Defining parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(75, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 8 | 28 |
Cusp forms | 24 | 8 | 16 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(75, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
75.4.b.a | $2$ | $4.425$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+3 i q^{2}+3 i q^{3}-q^{4}-9 q^{6}+20 i q^{7}+\cdots\) |
75.4.b.b | $2$ | $4.425$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{2}-3 i q^{3}+7 q^{4}+3 q^{6}-24 i q^{7}+\cdots\) |
75.4.b.c | $4$ | $4.425$ | \(\Q(i, \sqrt{19})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{1}+\beta _{3})q^{2}-3\beta _{1}q^{3}+(-12+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(75, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)