Properties

Label 75.4.b
Level $75$
Weight $4$
Character orbit 75.b
Rep. character $\chi_{75}(49,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $3$
Sturm bound $40$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 75.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(75, [\chi])\).

Total New Old
Modular forms 36 8 28
Cusp forms 24 8 16
Eisenstein series 12 0 12

Trace form

\( 8 q - 36 q^{4} - 24 q^{6} - 72 q^{9} + 112 q^{11} - 324 q^{14} + 180 q^{16} + 276 q^{19} - 108 q^{21} + 468 q^{24} - 764 q^{26} - 488 q^{29} + 68 q^{31} + 1088 q^{34} + 324 q^{36} + 204 q^{39} + 1688 q^{41}+ \cdots - 1008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(75, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
75.4.b.a 75.b 5.b $2$ $4.425$ \(\Q(\sqrt{-1}) \) None 15.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{2}+3 i q^{3}-q^{4}-9 q^{6}+20 i q^{7}+\cdots\)
75.4.b.b 75.b 5.b $2$ $4.425$ \(\Q(\sqrt{-1}) \) None 15.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-3 i q^{3}+7 q^{4}+3 q^{6}-24 i q^{7}+\cdots\)
75.4.b.c 75.b 5.b $4$ $4.425$ \(\Q(i, \sqrt{19})\) None 75.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{3})q^{2}-3\beta _{1}q^{3}+(-12+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(75, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)