# Properties

 Label 75.4.e.b Level $75$ Weight $4$ Character orbit 75.e Analytic conductor $4.425$ Analytic rank $0$ Dimension $4$ CM discriminant -15 Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$75 = 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 75.e (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.42514325043$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(i, \sqrt{6})$$ Defining polynomial: $$x^{4} + 9$$ Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$3^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} -\beta_{3} q^{3} + 19 \beta_{2} q^{4} + 27 q^{6} + 11 \beta_{3} q^{8} -27 \beta_{2} q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{2} -\beta_{3} q^{3} + 19 \beta_{2} q^{4} + 27 q^{6} + 11 \beta_{3} q^{8} -27 \beta_{2} q^{9} + 19 \beta_{1} q^{12} -145 q^{16} -4 \beta_{1} q^{17} -27 \beta_{3} q^{18} -164 \beta_{2} q^{19} + 38 \beta_{3} q^{23} + 297 \beta_{2} q^{24} -27 \beta_{1} q^{27} + 232 q^{31} -57 \beta_{1} q^{32} -108 \beta_{2} q^{34} + 513 q^{36} -164 \beta_{3} q^{38} -1026 q^{46} + 66 \beta_{1} q^{47} + 145 \beta_{3} q^{48} + 343 \beta_{2} q^{49} -108 q^{51} + 88 \beta_{3} q^{53} -729 \beta_{2} q^{54} -164 \beta_{1} q^{57} -358 q^{61} + 232 \beta_{1} q^{62} -379 \beta_{2} q^{64} -76 \beta_{3} q^{68} + 1026 \beta_{2} q^{69} + 297 \beta_{1} q^{72} + 3116 q^{76} -304 \beta_{2} q^{79} -729 q^{81} + 158 \beta_{3} q^{83} -722 \beta_{1} q^{92} -232 \beta_{3} q^{93} + 1782 \beta_{2} q^{94} -1539 q^{96} + 343 \beta_{3} q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 108q^{6} + O(q^{10})$$ $$4q + 108q^{6} - 580q^{16} + 928q^{31} + 2052q^{36} - 4104q^{46} - 432q^{51} - 1432q^{61} + 12464q^{76} - 2916q^{81} - 6156q^{96} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 9$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$3 \nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2}$$$$/3$$ $$\beta_{3}$$ $$=$$ $$\nu^{3}$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$$$/3$$ $$\nu^{2}$$ $$=$$ $$3 \beta_{2}$$ $$\nu^{3}$$ $$=$$ $$\beta_{3}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/75\mathbb{Z}\right)^\times$$.

 $$n$$ $$26$$ $$52$$ $$\chi(n)$$ $$-1$$ $$-\beta_{2}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
32.1
 −1.22474 + 1.22474i 1.22474 − 1.22474i −1.22474 − 1.22474i 1.22474 + 1.22474i
−3.67423 + 3.67423i −3.67423 3.67423i 19.0000i 0 27.0000 0 40.4166 + 40.4166i 27.0000i 0
32.2 3.67423 3.67423i 3.67423 + 3.67423i 19.0000i 0 27.0000 0 −40.4166 40.4166i 27.0000i 0
68.1 −3.67423 3.67423i −3.67423 + 3.67423i 19.0000i 0 27.0000 0 40.4166 40.4166i 27.0000i 0
68.2 3.67423 + 3.67423i 3.67423 3.67423i 19.0000i 0 27.0000 0 −40.4166 + 40.4166i 27.0000i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by $$\Q(\sqrt{-15})$$
3.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
15.e even 4 2 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.4.e.b 4
3.b odd 2 1 inner 75.4.e.b 4
5.b even 2 1 inner 75.4.e.b 4
5.c odd 4 2 inner 75.4.e.b 4
15.d odd 2 1 CM 75.4.e.b 4
15.e even 4 2 inner 75.4.e.b 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.4.e.b 4 1.a even 1 1 trivial
75.4.e.b 4 3.b odd 2 1 inner
75.4.e.b 4 5.b even 2 1 inner
75.4.e.b 4 5.c odd 4 2 inner
75.4.e.b 4 15.d odd 2 1 CM
75.4.e.b 4 15.e even 4 2 inner

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{4} + 729$$ acting on $$S_{4}^{\mathrm{new}}(75, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$729 + T^{4}$$
$3$ $$729 + T^{4}$$
$5$ $$T^{4}$$
$7$ $$T^{4}$$
$11$ $$T^{4}$$
$13$ $$T^{4}$$
$17$ $$186624 + T^{4}$$
$19$ $$( 26896 + T^{2} )^{2}$$
$23$ $$1520064144 + T^{4}$$
$29$ $$T^{4}$$
$31$ $$( -232 + T )^{4}$$
$37$ $$T^{4}$$
$41$ $$T^{4}$$
$43$ $$T^{4}$$
$47$ $$13832582544 + T^{4}$$
$53$ $$43717791744 + T^{4}$$
$59$ $$T^{4}$$
$61$ $$( 358 + T )^{4}$$
$67$ $$T^{4}$$
$71$ $$T^{4}$$
$73$ $$T^{4}$$
$79$ $$( 92416 + T^{2} )^{2}$$
$83$ $$454313744784 + T^{4}$$
$89$ $$T^{4}$$
$97$ $$T^{4}$$