Newspace parameters
Level: | \( N \) | \(=\) | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 75.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(4.42514325043\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{41}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 10 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 15) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{41})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.70156 | 3.00000 | −5.10469 | 0 | −5.10469 | 22.2094 | 22.2984 | 9.00000 | 0 | ||||||||||||||||||||||||
1.2 | 4.70156 | 3.00000 | 14.1047 | 0 | 14.1047 | −16.2094 | 28.7016 | 9.00000 | 0 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(5\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 75.4.a.f | 2 | |
3.b | odd | 2 | 1 | 225.4.a.i | 2 | ||
4.b | odd | 2 | 1 | 1200.4.a.bn | 2 | ||
5.b | even | 2 | 1 | 75.4.a.c | 2 | ||
5.c | odd | 4 | 2 | 15.4.b.a | ✓ | 4 | |
15.d | odd | 2 | 1 | 225.4.a.o | 2 | ||
15.e | even | 4 | 2 | 45.4.b.b | 4 | ||
20.d | odd | 2 | 1 | 1200.4.a.bt | 2 | ||
20.e | even | 4 | 2 | 240.4.f.f | 4 | ||
40.i | odd | 4 | 2 | 960.4.f.q | 4 | ||
40.k | even | 4 | 2 | 960.4.f.p | 4 | ||
60.l | odd | 4 | 2 | 720.4.f.j | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
15.4.b.a | ✓ | 4 | 5.c | odd | 4 | 2 | |
45.4.b.b | 4 | 15.e | even | 4 | 2 | ||
75.4.a.c | 2 | 5.b | even | 2 | 1 | ||
75.4.a.f | 2 | 1.a | even | 1 | 1 | trivial | |
225.4.a.i | 2 | 3.b | odd | 2 | 1 | ||
225.4.a.o | 2 | 15.d | odd | 2 | 1 | ||
240.4.f.f | 4 | 20.e | even | 4 | 2 | ||
720.4.f.j | 4 | 60.l | odd | 4 | 2 | ||
960.4.f.p | 4 | 40.k | even | 4 | 2 | ||
960.4.f.q | 4 | 40.i | odd | 4 | 2 | ||
1200.4.a.bn | 2 | 4.b | odd | 2 | 1 | ||
1200.4.a.bt | 2 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - 3T_{2} - 8 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(75))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - 3T - 8 \)
$3$
\( (T - 3)^{2} \)
$5$
\( T^{2} \)
$7$
\( T^{2} - 6T - 360 \)
$11$
\( T^{2} + 42T + 72 \)
$13$
\( T^{2} - 78T + 1152 \)
$17$
\( T^{2} - 102T + 1576 \)
$19$
\( T^{2} - 56T - 5120 \)
$23$
\( T^{2} + 48T - 80 \)
$29$
\( T^{2} + 318T + 7200 \)
$31$
\( T^{2} - 52T - 800 \)
$37$
\( T^{2} - 306T - 6480 \)
$41$
\( T^{2} + 408T + 40140 \)
$43$
\( T^{2} - 120T - 90864 \)
$47$
\( T^{2} - 180T - 78656 \)
$53$
\( T^{2} - 402T - 28520 \)
$59$
\( T^{2} + 186T + 8280 \)
$61$
\( T^{2} - 340T - 65564 \)
$67$
\( T^{2} - 732T + 97056 \)
$71$
\( T^{2} + 36T - 331776 \)
$73$
\( T^{2} - 1332 T + 324000 \)
$79$
\( T^{2} - 380T - 886400 \)
$83$
\( T^{2} + 984T - 201392 \)
$89$
\( T^{2} - 1116T + 98820 \)
$97$
\( T^{2} + 768T - 442944 \)
show more
show less