58i −0.409417 0.297459i 0.363949 0.931419i $$-0.381428\pi$$
−0.773366 + 0.633960i $$0.781428\pi$$
$$614$$ 5995.37 4355.89i 0.394061 0.286302i
$$615$$ −1277.84 + 1211.76i −0.0837848 + 0.0794517i
$$616$$ −2009.01 1459.63i −0.131404 0.0954709i
$$617$$ 5822.57 + 17920.0i 0.379915 + 1.16926i 0.940102 + 0.340893i $$0.110729\pi$$
−0.560187 + 0.828366i $$0.689271\pi$$
$$618$$ 10932.2 0.711579
$$619$$ −8736.42 26887.9i −0.567280 1.74591i −0.661079 0.750317i $$-0.729901\pi$$
0.0937989 0.995591i $$-0.470099\pi$$
$$620$$ 20954.8 2751.10i 1.35736 0.178205i
$$621$$ −1346.53 + 4144.19i −0.0870119 + 0.267795i
$$622$$ 10650.4 32778.5i 0.686562 2.11302i
$$623$$ 8289.12 6022.40i 0.533060 0.387291i
$$624$$ 14229.5 0.912878
$$625$$ 13542.8 7793.08i 0.866742 0.498757i
$$626$$ −29142.3 −1.86064
$$627$$ −8915.62 + 6477.57i −0.567871 + 0.412583i
$$628$$ −4246.32 + 13068.8i −0.269820 + 0.830419i
$$629$$ −2701.71 + 8315.01i −0.171263 + 0.527092i
$$630$$ −8610.78 + 1130.49i −0.544543 + 0.0714917i
$$631$$ −2799.20 8615.05i −0.176600 0.543518i 0.823103 0.567892i $$-0.192241\pi$$
−0.999703 + 0.0243738i $$0.992241\pi$$
$$632$$ −464.950 −0.0292638
$$633$$ −220.041 677.215i −0.0138165 0.0425227i
$$634$$ 17826.5 + 12951.7i 1.11669 + 0.811322i
$$635$$ 7885.49 7477.68i 0.492797 0.467311i
$$636$$ −1042.81 + 757.649i −0.0650162 + 0.0472370i
$$637$$ 8025.74 + 5831.04i 0.499201 + 0.362691i
$$638$$ −6330.72 4599.54i −0.392846 0.285419i
$$639$$ −1631.45 + 1185.32i −0.101000 + 0.0733809i
$$640$$ −748.785 + 4032.01i −0.0462474 + 0.249030i
$$641$$ 6259.41 + 4547.73i 0.385697 + 0.280225i 0.763690 0.645583i $$-0.223386\pi$$
−0.377993 + 0.925809i $$0.623386\pi$$
$$642$$ −3994.72 12294.5i −0.245575 0.755802i
$$643$$ 20694.2 1.26921 0.634604 0.772837i $$-0.281163\pi$$
0.634604 + 0.772837i $$0.281163\pi$$
$$644$$ −8002.44 24629.0i −0.489659 1.50701i
$$645$$ 326.877 1760.15i 0.0199547 0.107451i
$$646$$ −11454.3 + 35252.7i −0.697620 + 2.14705i
$$647$$ 2688.19 8273.39i 0.163344 0.502721i −0.835566 0.549389i $$-0.814860\pi$$
0.998910 + 0.0466682i $$0.0148603\pi$$
$$648$$ 188.585 137.015i 0.0114326 0.00830626i
$$649$$ 25318.1 1.53131
$$650$$ −32268.8 + 8621.59i −1.94721 + 0.520256i
$$651$$ −17248.5 −1.03844
$$652$$ −18593.2 + 13508.7i −1.11682 + 0.811416i
$$653$$ 3741.70 11515.8i 0.224233 0.690118i −0.774136 0.633020i $$-0.781815\pi$$
0.998369 0.0570980i $$-0.0181848\pi$$
$$654$$ −5311.36 + 16346.7i −0.317570 + 0.977379i
$$655$$ 5618.51 + 11790.3i 0.335165 + 0.703337i
$$656$$ 1125.18 + 3462.95i 0.0669679 + 0.206106i
$$657$$ 3134.35 0.186123
$$658$$ 6454.27 + 19864.2i 0.382391 + 1.17688i
$$659$$ 1436.42 + 1043.62i 0.0849091 + 0.0616901i 0.629430 0.777057i $$-0.283288\pi$$
−0.544521 + 0.838747i $$0.683288\pi$$
$$660$$ 9434.81 1238.67i 0.556438 0.0730535i
$$661$$ 9947.42 7227.23i 0.585340 0.425275i −0.255305 0.966861i $$-0.582176\pi$$
0.840645 + 0.541586i $$0.182176\pi$$
$$662$$ −13930.4 10121.0i −0.817853 0.594205i
$$663$$ 16746.1 + 12166.8i 0.980945 + 0.712698i
$$664$$ −92.8555 + 67.4634i −0.00542694 + 0.00394291i
$$665$$ 9992.80 + 20969.7i 0.582713 + 1.22281i
$$666$$ 2465.28 + 1791.13i 0.143435 + 0.104211i
$$667$$ 2557.37 + 7870.78i 0.148459 + 0.456908i
$$668$$ 25606.4 1.48315
$$669$$ −271.452 835.444i −0.0156875 0.0482812i
$$670$$ 29886.2 + 16240.8i 1.72329 + 0.936470i
$$671$$ −7910.36 + 24345.6i −0.455106 + 1.40067i
$$672$$ −5077.41 + 15626.7i −0.291466 + 0.897041i
$$673$$ 23862.6 17337.2i 1.36677 0.993016i 0.368788 0.929514i $$-0.379773\pi$$
0.997982 0.0635025i $$-0.0202271\pi$$
$$674$$ 17485.1 0.999260
$$675$$ −2125.84 + 2621.34i −0.121220 + 0.149475i
$$676$$ 18018.9 1.02520
$$677$$ −27342.4 + 19865.4i −1.55222 + 1.12776i −0.610178 + 0.792264i $$0.708902\pi$$
−0.942043 + 0.335491i $$0.891098\pi$$
$$678$$ −5613.47 + 17276.5i −0.317970 + 0.978612i
$$679$$ 3921.55 12069.3i 0.221643 0.682146i
$$680$$ −2355.30 + 2233.49i −0.132826 + 0.125956i
$$681$$ 197.523 + 607.913i 0.0111147 + 0.0342075i
$$682$$ 39714.9 2.22986
$$683$$ −659.833 2030.76i −0.0369661 0.113770i 0.930871 0.365349i $$-0.119050\pi$$
−0.967837 + 0.251579i $$0.919050\pi$$
$$684$$ 4973.74 + 3613.64i 0.278035 + 0.202004i
$$685$$ 10538.1 + 5726.63i 0.587797 + 0.319421i
$$686$$ 13822.2 10042.4i 0.769291 0.558923i
$$687$$ 7869.37 + 5717.43i 0.437024 + 0.317516i
$$688$$ −2994.62 2175.72i −0.165943 0.120565i
$$689$$ 3273.16 2378.09i 0.180983 0.131492i
$$690$$ −18581.7 10097.7i −1.02521 0.557119i
$$691$$ −17933.3 13029.3i −0.987285 0.717305i −0.0279602 0.999609i $$-0.508901\pi$$
−0.959325 + 0.282304i $$0.908901\pi$$
$$692$$ 8713.77 + 26818.2i 0.478682 + 1.47323i
$$693$$ −7766.08 −0.425698
$$694$$ −844.467 2599.00i −0.0461895 0.142157i
$$695$$ −2777.24 + 2633.61i −0.151578 + 0.143739i
$$696$$ 136.807 421.050i 0.00745068 0.0229308i
$$697$$ −1636.78 + 5037.49i −0.0889489 + 0.273757i
$$698$$ 22504.1 16350.2i 1.22033 0.886623i
$$699$$ −11934.7 −0.645797
$$700$$ 1064.10 20029.4i 0.0574561 1.08149i
$$701$$ 12304.2 0.662941 0.331471 0.943466i $$-0.392455\pi$$
0.331471 + 0.943466i $$0.392455\pi$$
$$702$$ 5836.69 4240.60i 0.313806 0.227993i
$$703$$ 2518.64 7751.59i 0.135124 0.415870i
$$704$$ 4994.28 15370.8i 0.267371 0.822882i
$$705$$ 7131.79 + 3875.56i 0.380991 + 0.207038i
$$706$$ −4275.25 13157.9i −0.227905 0.701420i
$$707$$ −23741.8 −1.26294
$$708$$ −4364.60 13432.9i −0.231683 0.713048i
$$709$$ −9554.64 6941.85i −0.506110 0.367711i 0.305236 0.952277i $$-0.401265\pi$$
−0.811346 + 0.584566i $$0.801265\pi$$
$$710$$ −4210.28 8835.20i −0.222548 0.467013i
$$711$$ −1176.36 + 854.678i −0.0620493 + 0.0450815i
$$712$$ −1079.80 784.519i −0.0568358 0.0412937i
$$713$$ −33980.3 24688.1i −1.78481 1.29674i
$$714$$ −21132.5 + 15353.7i −1.10765 + 0.804757i
$$715$$ −29613.7 + 3887.91i −1.54894 + 0.203356i
$$716$$ −2932.41 2130.52i −0.153058 0.111203i
$$717$$ −4475.37 13773.8i −0.233104 0.717421i
$$718$$ 45540.8 2.36709
$$719$$ −9386.90 28889.9i −0.486888 1.49849i −0.829228 0.558911i $$-0.811219\pi$$
0.342340 0.939576i $$-0.388781\pi$$
$$720$$ 3001.95 + 6299.53i 0.155383 + 0.326069i
$$721$$ 6367.55 19597.3i 0.328904 1.01226i
$$722$$ 2397.42 7378.48i 0.123577 0.380331i
$$723$$ 4891.38 3553.80i 0.251608 0.182804i
$$724$$ −32332.0 −1.65968
$$725$$ −340.060 + 6400.88i −0.0174200 + 0.327893i
$$726$$ 2281.48 0.116631
$$727$$ −24645.5 + 17906.0i −1.25729 + 0.913475i −0.998621 0.0524916i $$-0.983284\pi$$
−0.258668 + 0.965966i $$0.583284\pi$$
$$728$$ 1343.68 4135.43i 0.0684069 0.210535i
$$729$$ 225.273 693.320i 0.0114451 0.0352243i
$$730$$ −2777.52 + 14956.2i −0.140823 + 0.758295i
$$731$$ −1663.93 5121.05i −0.0841896 0.259109i
$$732$$ 14280.6 0.721073
$$733$$ −7869.55 24220.0i −0.396546 1.22044i −0.927751 0.373200i $$-0.878260\pi$$
0.531205 0.847244i $$-0.321740\pi$$
$$734$$ −232.310 168.783i −0.0116822 0.00848759i
$$735$$ −888.293 + 4783.23i −0.0445785 + 0.240044i
$$736$$ −32369.5 + 23517.8i −1.62113 + 1.17782i
$$737$$ 24607.2 + 17878.2i 1.22988 + 0.893557i
$$738$$ 1493.54 + 1085.12i 0.0744959 + 0.0541245i
$$739$$ −19811.5 + 14393.9i −0.986167 + 0.716492i −0.959078 0.283141i $$-0.908624\pi$$
−0.0270884 + 0.999633i $$0.508624\pi$$
$$740$$ −5106.75 + 4842.64i −0.253686 + 0.240566i
$$741$$ −15611.4 11342.4i −0.773955 0.562311i
$$742$$ 1577.71 + 4855.70i 0.0780588 + 0.240240i
$$743$$ 11738.9 0.579622 0.289811 0.957084i $$-0.406408\pi$$
0.289811 + 0.957084i $$0.406408\pi$$
$$744$$ 694.332 + 2136.94i 0.0342143 + 0.105301i
$$745$$ −14066.8 + 1846.79i −0.691768 + 0.0908206i
$$746$$ 3108.27 9566.29i 0.152550 0.469499i
$$747$$ −110.920 + 341.377i −0.00543287 + 0.0167207i
$$748$$ 23154.8 16823.0i 1.13185 0.822338i
$$749$$ −24366.2 −1.18868
$$750$$ −10624.5 12466.8i −0.517269 0.606965i
$$751$$ −12224.7 −0.593989 −0.296995 0.954879i $$-0.595984\pi$$
−0.296995 + 0.954879i $$0.595984\pi$$
$$752$$ 13577.3 9864.51i 0.658397 0.478353i
$$753$$ −257.992 + 794.018i −0.0124857 + 0.0384271i
$$754$$ 4234.18 13031.5i 0.204509 0.629414i
$$755$$ 20662.0 2712.67i 0.995985 0.130761i
$$756$$ 1338.80 + 4120.41i 0.0644070 + 0.198224i
$$757$$ −22653.2 −1.08764 −0.543822 0.839201i $$-0.683023\pi$$
−0.543822 + 0.839201i $$0.683023\pi$$
$$758$$ 73.2654 + 225.488i 0.00351071 + 0.0108049i
$$759$$ −15299.5 11115.7i −0.731669 0.531589i
$$760$$ 2195.70 2082.15i 0.104798 0.0993782i
$$761$$ −6237.17 + 4531.57i −0.297106 + 0.215860i −0.726344 0.687331i $$-0.758782\pi$$
0.429238 + 0.903191i $$0.358782\pi$$
$$762$$ −9216.54 6696.21i −0.438163 0.318344i
$$763$$ 26209.9 + 19042.6i 1.24359 + 0.903523i
$$764$$ −23330.5 + 16950.6i −1.10480 + 0.802684i
$$765$$ −1853.47 + 9980.47i −0.0875980 + 0.471692i
$$766$$ −12014.1 8728.75i −0.566693 0.411727i
$$767$$ 13699.5 + 42162.7i 0.644928 + 1.98488i
$$768$$ 14229.6 0.668577
$$769$$ 8640.68 + 26593.3i 0.405190 + 1.24705i 0.920737 + 0.390184i $$0.127589\pi$$
−0.515547 + 0.856861i $$0.672411\pi$$
$$770$$ 6881.96